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Abstract

Numerical weather prediction (NWP) uses atmospheric general circulationmodels (AGCMs)
to predict weather based on current weather conditions. The process of entering obser-
vation data into mathematical model to generate the accurate initial conditions is called
data assimilation (DA). It combines observations, forecasting, and filtering step. This
paper presents an approach for employing artificial neural networks (NNs) to emulate
the local ensemble transform Kalman filter (LETKF) as a method of data assimilation.
This assimilation experiment tests the Simplified Parameterizations PrimitivE-Equation
Dynamics (SPEEDY) model, an atmospheric general circulation model (AGCM), using
synthetic observational data simulating localizations of meteorological balloons. For the
data assimilation scheme, the supervised NN, the multilayer perceptrons (MLPs) net-
works are applied. After the training process, the method, forehead-calling MLP-DA, is
seen as a function of data assimilation. The NNs were trained with data from first 3
months of 1982, 1983, and 1984. The experiment is performed for January 1985, one data
assimilation cycle using MLP-DA with synthetic observations. The numerical results
demonstrate the effectiveness of the NN technique for atmospheric data assimilation.
The results of the NN analyses are very close to the results from the LETKF analyses, the
differences of the monthly average of absolute temperature analyses are of order 10–2.
The simulations show that the major advantage of using the MLP-DA is better compu-
tational performance, since the analyses have similar quality. The CPU-time cycle assim-
ilation with MLP-DA analyses is 90 times faster than LETKF cycle assimilation with the
mean analyses used to run the forecast experiment.

Keywords: artificial neural networks, data assimilation, numerical weather prediction,
computer performance, ensemble Kalman filter

1. Introduction

For operating systems in weather forecasting, one of the challenges is to obtain the most

appropriate initial conditions to ensure the best prediction from a physical mathematical
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model that represents the evolution of the atmospheric dynamics. Performing a smooth

melding of data from observations and model predictions, the assimilation process carries out

a set of procedures to determine the best initial condition. Atmospheric observed data are used

to create meteorological fields over some spatial and/or temporal domain.

The analysis, i.e., initial condition, for NWP is combination of measurements and model pre-

dictions to obtain a representation of the state of the modeled system as accurate as possible. The

analysis is useful in itself as a description of the physical system, but it can be used as an initial

state for the further time evolution of the system [22]. The research of data assimilation methods

has been studied for atmospheric and oceanic prediction, besides other dynamics researches like

ionosphere and hydrological. The different algorithms of data assimilation were applied varying

in complexity, optimality, and formulation. The approach of Bayesian scheme [31] uses ensembles

of integrations of prediction models, where added perturbations to initial conditions and model

formulation; the mean of ensemble forecasts can be interpreted as a probabilistic prediction. The

ensemble Kalman filter (EnKF) [11, 23] uses a probability density function associated with the

initial condition, characterizing the Bayesian approaches [9], and represents the model errors by

an ensemble of estimates in state space. The Kalman filter (KF) [27] is one good technique to

estimate an initial condition to a linear dynamic system. A useful overview of most common data

assimilation methods used in meteorology and oceanography and detailed mathematical formu-

lations can be found in texts such as Daley [9] and Kalnay [29].

The modern DA techniques represent a computational challenge, even with the use of parallel

computing with thousands of processors. Nowadays, the operational NWP is using a higher

resolution model, and the amount of observations has an exponential growth because of

launch of new satellite. There is a computational challenge to get the analysis (initial condition)

to run models, and so we need to make a prediction on time. The computational challenge to

the data assimilation techniques lies in millions of equations involved in NWP models.

The DA algorithms are constantly updated to improve their performance. The example is the

version of the EnKF [11] restricted to small areas (local); the local ensemble Kalman filter

(LEKF) [38] is a version of the EnKF. We propose the application of artificial neural networks

(NNs) like a DA technique to get a quality analysis and to solve the computational challenge.

First, the application of NN was suggested as a possible technique for data assimilation by

[24, 30, 43]. The researches with NN (for data assimilation method) were initiated at INPE

(National institute for Space Researcher) with Nowosad [37], see also [44, 5]; they used an NN

over all spatial domains. Later, this method was improved by [16, 17], where they introduced a

modification on the NN application, in which the analysis was obtained at each grid point,

instead of at all points of the domain. They also evaluated the performance of two feed-

forward NN (multilayer perceptron and radial basis function) and two recurrent NN (Elman

and Jordan, see description in [19, 20]) [17]. Ref. [13] applied NN to emulate the particle filter

and the variational data assimilation (4D var) for the Lorenz chaotic system. In 2012, Furtado

[40] used an ocean model to emulate a variational method called representer. The NN tech-

nique was successful for all experiments, but they use theoretical or low-dimensional models.

In 2010, Refs. [6, 7] applied this approach of supervised NN to an atmospheric general
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circulation model (AGCM) to emulate a LETKF method. This is the experiment described in

this paper, this experiment is the first one to use the 3D global atmospheric model; but the NN

methodology research continues, see [41, 42], where this method is applied to FSU (Florida

State Model) AGCM to emulate the LETKF data assimilation method too.

In every experiment, NNs were applied to mimic other data assimilation methods to obtain the

analyses to initiate the forecast models. They do not use an error model estimation or error

observation estimation. The main advantage to using NN is the speed-up of the data assimila-

tion process.

This paper presents the approach based on a set of NN multilayer perceptron (MLP) [Section 3]

employed to emulate the LETKF. The LETKF technique was used as the reference analysis, see

[29, 32], Section 2.3. More information about LETKF can be obtained from [2, 26, 35]. The initial

conditions generated by NNs are applied to a nonlinear dynamical system; the AGCM is the

Simplified Parameterizations PrimitivE-Equation Dynamics (SPEEDY). The DA method is

tested with synthetic conventional data, simulating measurements from surface stations (data

at each 6 hours on a day) and upper-air soundings (data at each 12 hours on a day). The

application of NN produces a significant reduction for the computational effort compared to

LETKF. The goal of using NN approach is to obtain a similar quality for analyses with better

computational performance for prediction process.

Summarizing, the NN technique uses the function:

xa ¼ FNN yo; xf
� �

(1)

where FNN is the data assimilation process, yo represents the observations, xf is a model forecast

(simulated), and xa is the analysis field.

The observations used in operational data assimilation are conventional and satellite data. The

observations include surface and upper-air observations; here, we simulate observations of one

type of measurement, meteorological balloons. The grid of synthetic observations seeks to repro-

duce the stations of World Meteorological Organization (WMO) of radiosonde observations.

The experiment was conducted using the SPEEDY model [3, 21], which is a 3D global atmo-

spheric model, with simplified physics parameterization by [36]. The spatial resolution consid-

ered is T30 L7 for the spectral method explained in Section 2.2. This paper shows that the

analysis computed by the NN has the similar quality as the analysis produced by LETKF with

minor computational effort.

2. Methodology

2.1. Artificial neural network (NN)

An NN is composed of simple processing units that compute certain mathematical functions

(usually nonlinear). An NN consists of interconnected artificial neurons or nodes, which are
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inspired by biological neurons and their behavior. The neurons are connected to others to form

a network, which is used to model relationships between artificial neurons. NN has the ability

to learn and store experimental knowledge. It is a computational system with nodes that can

be parallel processing.

Each artificial neuron is constituted by one or more inputs and one output. The neuron processing

is nonlinear and adaptable. Each neuron has a function to define the output, associated with a

learning rule. The neuron connection stores a nonlinear weighted sum called a weight. The inputs

are multiplied by weights, and the results go through the activation function. This function

activates or inhibits the next neuron.

Mathematically, we can describe the ith input with the following form:

input summation: ui ¼
X

i¼1

ρW i�j�j
(2a)

neuron output: yi ¼ φ uið Þ (2b)

where x1, x1, .⋯, xp are the inputs; wi1,⋯,wip are the synaptic weights; ui is the output of linear

combination; ϕ(�) is the activation function, yi is the ith neuron output, and p is number of

neurons (Figure 1(a)).

A feed-forward network, which processes in one direction from input to output, has a layered

structure. The input layer is the first layer of an NN, where the patterns are presented, the hidden

layers are the intermediary layers, and the last layer is called the output layer, where the results

are presented. The number of layers and the quantity of neurons in each are determined by the

nature of the problem. In most applications, a feed-forward NN with a single layer of hidden

units is used with a sigmoid activation function, such as the hyperbolic tangent function (Eq. 3)

ϕ vð Þ ¼
1� exp �avð Þ

1þ exp �avð Þ
(3)

The NN has two distinct phases: the training phase (learning process) and the run phase

(activation or generalization). An iterative process for adjusting the weights is made for the

training phase, where the NN establishes the mapping of input and target vector pairs for the

best performance. This phase uses the learning algorithm, i.e., a set of procedures for adjusting

the weights. “Epoch” is the name of a training set pass through the iterative network process,

testing of the verification set each epoch; the iterative process continues or stops after defined

criteria that can be the minimum error of mapping or a determined number of epochs. Once

the processing is stopped, the weights are fixed, and the NN is ready to receive new inputs

(different from training inputs) for which it calculates the corresponding outputs. The latter

phase is called the generalization: each connection (after training) has an associated weight

value that stores the knowledge represented in the experimental problem and considers the

input received by each neuron of that NN.

Neural network designs or NN architectures are dependent on the learning strategy adopted,

see Haykin [19]. The multilayer perceptron (MLP) (Figure 1(b)) is the NN architecture used in
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this study, in which the interconnections between the inputs and the output layer have one

intermediate layer of neurons, a hidden layer [14, 20]. NNs can solve nonlinear problems if

nonlinear activation functions are used for the hidden and/or the output layers. In this work,

during the training phase, the nonlinear activation functions employ the delta rule. Developed

by [45], the delta rule is a version of the least mean square (LMS) method. The delta rule

algorithm is summarized as follows:

1. Compute the error function E(wij), defining the distance between the target and the NN

calculated output: E wij

� �

� xaref � xaNN

h i2

2. Compute the gradient of the error function ∂E(wij)/∂wij = δjyi, defining which direction

should move in weight space to reduce the error, with δj � xaref � xaNN

� �

ϕ0 vð Þ.

3. Select the learning rate η which specifies the step size taken in the weight space of

updating equation;

4. Update the weight, k: wk
ij ¼ wk�1

ij þ Δwij, where Δwij = � ηE(wij)/∂wij. One epoch or training

step is a set of update weights for all training patterns, η is the learning rating.

5. Repeat Step 4 until the NN error function reaches the required precision. This precision is

a defined parameter to stop the iterative process.

The supervised learning process, the functional to be minimized is treading as a function of the

weights wij (Eq. 2) instead of the NN inputs. For a given input vector x, xaNN is compared to the

target answer xaref . If the difference is smaller than a required precision, no learning takes place;

on the other hand, the weights are adjusted to reduce this difference. The goal is to minimize

the error between the actual output yi (or x
a
NN) and the target output (di) (or x

a
ref ) of the training

data. The set of procedures to adjust the weights is the learning algorithm back propagation,

which is generally used for the MLP training. It performs the delta rule, considering a set of

(input and target) pairs of vectors {(x0, d0), (x1, d2),⋯, (xN, dN)}
T, where N is the number of

patterns (input elements) and one output vector y = [y0, y1, y2,⋯, yN]
T. The MLP performs a

complex mapping y =ϕ(w, x) parameterized by the synaptic weights w, and the functions ϕ(�)

that provide the activation for the neuron. That is, for each (input/output) training pair,

the delta rule determines the direction you need to be adjusted to reduce the error. In the

Figure 1. (a) Artificial neural network components and (b) multilayer perceptron.
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back-propagation supervised algorithm, the adjustments to the weights are conducted by back

propagating of the error and the target output is considered the supervisor. Ref. [14] included

brief introductions of MLP and the back-propagation algorithm.

The NN applications, generally, are on function approximation of modeling of nonlinear

transfer functions and pattern classifications. Refs. [18, 25] reviewed applications of NN in

environmental science including atmospheric sciences. They reviewed some NN concepts and

some NN applications; these reviews were also for other estimation methods and its applica-

tions. Other reviews for NN applications in the atmospheric sciences, looking at prediction of

air-quality, surface ozone concentration, dioxide concentrations, severe weather, etc., and

pattern classifications applications in remote sensing data to obtain distinction between clouds

and ice or snow were presented by [14]. Refs. [18, 25] also presented applications on classifica-

tion of atmospheric circulation patterns, land cover and convergence lines from radar imagery,

and classification of remote sensing data using NN. Data assimilation was not mentioned in

such reviews.

2.2. SPEEDY model

The SPEEDY computer code is an AGCM developed to study global-scale dynamics and to test

new approaches for numerical weather prediction (NWP). The dynamic variables for the

primitive meteorological equations are integrated by the spectral method in the horizontal

grid at each vertical level, more details in [3, 21]. The model has a simplified set of physical

parameterization schemes that are similar to realistic weather forecasting numerical models.

The goal of this model is to obtain computational efficiency while maintaining characteristics

similar to the state-of-the-art AGCM with complex physics parameterization [32].

According to Ref. [36], the SPEEDY model simulates the general structure of global atmo-

spheric circulation (Figure 2), and some aspects of the systematic errors are similar to many

errors in the operational AGCMs. The package is based on the physical parameterizations

adopted in more complex schemes of the AGCM, such as convection (simplified diagram of

mass flow), large-scale condensation, clouds, short-wave radiation (two spectral bands), long-

wave radiation (four spectral bands), surface fluxes of momentum, energy (aerodynamic

formula), and vertical diffusion. Details of the simplified physical parameterization scheme

can be found in Ref. [36].

Figure 2. Schematic for global atmospheric model. Source: Center for Multiscale Modeling of Atmospheric Processes.
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The boundary conditions of the SPEEDY model include topographic height and land-sea

mask, which are constant. Sea surface temperature (SST), sea ice fraction, surface tempera-

ture in the top soil layer, moisture in the top soil layer, the root-zone layer, snow depth, all of

which are specified by monthly means. Annual-mean fields specify bare-surface albedos,

and fraction of land-surface covered by vegetation. The lower boundary conditions such as

SST are obtained from the ECMWF’s reanalysis in the period 1981–1990. The incoming solar

radiation flux and the boundary conditions are updated daily. The SPEEDY model is a

hydrostatic model in sigma coordinates. Ref. [3] also describes the vorticity-divergence

transformation scheme.

The SPEEDY model is global with spectral resolution T30L7 (horizontal truncation of 30

numbers of waves and 7 levels). The vertical coordinates are defined on sigma (σ = p/p0, where

p0 is the surface pressure) surfaces, corresponding to 7 vertical pressures levels (100, 200, 300,

500, 700, 850, and 925 hPa). The horizontal coordinates are latitude and longitude on regular

grid, corresponding to a regular grid with 96 zonal points (longitude) and 48 meridian points

(latitude). The schematic for global model and its physical packages can be seen at Figure 2.

The prognostic variables for the model input and output are the absolute temperature (T),

surface pressure (ps), zonal wind component (u), meridional wind component (v), and an

additional variable and specific humidity (q).

2.3. Brief description on local ensemble transform Kalman filter

The analysis is the best estimate of the state of the system based on the optimizing criteria. The

probabilistic state-space formulation and the requirement for updating information when new

observations are encountered are ideally suited to the Bayesian approach. The Bayesian

approach is a set of efficient and flexible Monte Carlo methods for solving the optimal filtering

problem. Here, one attempts to construct the posterior probability density function (pdf) of the

state using all available information, including the set of received observations. Since this pdf

embodies all available statistical information, it may be considered as a complete solution to

the estimation problem.

In the field of data assimilation, there are only few contributions in sequential estimation

(EnKF or PF filters). The EnKF was first proposed by [11] and was developed by [4, 12]. It is

related to particle filters [1, 10] in the context that a particle is identified as an ensemble member.

EnKF is a sequential method, which means that the model is integrated forward in time and

whenever observations are available; these EnKF results are used to reinitialize the model

before the integration continues. The EnKF originated as a version of the Extended Kalman

Filter (EKF) [28]. The classical KF method, see [27], is optimal in the sense of minimizing the

variance only for linear systems and Gaussian statistics. Analysis perturbations are added to

run the ensemble forecasts, the mean of ensemble forecasts is the estimation error for analysis.

Ref. [35] added Gaussian white noise to run the same forecast for each member of the ensemble

in LETKF. The EnKF is a Monte Carlo integration that governs the evolution of the pdf, which

describes the a priori state, the forecast and error statistics. In the analysis step, each ensemble

member is updated according to the KF scheme and replaces the covariance matrix by the

sampled covariance computed from the ensemble forecasts. Ref. [23] applied the EnKF to an
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atmospheric system. They applied a state model ensemble to represent the statistical model

error. The scheme of analysis acts directly on the ensemble of state models, when observa-

tions are assimilated. The ensemble of analysis is obtained by assimilation for each member

of the reference model. Several methods have been developed to represent the modeling

error covariance matrix for the analysis applying the EnKF approach; the local ensemble

transform Kalman filter (LETKF) is one of them. Ref. [26] proposed the LETKF scheme as an

efficient upgrade of the local ensemble Kalman filter (LEKF). The LEKF algorithm creates a

close relationship between local dimensionality, error growth, and skill of the ensemble to

capture the space of forecast uncertainties formulated with the EnKF scheme (e.g., [45]). In

addition, Ref. [29] describes the theoretical foundation of the operational practice of using

small ensembles, for predicting the evolution of uncertainties in high-dimension operational

NWP models.

The LETKF scheme is a model-independent algorithm to estimate the state of a large spatial

temporal chaotic system [38]. The term “local” refers to an important feature of the scheme: it

solves the Kalman filter equations locally in model grid space. A kind of ensemble square root

filtering [32, 45], in which the analysis ensemble members are constructed by a linear combi-

nation of the forecast ensemble members. The ensemble transform matrix, composed of the

weights of the linear combination, is computed for each local subset of the state vector inde-

pendently, which allows essentially parallel computations. The local subset depends on the

error covariance localization [33]. Typically, a local subset of the state vector contains all vari-

ables at a grid point. The LETKF scheme first separates a global grid vector into local patch

vectors with observations. The basic idea of LETKF is to perform analysis at each grid point

simultaneously using the state variables and all observations in the region centered at given

grid point. The local strategy separates groups of neighboring observations around a central

point for a given region of the grid model. Each grid point has a local patch; the number of

local vectors is the same as the number of global grid points [35].

The algorithm of EnKF follows the sequential assimilation steps of classical Kalman filter, but

it calculates the error covariance matrices as described below:

Each member of the ensemble gets its forecast x
f
n�1

n o ið Þ
: i = 1,2,3,���,k, where k is the total

members at time tn, to estimate the state vector xf of the reference model. The ensemble is

used to calculate the mean of forecasting xf
� �

:

xf � k�1
X

k

i¼1

xf
� � ið Þ

: (4)

Therefore, the model error covariance matrix:

Pf ¼ k� 1ð Þ�1
X

k

i¼1

xf
� � ið Þ

� xf
� �

xf
� � ið Þ

� xf
� �T

: (5)

The analysis step determines a state estimate to each ensemble member:
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xaf g ið Þ ¼ xf
� � ið Þ

þWK xobs �H xf
� � ið Þ

� �h i

(6)

WK ¼ PfHT HPfHT þ R
� 	�1

: (7)

The analysis {xa}(i) i = 1,2,3,���,k, (Eq. 6) by solving (Eq. 7) for Wk to get the optimal weight (e.g.,

Kalman gain). The matrix H represents the observation operator. The covariance matrix R

identifies the observation error. The analysis step also updates the covariance error matrix Pa

(Eq. 8)

Pa ¼ k� 1ð Þ�1
X

k

i¼1

xaf g ið Þ � xa
� �

xaf g ið Þ � xa
� �T

(8)

with the appropriate ensemble analyses mean:

xa � k�1
X

k

i¼1

xaf g ið Þ
: (9)

The LETKF scheme has been applied to a low-dimensional AGCM SPEEDYmodel [32], a realistic

model according to [42]. The LETKF scheme was also employed in the following: the AGCM

for the Earth Simulator by [35] and the Japan Meteorological Agency operational global and

mesoscale models by [34]; the Regional Ocean Modeling System by [41]; the global ocean

model known as the Geophysical Fluid Dynamics Laboratory (GFDL) by [39]; and GFDLMars

AGCM by [15].

3. MLP-DA in assimilation for SPEEDY model

The NN configuration for this experiment is a set of multilayer perceptron, hereafter, referred

to as MLP-DA. On the present paper, the NN configuration (number of layers, nodes per layer,

activation function, and learning rate parameter) was defined by empirical tests, and we found

the following characteristics:

1. two input nodes, one node for the meteorological observation vector and the other for the

6-hour forecast model vector;

2. one output node for the analysis vector results;

3. one hidden layer with 11 neurons;

4. the hyperbolic tangent (Eq. 3) as the activation function (to guarantee the nonlinearity for

results);

5. learning rate η is defined do each MLP; and

6. training stops when the error reaches 10–5 or after 5000 epochs, which criterion first

occurs.
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The vectors values represent individual grid points for a single variable with a correspondent

observation value on model point localization. The grid points is considered where observa-

tion value exists, see Figure 3. In the training algorithm, the MLP-DA computes the output and

compared it with the “input” analysis vector of LETKF results (the target data), but it is not a

node for the MLP generalization. The output vectors represent the analysis values for one grid

point too. Care must be taken in specifying the number of neurons. Too many neurons can lead

the NN to memorize the training data (over fitting), instead of extracting the general features

that allow the generalization. Too few neurons may force the NN to spend too much time

trying to find an optimal representation and thus wasting valuable computation time.

One strategy used to collect data and to accelerate the processing of the MLP-DA training was

to divide the entire globe into six regions: for the Northern Hemisphere, 90� N and three

longitudinal regions of 120� each; for the Southern Hemisphere, 90� S and three longitudinal

regions of 120� each. This division provides the same size for each region, but the number of

observations is distinct, as illustrated by Figure 3. This regional division is applied only for the

MLP-DA; the LETKF procedures are not modified.

The MLP-DA scheme was developed with a set of 30 NN (six regions with five prognostic

variables (ps, u, v, T, and q)). Each grid point has all vertical layers values for the model. One

MLP with characteristics described above was designed for each meteorological variable of

the SPEEDY model and each region. Each MLP has two inputs (model and observation

vectors), one output neuron which is the analysis vector, and the training scheme is the

back-propagation algorithm.

The MLP-DA is designed to emulate the global LETKF analysis for SPEEDY initial condition.

The LETKF analysis is the mean field of an ensemble of analyses. Fortran codes for SPEEDY

and LETKF [32] were adapted to create the training data set for that period. The upper levels

and the surface covariance error matrices to run the LETKF system, as well as the SPEEDY

model boundary conditions data and physical parameterizations, are the same as those used

for Miyoshi’s experiments.

The initial process is the implementation of the model, it assumes that it is perfect (initializa-

tion = 0); and the SPEEDY model T30 L7 was integrated for 1 year of spin-up, i.e., the period

required for a model to reach steady state and obtain the simulated atmosphere. The model

Figure 3. Observations localizations in global area. The dot points represent radiosonde stations (about 415) divided in

six regions.
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ran (without interruption) four times per day, from 01 January 1981 until 31 December 1981

and the last result is the initial condition for SPEEDY to 01 January 1982 0000 UTC. The model

fields, so-called “true” (or control) model, are generated without data assimilation (each 6

hours forecast, is the initial condition for the next execution). The “true” model forecasts

collected for executions without DA, considered four times per day (0000, 0600, 1200, 1800

UTC), the model run from 01 January 1982 through 31 December 1984 and collected analysis

for each run.

The synthetic observations are generated, reading the “true” SPEEDY model fields, adding a

random noise of meteorological variables: surface pressure (ps), zonal wind component (u),

vertical wind component (v), absolute temperature (T), and specific humidity (q). The observa-

tion localization is on grid model point. An observation mask is designed, adding a positive flag

to grid point, where the observation should be considered; the locations simulate the WMO data

stations observations from radiosonde (Figure 3). Except for ps observations, the other observa-

tions are upper level with seven levels. Both assimilation schemes, LETKF andMLP-DA, use the

same number of observations at the same grid point, i.e., the observation localization mask.

3.1. Training process

The training process for the experiment is conducted with data obtained from the SPEEDY

model and the LETKF analyses. The LETKF analyses are executed with synthetic observations:

upper levels wind, temperature and humidity, and surface pressure to 0000 and 1200 UTC and

0600 and 1800 UTC with surface observations only. The LETKF runs generate the analyses

target vectors, the input observations vectors, and analyses field to run the SPEEDY model,

which generates the input forecasts vectors for training the MLP-DA. The training is made

with back-propagation algorithm.

Executions of the model with the LETKF data assimilation are made for the same period men-

tioned for the true model: from 01 January 1982 through 31 December 1984. The ensemble fore-

casts/analyses of LETKF have 30 members. The ensemble average of the forecasts and analyses

fields, to this training process, is obtained by running SPEEDY model with the LETKF scheme.

These data are collected, initially, by dividing the globe into two regions (northern and southern

hemispheres), but the computational cost was high because the training process took 1 day for

the performance to converge. Next, the two regions were divided each into three regions, for a

total of six regions. Then, we use this division strategy to collect the 30 input vectors (observations,

mean forecasts, and mean analyses) at chosen grid points by the observation mask during

LETKF process. The NN training process begin after collecting the input vectors for whole

period (3 years), the training took about 15 min, for a set of 30 NN.

The MLP-DA data assimilation scheme has no error covariance matrices to spread the obser-

vation influence. Therefore, it is necessary to capture the influence of observations from the

neighboring region around a grid point considered as a “new” observation. This calculation is

based on the distance from the grid point related to observations inside a determined neigh-

borhood (initially: γ = 0)

Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model
http://dx.doi.org/10.5772/intechopen.70791

275



byoi�m, j�m,k�m ¼
yoijk

6� γð Þr2ijk
þ
X6

l¼1

αl

yoi�m, j�m,k�m

r2ijk

ðm ¼ 1, 2,…,MÞ

αl ¼

0 if there is no observationð Þ

1 if there is observation; and : γnew ¼ γold þ 1
� �

8
<

:

(10)

where byo is the weighted observation, M is the number of discrete layers considered around

observation,

r2ijk ¼ xp � yoi
� �2

þ ðyp � yoj Þ
2 þ zp � yok

� �2
, where (xp, yp, zp) is coordinate of the grid point, and

the ðyoi , y
o
j , y

o
kÞ is the coordinate of the observation, and γ is a counter of grid points with

observations around that grid point ðyoi , y
o
j , y

o
kÞ. If γ = 6, there is no influence to be considered.

Each observation’s influence computed on a certain grid point is a new location, hereafter

referred to as pseudo-observation, which adds values to the three input vectors to NN training

process and also adds positive flags in the observation mask.

Then, the grid points to be considered in MLP-DA analysis are greater than grid points

considered to LETKF analysis, although these calculations are made without interference

on LETKF system. The back-propagation algorithm stops the training process using the

criteria cited at item 6 above (Section 3), after obtaining the best set of weights; it is a function

of smallest error between the MPL-NN analysis and the target analysis (e.g., when the root mean

square error between the calculated output and the input target vector is less than 10�5). The

learning process is the same for each MLP of the set of 30 NN and takes about 15 min to get

the fixed weights before the MLP-DA data assimilation cycle or generalization process of

MLP-DA.

3.2. Generalization process

The training is performed with combined data from January, February, and March of 1982,

1983, and 1984, and in generalization process, MLP-DA is able to perform analyses similar to

the LETKF analyses.

The generalization process is indeed the data assimilation process. The MLP-DA results a

global analysis field. The MLP-DA activation is entering by input values (only 6 hours forecast

and observations) at each grid point once, with no data used in the training process. The input

vectors are done at grid model point, where it is marked (by positive flag mask) with observa-

tion or pseudo-observation (Eq. 10). The procedure is the same for all NN but one NN for each

region, and each prognostic variable has own connection weights. All NNs have one hidden

layer, with the same number of neurons for all regions. The regional grid points are put in the

global domain to make the analysis field after generalization process of the MLP-DA, e.g., the

activation of 30 NN results a global analysis. The regional division is only for inputting each

NN activation.
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The MLP-DA data assimilation is performed for 1-month cycle. It starts at 0000 UTC 01

January 1985, generating the initial condition to SPEEDY model. Running the SPEEDY model

starting at 31 December 1984 1800 UTC carried out the previous model prediction. There were

observations available at 0000 UTC 01 January 1985. Therefore, an analysis was computed for

the SPEEDY model at 0000 UTC 01 January 1985. The SPEEDY model is re-executed with the

former analysis, producing a new 6 hours forecast. The process is repeated at each 6 hours.

In this experiment, the MLP-DA begins the activation at 01 January 1985 0000 UTC and

generates analyses and 6 hours forecasts up through 31 January 1985 1800 UTC.

4. Results

The input and output values of prognostic variables (ps, u, v, T, and q) are processed on grid

model points for time integrations to an intermittent forecasting and analysis cycle. Taking into

account the pseudo-observation (Eq. 10), two grid layers (M = 2) around a given observation

are considered.

The results show the comparison of analysis fields, generated by the MLP-DA, the LETKF, and

the true model fields. The global surface pressure fields (at 11 January 1985 1800 UTC) and

differences between the analyses are shown in Figure 4. The analysis fields and the differences

between both assimilation, for 11 January 1985 at 1800 UTC at 950 and 500 hPa are also shown,

for at 18 UTC at levels 950 hPa (near surface) and 500 hPa are also shown, for T, u, v, and q

meteorological global fields, in Figures 5–10. These results show that the application of

MLP-DA, as an assimilation system, generates analyses similar to those calculated by the

LETKF system. Sub-figure (d) from Figures 5–10 shows very small differences between the

MLP-DA and LETKF analyses. The difference field of absolute temperature (K) at 500 hPa is

about 3 degrees; and the difference field of humidity at 950 hPa is about 0.002 kg/kg.

Figure 4. Surface pressure (PS) [Pa]—Jan/11/1985 at 18 UTC (a) LETKF analysis, (b) ANN analysis, (c) true model, and

(d) differences analysis.
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Figure 5. Absolute temperature (T) [K] Fi-950 hPa, Jan/11/1985 at 18 UTC. (a) LETKF analysis, (b) ANN analysis, (c) true

model, and (d) differences analysis.

Figure 6. Absolute temperature (T) [K] at 500 hPa—Jan/11/1985 at 18 UTC (a) LETKF analysis, (b) ANN analysis, (c) true

model, and (d) differences analysis.

Figure 7. Zonal wind component (u) [m/s] at 500 hPa—Jan/11/1985 at 18 UTC. (a) LETKF analysis, (b) ANN analysis,

(c) true model, and (d) differences analysis.
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Monthly average of absolute temperature analyses fields was obtained. The field of differences

between the analyses (LETKF and MLP-DA) for data assimilation cycles is shown in Figure 11.

The differences are slightly larger in some regions, such as the northeast regions of North

America and South America.

The root mean square error (RMSE) of the absolute temperature analyses related to true model

is calculated by fixing a point at longitude (87 W) for all latitude points. Figure 12 shows the

temperature RMSEs for the entire period of the assimilation cycle (January 1985). Subfigure (a)

for Figure 12 shows the RMSE of the LETKF analysis by line and the RMSE of the MLP-DA

analysis by circles; and subfigure (b) for Figure 12 shows the differences between LETKF and

MLP-DA analyses RMSE. The differences are less than 10�3.

Figure 8. Meridional wind component (v) [m/s] fields at 500 hPa—Jan/11/1985 at 18 UTC (a) LETKF analysis, (b) ANN

analysis, (c) true model, and (d) differences analysis.

Figure 9. Specific humidity (q) at 950 hPa—Jan/11/1985 at 18 UTC (a) LETKF analysis, (b) ANN analysis, (c) true model,

and (d) differences analysis.
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4.1. Computer performance

Several aspects of modeling stress computational systems and push the capability require-

ments. These aspects include increased grid resolution, the inclusion of improved physics

Figure 10. Specific humidity (q) at 950 hPa—Jan/11/1985 at 18 UTC (a) LETKF analysis, (b) ANN analysis, (c) true model,

and (d) differences analysis.

Figure 11. Differences field of the average of absolute temperature MLP-DA analysis and LETKF analysis for the

assimilation cycle.

Figure 12. Meridional root mean square error for entire period of the assimilation cycles. RMSE analyses to the “true”

state to (a) the errors of the LETKF analysis (line) and the errors of MLP-DA analysis (circles) to the absolute temperature

at 500 hPa. (b) Differences of RMSE analyses.
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processes and concurrent execution of earth-system components, and coupled models (ocean

circulation and environmental prediction, for example).

Often, real-time necessities define capability requirements. In data assimilation, the computa-

tional requirements become much more challenging. Observations from Earth-orbiting satellites

in operational numerical prediction models are used to improve weather forecasts. However,

using the amount of satellite data increases the computational effort. As a result, there is a need

for an assimilation method able to compute the initial field for the numerical model in the

operational window time to make a prediction. At present, most of the NWP centers find it

difficult to assimilate all the available data because of computational costs and the cost of

transferring huge amounts of data from the storage system to the main computer memory.

The data assimilation cycle has a recent forecast and the observations as the inputs for assim-

ilation system. The described MLP-DA system produced an analysis to initiate the actual cycle.

This time simulation experiment is for January 1985 (28 days). There were 2075 observations

inserted at runs of 0600 and 1800 UTC for surface variables, and 12,035 observations inserted

at runs of 0000 and 1200 UTC for all upper layer variables.

The LETKF data assimilation cycle initiates running the ensemble forecasts with the SPEEDY

model, and each analysis produced to each member at the latter LETKF cycle to result 30

(members) 6-hour forecasts; the second step is to compute the average of those forecasts. After,

with a set of observations and the mean forecast, the LETKF system is performed. The LETKF

cycle results one analysis to each member for the ensemble and one average field of the

ensemble analyses. The MLP-DA data assimilation cycle is composed by the reading of 6-hour

forecast of SPEEDY model from latter cycle and reading the set of observations to the cycle

time, the division of input vectors, the activation of MLP-DA, and the assembly of output

vectors to a global analysis field.

The MLP-DA runtime measurement initiates after reading the 6-hour forecast of SPEEDY

model from latter cycle and the set of observations. The time of generalization includes the

division of observation and prediction fields into regions, and the execution of the various

trained networks by gathering all regions in a global analysis. It initiates after reading the

mean 6-hours forecast of SPEEDY model and the set of observations. The LETKF time includes

the results of 30 analyses and one mean ensemble analysis. The comparison in Table 1 is the

data assimilation cycles for the same observations points and the same model resolution to the

same time simulations. LETKF and MLP-DA executions are performed independently. Con-

sidering the total execution time of those 112 cycles simulated, the computational performance

of the MLP-DA data assimilation is better than that obtained with the LETKF approach. These

results show that the computational efficiency of the NN for data assimilation to the SPEEDY

model, for the adopted resolution, is 90 times faster and produces analyses of the same quality

(Table 1). Considering only the analyses execution time of those 112 data assimilation pro-

cesses simulated, the computational efficiency of MLP-DA is 421 times faster than LETKF

process. Table 2 shows the mean execution time of each element to one cycle of the LETKF

data assimilation method (ensemble forecast and analysis) and the MLP-DA method (model

forecast and analysis). The computational efficiency of one MLP-DA execution keeps the

relationship about speed-up, comparing with one LETKF execution (421 times faster). Details

for this experiment can be found in Ref. [6].
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5. Conclusions

In this study, we evaluated the efficiency of the MLP-DA in an atmospheric data assimilation

context with a 3D global model. The MLP-DA is able to emulate systems for known data

assimilation scheme. For the present investigation, the MLP-DA approach is used to emulate

the LETKF method, which is designed to improve the computational performance. The

another experiments with the same methodology can be found in [7, 8].

The NN learned the whole process of the LETKF scheme of data assimilation through training

process. The results for the MLP-DA analyses are very close to the results obtained from the

LETKF data assimilation for initializing the SPEEDY model forecast, i.e., the analyses obtained

with MLP-DA are similar to analyses computed by the LETKF. The difference between MLP-DA

and LETKF analyses to surface pressure fields belongs to interval [�5, 5] hPa. However, the

computational performance of the set of 30 NN is better than LETKF scheme. The MLP-DA

accelerates the LETKF data assimilation computation.

The application of the present NN data assimilation methodology is under investigation at the

Center for Weather Prediction and Climate Studies (Centro de Previsão de Tempo e Estudos

Climáticos-CPTEC/INPE) with operational numerical global model and real observations.

After investigation with Florida State University model made in 2014, the results are found

in [41, 42].
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