
M
ic

h
ae

l H
au

ck

Automated Experiments for Deriving
Performance-relevant Properties of
Software Execution Environments

Michael Hauck

The Karlsruhe Series on
Software Design

and Quality

13

A
u

to
m

at
ed

 E
xp

er
im

en
ts

 f
o

r
D

er
iv

in
g

 P
er

fo
rm

an
ce

-r
el

ev
an

t
Pr

o
p

er
ti

es
 o

f
So

ft
w

ar
e

Ex
ec

u
ti

o
n

 E
n

vi
ro

n
m

en
ts

Michael Hauck

Automated Experiments for Deriving
Performance-relevant Properties of
Software Execution Environments

The Karlsruhe Series on Software Design and Quality
Volume 13

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Automated Experiments for Deriving
Performance-relevant Properties of
Software Execution Environments

by
Michael Hauck

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Informatik
Tag der mündlichen Prüfung: 07. November 2013
Referenten: Prof. Dr. Ralf Reussner, Prof. Dr.-Ing. Stefan Tai

Print on Demand 2014

ISSN 1867-0067
ISBN 978-3-7315-0138-1

This document – excluding the cover – is licensed under the
Creative Commons Attribution-Share Alike 3.0 DE License

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

Automated Experiments for Deriving

Performance-relevant Properties of

Software Execution Environments

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Michael Alexander Hauck
aus Freiburg im Breisgau

Tag der mündlichen Prüfung: 07. November 2013
Erstgutachter: Prof. Dr. Ralf Reussner
Zweitgutachter: Prof. Dr.-Ing. Stefan Tai

KIT – Universität des Landes Baden-Württemberg
und nationales Forschungszentrum der Helmholtz-Gemeinschaft

www.kit.edu

Abstract

In software engineering, considering quality attributes such as software
performance plays a crucial role. Approaches such as Software Perfor-
mance Engineering (SPE) aim at systematically reflecting software perfor-
mance during the whole software life-cycle. Using model-based perfor-
mance analyses, predictions on the software performance, e.g. the expected
software response times or the resource utilization, can already be con-
ducted during design time.

The software execution environment heavily influences the performance
of a software and thus has to be reflected in performance analysis. With the
increased complexity of the execution environment (e.g. due to the intro-
duction of virtualized environments or new operating system schedulers),
performance analysis approaches have to be extended in order to continue
to yield precise prediction results.

Existing performance prediction approaches usually abstract from most
parts of the execution environment or do not deal with the problem of quan-
tifying properties of the execution environment for performance prediction
models. Hence, detecting execution environment properties and integrating
such properties into performance analyses is a manual, error-prone task that
requires expert knowledge on the execution environment.

The scientific contribution of this thesis is a novel approach for detect-
ing performance-relevant properties of the software execution environment.
These properties are automatically detected using predefined experiments
and integrated into performance prediction tools. To detect the properties,
performance experiments are conducted on the target platform. The experi-
ments issue predefined load patterns on the system and observe certain per-

i

formance metrics. Based on the measured results, performance-relevant ex-
ecution environment properties are then derived. As the approach is solely
measurement-based, it does not require access to low-level details of the
execution environment.

For predefining experiments, this thesis introduces a metamodel for ex-
periment specification. Using a model-based approach, experiment models
can be directly transformed into executable experiments on the target plat-
form. The metamodel facilitates the specification of experiment execution
logic and the corresponding load patterns. In addition, the metamodel and
the transformation encapsulate domain knowledge on experiment design,
such as the execution of microbenchmarks or the automated termination of
experiments once statistically sufficient measurements have been collected.

To validate the approach, different experiments have been developed in
the scope of this thesis. The experiments aim at detecting performance-
relevant properties of different parts of the execution environment, i.e. CPU,
OS scheduling, and virtualization properties. The derived properties in-
clude for example the timeslice length of the OS scheduler or the used
scheduling strategy for load-balancing, as well as different kinds of re-
source demand overhead introduced by a virtualization platform. The ex-
periments are technology-independent and thus applicable to a multitude of
target platforms.

The experiments presented in this thesis have been integrated into the
Palladio Component Model (PCM), a model-based software performance
analysis approach. By reflecting the derived execution environment prop-
erties in PCM, performance predictions can be improved. The experiments
have been validated on different platforms and in different case studies: The
first case study is based on a POV-Ray system that is used for ray tracing.
The case study shows that reflecting the derived OS scheduling properties
can lead to an increased prediction accuracy of software response times. In
two other case studies, the experiments for detecting virtualization proper-
ties have been executed to enhance the performance prediction of two dif-

ii

ferent systems: the TPC-W benchmark, an e-commerce platform, and the
RUBiS benchmark, an online auction platform. In both cases, reflecting the
experimentally derived properties yields an increased prediction accuracy
compared to predictions where the derived details of the execution environ-
ment have been neglected.

By automatically deriving execution environment properties and inte-
grating these properties into performance prediction approaches, perfor-
mance predictions at design time are facilitated where details of the execu-
tion environment do not have to be derived and included manually. Soft-
ware architects can conduct analyses without having to deal with identi-
fication of execution environment properties and the integration of such
properties into performance analysis. In addition, since the experiments are
automated, they can be repeated with little overhead, for example if parts
of the execution environment have been changed and should be reflected in
software performance analysis.

iii

Kurzfassung

In der Software-Technik spielt die Berücksichtigung von Qualitätsattribu-
ten wie der Software-Performance eine wichtige Rolle. So wird im Softwa-
re Performance Engineering (SPE) eine systematische Betrachtung der Per-
formance über den gesamten Software-Lebenszyklus hinweg angestrebt.
Modell-basierte Performance-Analysen ermöglichen bereits zur Entwurfs-
zeit Aussagen über Antwortzeitverhalten und Ressourcenauslastung.

Da die Performance eines Software-Systems stark von der Ausführungs-
umgebung beeinflusst wird, muss diese in Performance-Analysen mit ein-
bezogen werden. Mit zunehmender Komplexität der Ausführungsumge-
bung (z.B. durch den Einsatz von Virtualisierungsplattformen oder neuer
Betriebssystem-Scheduler) müssen Performance-Analysen erweitert wer-
den, um nach wie vor genaue Vorhersagen zu ermöglichen.

Existierende Ansätze zur Performance-Vorhersage abstrahieren meist von
Teilen der Ausführungsumgebung oder befassen sich nicht mit der Quanti-
fizierung von Plattformeigenschaften in Performance-Modelle. Das Erken-
nen von Plattformeigenschaften und die Integration dieser Eigenschaften
in Performance-Analysen ist daher aufwändig, fehleranfällig, und erfordert
Expertenwissen.

Der wissenschaftliche Beitrag dieser Arbeit ist ein neuer Ansatz, um
performance-relevante Eigenschaften der Ausführungsumgebung automa-
tisiert durch vordefinierte Experimente zu ermitteln und diese Eigenschaf-
ten in Werkzeuge zur Performance-Vorhersage zu integrieren. Zur Ablei-
tung von Performance-Eigenschaften werden Experimente auf der Ziel-
plattform ausgeführt. Diese Experimente erzeugen dann eine vordefinierte
Last auf dem System und beobachten die dadurch entstehenden Performance-

v

Auswirkungen. Anschließend werden, basierend auf den Messresultaten,
performance-relevante Eigenschaften für die Performance-Vorhersage ab-
geleitet. Interna der Ausführungsplattform müssen zur Anwendung des An-
satzes nicht bekannt sein, da dieser rein messbasiert vorgeht.

Um Experimente vorzudefinieren, wurde ein Metamodell für die Ex-
perimentspezifikation entwickelt. Experimentmodelle können so direkt in
ausführbare Experimentinstanzen auf der Zielplattform transformiert wer-
den. Das Metamodell ermöglicht die Spezifizierung von Experimentaus-
führungslogik und Lastmustern. In dem Metamodell und der Transforma-
tion werden außerdem Details zur Experimentdurchführung gekapselt, wie
z.B. die Ausführung von Mikrobenchmarks, oder automatische Abbruch-
kriterien nach Erreichen statistisch robuster Messwerte.

Zur Validierung des Ansatzes wurden im Rahmen der Arbeit verschie-
dene Experimente entwickelt, die eine automatische Ableitung verschie-
dener Eigenschaften der Ausführungsumgebung ermöglichen. Im Mittel-
punkt standen hierbei CPU- und Betriebssystem-Eigenschaften, sowie Ei-
genschaften der Virtualisierungsplattform. Eigenschaften des Betriebssys-
tems umfassen z.B. die Größe der Scheduler-Zeitscheiben oder die einge-
setzte Strategie zur Lastverteilung auf mehrere Prozessorkerne. Die Expe-
rimente zur Ableitung von Eigenschaften der Virtualisierungsplattformen
zielen unter vor allem darauf ab, den durch die Virtualisierungsschicht ver-
ursachten Overhead zu quantifizieren. Die Experimente sind plattformun-
abhängig und können dadurch auf einer Vielzahl von Zielplattformen ein-
gesetzt werden.

Die in dieser Arbeit entwickelten Experimente wurden in das
Palladio-Komponentenmodell, ein Ansatz zur modellbasierten Software-
Performance-Vorhersage, integriert und ermöglichen so eine erweiterte
Performance-Vorhersage unter Berücksichtigung der zusätzlichen Platt-
formeigenschaften. Die Experimente wurden auf mehreren Plattformen
anhand verschiedener Fallstudien validiert: Die erste Fallstudie basiert
auf einem POV-Ray-System zur Berechnung von 3D-Grafiken. Hier

vi

konnte gezeigt werden, dass die Berücksichtigung von Eigenschaften
des Betriebssystem-Schedulers zu verbesserter Vorhersagegenauigkeit von
Antwortzeiten führt. In zwei weiteren Fallstudien wurden die Experimen-
te zur Ableitung von Virtualisierungseigenschaften durchgeführt und in die
Performance-Vorhersage für den TPC-W-Benchmark, eine E-Commerce-
Plattform, sowie den RUBiS-Benchmark, eine Online-Auktion-Plattform,
integriert. Auch hier ergab eine Berücksichtigung der Experimente eine
Verbesserung der Vorhersagegenauigkeit gegenüber einer Vorhersage un-
ter Vernachlässigung der Ausführungsplattform.

Durch die automatisierte Ableitung von Parametern der Ausführungs-
plattform und Integration in Performance-Vorhersage-Werkzeuge werden
so entwurfsnahe Vorhersagen möglich, ohne dass Details der Plattform ma-
nuell erhoben und berücksichtigt werden müssen. So können Software-
Architekten die Analysen durchführen, ohne Fachkenntnisse zur Experi-
mentdurchführung und der zugehörigen Performance-Modellierung besit-
zen zu müssen. Außerdem lassen sich die Experimente mit wenig Aufwand
erneut durchführen, wenn sich z.B. Teile der Ausführungsplattform ändern
und diese Änderungen in der Software-Performance-Vorhersage berück-
sichtigt werden sollen.

vii

Acknowledgements

This thesis would not have been possible without the great support of many
people.

First, I want to thank my two supervisors Ralf Reussner and Stefan Tai.
Ralf has been a great advisor at all times and provided me with invaluable
support. I always enjoyed working in his research group with its excellent
working atmosphere. With Stefan I had great discussions concerning my
PhD topic (and IT in general). His fruitful comments and insights really
helped me to shape the topic and complete the thesis.

Furthermore, I am deeply thankful to Jens Happe and Dennis Wester-
mann for the time we spent together doing research and for their feedback
in the last years. Jens has supported me from the beginning in finding and
shaping the topic and has always made time for discussing problems. I want
to thank Dennis for the great discussions we had and the feedback he gave
me when proof-reading the complete (sic!) thesis. I am looking forward to
the next adventures we are going to take.

From the research group of SDQ and FZI, I want to thank my current and
former colleagues I had the pleasure to work with. In alphabetical order:
Christoph Becker, Steffen Becker, Martin Blersch, Franz Brosch, Fabian
Brosig, Erik Burger, Oliver Denninger, Zoya Durdik, Michael Faber, Gio-
vanni Falcone, Thomas Goldschmidt, Henning Groenda, Lucia Happe,
Christoph Heger, Jörg Henß, Nikolas Herbst, Oliver Hummel, Matthias
Huber, Nikolaus Huber, David Karlin, Benjamin Klatt (also thanks for the
great food supply in our office!), Samuel Kounev, Anne Koziolek, Heiko
Koziolek, Rouven Krebs, Klaus Krogmann, Max Kramer, Michael Ku-
perberg, Martin Küster, Michael Langhammer, Philipp Merkle, Aleksan-

ix

dar Milenkoski, Christof Momm, Qais Noorshams, Fouad ben Nasr Omri,
Michal Papež, Pierre Parrend, Chris Rathfelder, Andreas Rentschler, Piotr
Rygielski, Thomas Schuster, Simon Spinner, Johannes Stammel, Misha
Strittmatter, Mircea Trifu, Robert Vaupel, and Alexander Wert.

I would also like to thank Susanne Agwaze, Elena Kienhöfer, Vanessa
Martin Rodríguez, and Tatiana Rhode for their organizational support. Fur-
thermore, I would like to thank Andrea Ciancone, Michael Kupsch, and
Christian Stier, who supported me as students in various projects.

I am deeply grateful to my parents who have always been there for me.
None of my achievements would have been possible without their support
and encouragement.

Finally, I would like to thank Anne for her love, support and inspiration
throughout the years. I dedicate this thesis to her.

x

Contents

1. Introduction . 1
1.1. Motivation . 1
1.2. Problem . 3
1.3. Shortcomings of Existing Solutions 7
1.4. Contributions . 9
1.5. Validation . 12
1.6. Outline . 13

2. Foundations . 17
2.1. Software Performance Analysis 17

2.1.1. Software Performance 17
2.1.2. Software Performance Engineering 19
2.1.3. Performance Experiments and Benchmarking . . . 21
2.1.4. The Palladio Component Model 22

2.2. Model-driven Software Development 26
2.2.1. Models and Metamodels 26
2.2.2. The Eclipse Modeling Project 28

2.3. Operating System Scheduling and Virtualization 30
2.3.1. Operating System Scheduling 30
2.3.2. Detecting CPU and OS Scheduling Properties . . . 32
2.3.3. Virtualization . 34

xi

3. An Approach For Deriving Execution Environment
Properties . 39
3.1. Research Context . 39

3.1.1. A Definition of the Execution Environment 40
3.1.2. Performance-relevant Properties of the Execution

Environment . 41
3.1.3. Separating the Execution Environment Model from

the Software Architecture Model 47
3.2. Scientific Challenges . 50
3.3. A Method for Automated Derivation of Execution

Environment Properties 52
3.3.1. Experiment Design 53
3.3.2. Experiment Execution 55

3.4. Scenarios . 57
3.5. Limitations and Assumptions 61
3.6. Summary . 64

4. Model-based Definition and Execution of Execution
Environment Experiments 67
4.1. Automated Execution Environment Experiments 68

4.1.1. Requirements . 68
4.1.2. Experiment Structure 70

4.2. Experiment Library and Experiment Domains 72
4.3. Parametric Experiments 76
4.4. A Metamodel for Specifying Experiments 79

4.4.1. Experiments . 81
4.4.2. Experiment Logic Definition 83
4.4.3. Experiment Tasks 84
4.4.4. Experiment Sensors 88
4.4.5. Example . 90

xii

4.5. Experiment Execution and Results Analysis 91
4.5.1. Experiment Execution 91
4.5.2. Results Analysis 93

4.6. A Template for Experiment Description 94
4.6.1. Sections of the Experiment Template 95
4.6.2. Describing the Experiment Logic 98

4.7. Extensibility of the Approach 100
4.7.1. Experiments . 100
4.7.2. Experiment domains 101
4.7.3. Experiment tasks and sensors 102
4.7.4. Analysis logic . 105

4.8. Experiment Performance Overhead 105
4.9. Summary . 107

5. Deriving CPU and OS Scheduling Properties 109
5.1. Experiments Overview 109
5.2. Scientific Challenges . 111
5.3. CPU Simultaneous Multithreading 112

5.3.1. Motivation . 112
5.3.2. Experiment Design 115
5.3.3. Experiment Template 116
5.3.4. Experiment Robustness and Performance 117
5.3.5. Example . 119

5.4. Number of CPU Cores 124
5.4.1. Motivation . 124
5.4.2. Experiment Design 126
5.4.3. Experiment Template 128
5.4.4. Experiment Robustness and Performance 130
5.4.5. Example . 132

5.5. Operating System Scheduler Timeslice Length 134
5.5.1. Motivation . 134

xiii

5.5.2. Experiment Design 135
5.5.3. Experiment Template 137
5.5.4. Experiment Robustness 139
5.5.5. Experiment Performance 140
5.5.6. Example . 140

5.6. Operating System Scheduler Load-balancing Properties . 143
5.6.1. Motivation . 143
5.6.2. Initial Load-balancing Strategy 144
5.6.3. Dynamic Load-balancing Strategy 152

5.7. Including Experiment Results in Performance Prediction . 163
5.8. Validation . 165

5.8.1. Validation Scenario 167
5.8.2. Execution . 169
5.8.3. Results . 169
5.8.4. Discussion . 172

5.9. Limitations and Assumptions 173
5.10. Summary . 175

6. Deriving Virtualization Properties 177
6.1. Experiments Overview 178
6.2. Scientific Challenges . 179
6.3. Virtualization Overhead 180

6.3.1. Motivation . 180
6.3.2. Experiment Design 181
6.3.3. Experiment Template 183
6.3.4. Experiment Robustness 185
6.3.5. Experiment Performance 186
6.3.6. Including Experiment Results in Performance

Prediction . 186
6.3.7. Validation . 188

xiv

6.4. Load-dependent Overhead 196
6.4.1. Motivation . 197
6.4.2. Experiment Design 198
6.4.3. Experiment Template 208
6.4.4. Experiment Robustness and Performance 210
6.4.5. Including Experiment Results in Performance

Prediction . 211
6.4.6. Validation . 214

6.5. Discussion . 224
6.5.1. Additional Load 225
6.5.2. Limitations and Assumptions 231

6.6. Summary . 233

7. Related Work . 235
7.1. Modeling the Execution Environment for Performance

Prediction . 235
7.2. Deriving Performance Models through Automated

Measurements . 237
7.3. Performance Analysis Reflecting CPU and OS Scheduling

Properties . 244
7.4. Performance Analysis of Virtualized Environments 247
7.5. Summary . 249

8. Conclusions . 251
8.1. Summary . 251
8.2. Limitations and Assumptions 256
8.3. Further Application Areas 256
8.4. Future Work . 257

A. GINPEX Metamodel . 263
A.1. Control Flow Tasks . 264
A.2. Stop Conditions . 267

xv

A.3. Machine Tasks . 269
A.4. Distributions . 271
A.5. Sensors . 272

B. Presented Experiments . 275
B.1. CPU Simultaneous Multithreading 275
B.2. Detect Number of Available CPU Cores 276
B.3. Detect OS Scheduler Timeslice Length 278
B.4. Detect OS Scheduler Initial Load-balancing Strategy . . . 280
B.5. Detect OS Scheduler Dynamic Load-balancing Strategy . 282
B.6. Detect Virtualization Overhead 283
B.7. Detect Load-dependent Virtualization Overhead 285

List of Figures . 289

xvi

1. Introduction

In 1966, IBM released the first version of the OS/360 operating system, a
batch processing operating system with over 220,000 lines of code [Os].
Today, modern operating systems reach millions of lines of code: The
Linux kernel 3.2 released in 2012 featured approx. 15 millions lines of
code [Lee12], the complete codebase of Microsoft’s operating system Win-
dows XP released in 2001 features approx. 40 millions lines of code [Mar05].

This example illustrates how the complexity of the software execution
environment increased over time. With the increased complexity, reflecting
performance properties of the execution environment in software perfor-
mance analysis gets more and more challenging. This thesis introduces a
novel approach for automatically detecting such properties through experi-
ments.

1.1. Motivation

Software Performance Engineering (SPE) is an approach to systematically
reflect software performance during the whole software life-cycle [Smi90,
SW02]. By considering performance early in software development, costly
adaptations of the software at later stages in order to solve performance
problems can be avoided. This can for instance be achieved by using
model-based SPE approaches, which facilitate performance predictions of a
software based on models (which can, in contrast to the implementation, al-
ready be specified at design time). Depending on the available information,
models can be specified with different levels of granularity. Ideally, with
more information available, fine-grained models can be created leading to

1

1. Introduction

more accurate performance predictions. However, this requires careful en-
gineering of the performance model and often involves a lot of efforts.

The software performance can be influenced by multiple factors. Typ-
ically, many of them stem from the software execution environment. The
execution environment encompasses the complete underlying infrastruc-
ture of the software such as hardware resources, controllers, the operating
system, or further middleware.

Over the years, software execution environments became more and more
complex. On the one hand, parts of the execution environment became
more sophisticated and thus more extensive, such as operating systems (see
example above). On the other hand, today’s infrastructures typically consist
of several layers through which resources are accessed by the software. For
example, one major trend can be seen in the increased use of virtualized
platforms. In a virtualized environment, software does not need to run on
a dedicated server, but can also be deployed on a virtualized server which
is running on top of a physical server. By using virtualization techniques,
it is also possible to deploy multiple virtual servers on a single physical
server. Software virtualization has a lot of benefits concerning costs, plat-
form independence, security or reliability and is therefore used in more and
more systems today. However, in virtualized systems the software accesses
a hardware resource, such as the CPU or a hard disk, not directly through
the operating system. Instead, resource calls may be passed from the op-
erating system to the virtualization layer, which usually provides its own
scheduling logic to handle the assignment of requests to resources.

In software performance analysis, execution environment properties have
to be thoroughly reflected in order to yield acceptable analysis results. For
example, Schroeder et al. showed that scheduling policies can have an im-
pact on request response times by an order of magnitude or more [SWHB06].
Due to the increased complexity of the software execution environment, it
becomes more difficult to accurately reflect the influence of the execution
environment on the software performance during performance analysis. Of-

2

1.2. Problem

ten it is not possible to deploy the software on the target platform in order
to directly measure the performance impact of the execution environment
on the software.

For instance, at early stages of the software life-cycle, only initial perfor-
mance models of the software might exist, but the software itself is not yet
fully implemented. In other scenarios, the deployment of a system on the
target environment might involve major efforts, so that it is not practical
to deploy the system during development time for performance measure-
ments. In this case, the performance impact of the target system has to
be identified in a different way. Typically, small load tests or benchmarks
which are easy to deploy are typically executed in this case, but it remains
unclear how the results of such tests relate to the performance models of
the software.

Besides, performance analysis requires additional efforts at run-time,
when models have to be updated due to changes in the software and its en-
vironment. If the software execution environment changes, measurements
performed on older versions of the execution environment often cannot be
reused and might render software performance models unusable. In this
case, efforts are necessary to setup and repeat the measurements.

1.2. Problem

In order to accurately predict the performance of a software, the perfor-
mance analyst has to reflect the performance-relevant properties of the exe-
cution environment in software performance analysis. This leads to various
issues:

• Typically, performance analysts are familiar with the concepts of per-
formance engineering or with the software that is to be analyzed.
Details on the domain of the software execution environment are of-
ten known to a much lesser extent. Hence, performance analysts are
often only able to specify a limited set of performance-relevant exe-

3

1. Introduction

cution environment properties for performance prediction, although
the specification of additional properties might be beneficial.

• The execution environment is often simplified in performance anal-
ysis using basic queues and scheduling policies (e.g. in the perfor-
mance analysis tools presented in [BKR09, FMW+12, KSM10]). In
some performance analysis scenarios, for example for certain high-
level predictions at early stages of design time, these properties are
sufficient. However, sometimes fine-grained properties of the execu-
tion environment have to be supported as well in order to yield per-
formance predictions with adequate prediction accuracy. This can
for instance be the case if a software is running in a virtualized en-
vironment where the virtualization technology can have a significant
impact on the response time of issued resource demands [Men05].
For such scenarios, support of deriving execution environment prop-
erties and including them in performance analysis is insufficient.

• Gathering information on the execution environment typically in-
volves substantial efforts which often have to be carried out man-
ually. This can be done by the performance analyst using specifi-
cations or by taking measurements. In the former case, gathering
informations from specifications is a manual task. As performance-
relevant information is typically not presented in a unified format,
specifications have to be obtained and examined for the actual sys-
tem manually. Some attributes, such as the performance overhead
introduced by a virtualization platform, are typically not specified
and thus can only be retrieved through measurements. When taking
measurements, efforts are required in order to design experiments
that are targeted towards the execution environment property in fo-
cus. For some properties, existing tools might be reused, but they are
often platform-specific (and hence not always applicable).

4

1.2. Problem

• If certain execution environment properties can only be acquired with
substantial efforts, some scenarios for performance prediction be-
come infeasible: For example, the performance analyst might pre-
dict how the performance of a software changes when the software
is deployed on different servers. If the execution environment differs
for the different servers (for example, a different operating system,
virtualization layer, or hardware resource setup is used), the time-
consuming process of obtaining execution environment properties
has to be repeated for every server in focus. If this has to be done
manually, such efforts are rendered impractical.

• All manual efforts (either the efforts of gathering information on the
execution environment properties or the integration of the properties
in the performance analysis configuration) are notoriously prone to
errors.

Based on these issues, three main challenges arise:

Shield the performance analyst from having to deal with details
of the execution environment. In order to facilitate an effi-
cient performance analysis, an SPE approach should encapsulate
domain knowledge where possible so that the performance analyst
can concentrate on specifying the information he is familiar with.
For example, model-based performance engineering approaches
such as the Palladio Component Model [BKR09] or the Core Sce-
nario Model [PW04] introduced concepts for encapsulating details
of performance analysis theory into tooling. In this case, the per-
formance analyst can specify performance models using concepts
from the domain of software system modeling. These models are
then automatically transformed into low-level performance mod-
els. However, a comparable approach for encapsulating the process
of retrieving and specifying information on the software execution

5

1. Introduction

environment is missing. In addition, automated integration into
software performance analysis is also required in order to enable
efficient performance analyses. Otherwise, the performance analyst
has to manually insert the derived properties into the performance
model. Not only implies such an approach more efforts, it also re-
quires the performance analyst to deal with low-level details of the
execution environment: Manual integration into performance anal-
ysis can only be done by the performance analyst if he is familiar
with the execution environment properties and knows how to re-
flect such properties in performance analysis. Hence, it has to be
investigated how the derivation and specification of performance-
relevant execution environment properties as well as the integration
into performance analysis can be encapsulated into an automated
approach.

Find a proper abstraction level to deal with heterogeneous envi-
ronments. As discussed above, retrieving information about the
execution environment manually is cumbersome and requires in-
depth knowledge about the platform. The performance analyst has
to know on which properties he should focus on, and how prop-
erty values can be detected. Automating this process requires to
design an approach that can be applied to a wide range of execu-
tion environment properties. The approach should neither be lim-
ited to a certain part of the execution environment (e.g. operating
system properties only), nor be restricted to an insufficient subset
of platform technologies (e.g. Linux-based technologies only). The
challenge is here to facilitate the design of automated experiments
which are applicable to such heterogeneous environments.

Evaluate the impact of derived execution environment properties
on software performance prediction accuracy. For some exe-
cution environment properties, it is difficult to specify how the prop-
erty actually influences the performance of a software. For example,

6

1.3. Shortcomings of Existing Solutions

the performance overhead introduced by virtualization technology
can strongly depend on the kinds of resource demands issued by the
software. Detecting such overheads without measuring the software
itself can for example be done by measuring the effect on synthetic
load (i.e. microbenchmarks). In this case, the generated load has to
be representative in order to derive a reasonable model of the execu-
tion environment. Hence, for experiments detecting such properties,
it has to be validated whether the inclusion of the derived execution
environment properties in a performance analysis can lead to sig-
nificant improvements of the prediction results.

In order to address these issues, this thesis introduces an approach for
the automated derivation of execution environment properties. Since not
all properties can be easily detected through specifications, the approach
regards the execution environment as a black box, i.e. it does not require
access to internal information and derives all properties through measure-
ments.

1.3. Shortcomings of Existing Solutions

Traditional approaches in software performance analysis (cf. [BKR09,
BMdW+04, GMS07, PW04, SBHS06]) require the manual specification of
execution environment properties in the performance models. They neglect
the issue of how such information can be retrieved in the first place.

In order to enhance performance models with details that can be retrieved
automatically, various approaches have been presented. Woodside et al.
use measurements to derive a performance model that captures software re-
source demands as a function of the execution environment and user work-
load properties[WVCB01]. Zheng et al. use Kalman filters to derive a per-
formance model through measurements [ZWL08]. While these approaches
are based on measurements that can be potentially automated, they do not
explicitly quantify the performance influences that stem from the execution

7

1. Introduction

environment—the derived properties are depending on the software model
and cannot be reused for a different software model.

Other approaches that focus on the automated inclusion of performance
properties of the execution environment are tailored towards a specific part
of the execution environment. Krogmann et al. [KKR10] use measurements
of Java bytecode instructions to extend a performance model automatically
with information about the Java runtime environment. Liu et al. [LFG05]
developed a benchmark-based approach for measuring the performance im-
pact of the J2EE middleware platform. The measurements can be integrated
into a performance model of the middleware for performance prediction of
J2EE applications. While these approaches support the decoupling of the
software performance model from a performance model of the execution
environment, they are strongly targeted at specific parts of the execution
environment and cannot be applied to other execution environment proper-
ties. For example, detecting properties of the operating system scheduler
requires a different kind of measurements logic than predefined measure-
ments that aim at detecting J2EE or JVM properties. Such approaches sup-
port the detection of specific execution environment properties which are
important to be reflected in software performance prediction. However,
since the approaches differ strongly in their structure and their implemen-
tation, applying multiple approaches in a software performance prediction
can get complicated.

Finally, a large body of research exists on the performance evaluation of
specific execution environment properties. These works typically address
a certain performance-relevant property of the execution environment and
provide a performance model of the property or an approach for quanti-
fying the property. While the performance impact of the property under
focus might be substantial, the problem of how to calibrate and translate
the modeled property for inclusion into a software performance analysis
approach is typically neglected. Furthermore, when it comes to detecting
and modeling the properties, these works provide very specific approaches

8

1.4. Contributions

that cannot be transferred to different properties. In addition, many ap-
proaches do not focus on automated evaluation, but require manual investi-
gation of measurement results. Thus, it requires in-depth knowledge in or-
der to evaluate the properties and include them into performance analysts.
For software performance prediction, such detailed properties are therefore
usually neglected, although the prediction accuracy might strongly benefit
from reflecting the properties. In Section 7.3 and 7.4, we provide a detailed
discussion on related work w.r.t. the properties that are in the focus of this
thesis.

Summing up, existing approaches are limited w.r.t. (i) the focus on the
software level instead of the execution environment level, (ii) the automated
execution of performance experiments, and (iii) the limited focus on a cer-
tain part of the execution environment. Chapter 7 discusses related work in
detail.

1.4. Contributions

To ease the burden of detecting performance-relevant properties of the soft-
ware execution environment and integrating such properties into perfor-
mance analysis, this thesis introduces an approach called GINPEX (Goal-
oriented INfrastructure Performance EXperiments). In the following, we
present the contributions of the thesis in more detail.

An approach for the automated derivation of execution environ-
ment properties. The defined approach does not require that
information on execution environment properties is available prior
to performance analysis. Instead, it aims at retrieving such informa-
tion automatically through predefined experiments. These experi-
ments automatically conduct measurements on the target platform
and analyze the measurement results to detect the value of the ex-
ecution environment property under focus. The approach follows

9

1. Introduction

the idea of regarding the execution environment as a black box,
i.e. it does not require access to internal details of the execution
environment. This has the advantage of introducing technology-
independent experiments that can be executed on all execution en-
vironments that meet the experiment requirements. In addition, the
approach contributes

• a workflow for the design of automated experiments as well
as the execution of automated experiments,

• concepts for structuring execution environment properties

and predefining automated experiments,

• a concept for coupling experiments through parametric ex-

periment dependencies.

A metamodel for the specification of execution environment ex-
periments. The implementation of the approach is based on a
metamodel which provides a domain-specific language for specify-
ing experiments and the corresponding experiment logic. Experi-
ments can be created as instances of the metamodel and stored in a
repository for later application by performance analysts. For experi-
ment execution, an experiment model is transformed into executable
experiment code. This happens automatically through a model-to-
text (M2T) transformation. Generating code based on metamodel
instances facilitates the separation of experiment specification and
experiment execution. In order to change details of how experiment
logic has to be executed on a target platform (i.e. the structure of
the experiment code), the metamodel and all specified metamodel
instances do not have to be adapted; instead, only the transformation
has to be changed. In summary, the contributions include

• a metamodel for specifying experiments, dependencies be-
tween experiments, as well as experiment logic,

10

1.4. Contributions

• an experiment template for non-formal description of experi-
ments,

• model-based concepts facilitating the extension of the ap-
proach with new experiments and new experiment logic.

Experiment designs for detecting CPU, OS scheduling, and virtu-
alization properties. In this thesis, we validate the applicability
of the approach by applying it to different parts of the execution
environment. We define experiments to detect CPU, operating sys-
tem scheduling and virtualization properties. Here, the thesis con-
tributes

• CPU and OS scheduling experiments covering CPU simulta-
neous multithreading (SMT), the number of CPU cores, the
operating system timeslice length and operating system load-
balancing policies,

• Virtualization experiments detecting different kinds of virtu-
alization overhead introduced by the virtualization platform,
as well as the concept of an experiment for detecting addi-
tional load present in a virtualized environment.

An integration of experiment results into an approach for soft-
ware performance prediction. This thesis provides an exem-
plary integration of the experiment results into the Palladio Com-
ponent Model, an approach for model-based software performance
prediction. Using the Palladio Component Model, we evaluate the
impact of the experiment results on performance prediction.

11

1. Introduction

1.5. Validation

The validation of the contributions of this thesis comprises the validation
of the general approach and the validation of the presented experiment de-
signs.

As mentioned above, we validate the applicability of the general ap-
proach by defining experiments that illustrate how correct execution envi-
ronment properties can be detected automatically. The defined experiments
demonstrate how the model-based approach can be used to define the cor-
responding experiment logic using the presented metamodel. In order to
evaluate that the approach can be applied to different parts of the execution
environment, we define experiments for different parts (CPU, OS schedul-
ing, and virtualization properties).

The experiments for detecting CPU and OS scheduling properties are
validated by executing the experiments on different platforms and evalu-
ating the detected experiment result. The result is compared to the actual
platform specification to show that the experiment detects the correct prop-
erty value on all used platforms. To illustrate how the detected properties
influence performance analysis, we conduct a case study where we show
that the prediction error can be decreased by including the experimentally
detected properties into performance analysis.

In contrast to the CPU and OS scheduling properties, the virtualization
experiments do not detect properties that are available in specifications (i.e.
different kinds of virtualization overhead). Hence, we cannot directly as-
sess whether the experiments detect the property values correctly. How-
ever, we can analyze whether the performance prediction accuracy can be
increased by including the detected properties in performance prediction
(compared to a traditional prediction neglecting the detected properties).
This is done using different case studies. The case studies show that the
prediction error can be decreased significantly using the detected properties
in performance analysis. In addition, they demonstrate that the experiment

12

1.6. Outline

results are not directly connected to a single software application, but can
be used for different applications: The same model of detected properties
is used in different performance analyses conducted for two independent
applications. In both cases, increased prediction accuracy can be observed.

1.6. Outline

The remainder of this thesis is structured as follows.

Chapter 2 deals with the foundations of this thesis. They are con-
cerned with software performance analysis, model-driven software
development, as well as operating system scheduling and virtualiza-
tion as parts of the software execution environment that are in the
focus of the presented experiments. Section 2.1 presents concepts
from the domain of software performance analysis. It discusses
software performance as an important quality attribute in software
engineering, gives an introduction to software performance engi-
neering (SPE), and discusses concepts of experiments and perfor-
mance benchmarking. Finally, the section gives an overview on
the Palladio Component Model (PCM), which is used in this thesis
for integrating experiment results into performance analysis and for
conducting software performance predictions. Section 2.2 discusses
concepts from the area of model-driven software development on
which this thesis builds on. It introduces the concepts of models
and metamodels and presents some technological approaches from
the Eclipse Modeling Project which are used for the implementa-
tion of the thesis approach. Finally, Section 2.3 gives an overview
on some concepts from the domain of operating system schedul-
ing and virtualization. It first discusses operating system schedul-
ing and highlights various existing approaches for detecting CPU
and OS scheduling properties. Afterwards, the concept of system

13

1. Introduction

virtualization is introduced which is the basis of the execution envi-
ronment properties detected by the virtualization experiments.

Chapter 3 introduces GINPEX (Goal-oriented INfrastructure Per-
formance EXperiments), the overall approach presented by this the-
sis. In Section 3.1, the research context is set by defining the ex-
ecution environment, presenting performance influences of the ex-
ecution environment, and discussing how and why the execution
environment model should be separated from the software architec-
ture model. Section 3.2 continues with a discussion of the scientific
challenges for the approach. In Section 3.3, the approach is pre-
sented in detail. Section 3.4 deals with the different scenarios in
software performance engineering which can benefit from the pre-
sented approach, and Section 3.5 discusses limitations and assump-
tions of the approach.

Chapter 4 deals with the GINPEX approach in detail and shows
how the approach can be implemented using concepts from model-
based software engineering. Section 4.1 is focused on the concepts
of experiment automation, presents requirements for such experi-
ments, and deals with the structure of experiment execution. Sec-
tion 4.2 introduces the concepts of experiment libraries and exper-
iment domains, and Section 4.3 presents a concept for parametric
experiments. The metamodel of the approach is presented in detail
in Section 4.4. Section 4.5 is focused on the experiment execution
and results analysis, and Section 4.6 presents a template that pro-
vides a common format for describing experiments. Section 4.7
continues with a discussion of the extensibility of the approach and
Section 4.8 deals with the performance overhead of executing ex-
periments.

Chapter 5 shows how the approach can be applied in order to de-
fine experiments for detecting CPU and OS scheduling properties.
Section 5.1 gives an overview on the experiments presented in the

14

1.6. Outline

chapter and Section 5.2 lists the scientific challenges that are re-
lated to these experiments. Section 5.3 to Section 5.6 cover the
experiments in detail. In these sections, the results of executing the
experiments on different platforms are also presented. Section 5.7
discusses how the experiment results can be integrated into a perfor-
mance prediction approach. In Section 5.8, the detected properties
are used in a case study to evaluate how the prediction accuracy can
be increased when reflecting the properties in performance analy-
sis. Section 5.9 continues with a discussion on the limitations and
assumptions of the presented experiments.

Chapter 6 has a different focus on the execution environment: It
features experiments to detect properties of virtualized environ-
ments. Again, the chapter starts with an overview on the presented
experiments in Section 6.1. Section 6.2 discusses the scientific chal-
lenges for those experiments. In Section 6.3, an experiment is pre-
sented to derive a simple model of virtualization overhead. This
overhead model is extended by another experiment in Section 6.4.
Both sections feature case studies where the resulting prediction
accuracy of the detected model is analyzed. Section 6.5 sketches
another experiment for detecting additional load in virtualized en-
vironments and discusses limitations and assumptions of the pre-
sented experiments.

Chapter 7 discusses related work. Related work can be grouped
into approaches dealing with the modeling of the execution envi-
ronment in performance prediction (Section 7.1), approaches for de-
riving performance models through automated measurements (Sec-
tion 7.2), and work that covers the performance analysis of CPU and
OS scheduling properties (Section 7.3) and the performance analy-
sis of virtualized environments (Section 7.4).

Chapter 8 concludes the thesis. It summarizes the contributions in
Section 8.1 and briefly outlines the limitations and assumptions in

15

1. Introduction

Section 8.2. In addition, it presents additional application areas of
the GINPEX approach in Section 8.3, and discusses future work in
Section 8.4.

16

2. Foundations

In this chapter, we introduce some concepts and terms from the different
domains this thesis is based on. First, we give an overview on the field
of software performance analysis. We continue with presenting some con-
cepts from the area of model-driven software development. Finally, we
explain some concepts of the software execution environment that are rel-
evant for the experiments presented in this thesis; these concepts deal with
operating system scheduling and virtualization.

2.1. Software Performance Analysis

In the following, we first give an introduction to some basic software perfor-
mance concepts. We then explain the Software Performance Engineering
approach (SPE), and give an overview on concepts for conducting perfor-
mance experiments and benchmarks. We conclude this section with a pre-
sentation of the Palladio Component Model, an approach for architecture-
based software performance prediction.

2.1.1. Software Performance

Performance is a software quality attribute that plays a role for nearly ev-
ery software system that has been or has to be developed. In this work,
we use the following definition of the term performance (from Smith and
Williams [SW02]):

Definition 2.1. Performance is the degree to which a software system or
component meets its objectives for timeliness.

17

2. Foundations

Performance deals with the responsiveness of a software, i.e. how a soft-
ware system meets its given objectives for response times or throughput,
and with the scalability of a system, i.e. with its ability to meet perfor-
mance objectives with an increased demand [SW02]. Typical metrics used
in performance analysis are

• the response time of executed functionality,

• the throughput of a system, i.e. the number of requests processed
during a specified time,

• and the utilization of the system’s resources, i.e. the proportion of the
time a resource was busy processing software requests.

Based on [BHK06], Becker [Bec08] identifies four factors influencing
the performance of component-based software systems (see Figure 2.1):

Implementation. The implementation of a component has an in-
fluence on its performance, because the issued resource demands
depend on the chosen algorithms and data structures.

Deployment. The execution environment the software is running
on, has an performance impact, as processing or transfer rates of
hardware resources influence the software response times.

External services. The performance of a component also depends
on the performance of external services accessed. If an external
service forms a performance bottleneck and yields slow response
times, the performance of the accessing component can suffer as
well.

Usage profile. The workload issued to a component also influences
its performance. A component might yield different response times
depending on the number of users accessing the component in par-
allel. Also the type and amount of data users issue to or request
from a component can have a performance impact.

18

2.1. Software Performance Analysis

Analyzing the performance of a software means that all four factors have
to be taken into consideration. In this thesis, the main focus lies on the per-
formance impact of the software execution environment which is covered
by the “Deployment” influencing factor.

Usage of
External Services

Deployed on
- Hardware
- Middleware
- Networks
- ...

Usage Profile

Implementation

Figure 2.1.: Influence factors on the performance of component-based software sys-
tems (from [Bec08])

2.1.2. Software Performance Engineering

Software Performance Engineering (SPE) is a systematic approach to re-
flect the performance of a software during its development. The approach
and a corresponding process was extensively presented back in 1990 by
Smith [Smi90]. From this book, we quote the following explanation of
SPE:

Software performance engineering (SPE) is a method for con-
structing software systems to meet performance objectives.
The process begins early in the software lifecycle and uses
quantitative methods to identify satisfactory designs and to
eliminate those that are likely to have unacceptable perfor-
mance, before developers invest significant time in implemen-
tation. SPE continues through the detailed design, coding,
and testing stages to predict and manage the performance of
the evolving software and to monitor and report actual perfor-
mance against specifications and predictions. [Smi90, p. 1].

19

2. Foundations

While the complexity of software systems has changed radically during
the last decades, this quote is still up-to-date.

In [SW02], the approach was extended to distributed and embedded sys-
tems. In addition, the SPE process was adapted to include the following 9
steps:

1. Assess performance risk: Identify the amount of SPE effort that is
needed in a software development project.

2. Identify critical use cases: Select the most important use cases w.r.t.
the system operation or the perceived responsiveness.

3. Select key performance scenarios: For each critical use case, select
the most important performance scenarios.

4. Establish performance objectives: Provide performance requirements
for each identified scenario using performance metrics such as re-
sponse time, throughput, or resource utilization.

5. Construct performance models: Transform the identified perfor-
mance scenarios into a model for performance analysis. The authors
of the SPE process use execution graphs as a performance model.

6. Determine software resource requirements: Specify the amount of
work that is performed during the steps of an performance model

7. Add computer resource requirements: Map the software resource re-
quirements to hardware resource demands, such as CPU instructions
or disk I/O.

8. Evaluate the models: Calculate performance values by solving the
model and evaluate whether the specified requirements are met. If
the evaluation reveals performance problems, steps 5 through 8 are
repeated.

20

2.1. Software Performance Analysis

9. Verify and validate the models: In parallel to the complete process,
determine whether the model is an accurate reflection of the software
system and its performance.

2.1.3. Performance Experiments and Benchmarking

In [CS01], an experiment is defined as a method to check an assumption
or a theory, to analyze an effect or to demonstrate possible fields of appli-
cation. In computer science, experiments also comprise series of measure-
ments [CS01, p. 234]. In the are of performance evaluation, Ferrari [Fer78]
defines an experiment as a “set of empirical (or simulation) tests performed
to obtain answers to questions which arise in an evaluation study”. Based
on these definitions, for this thesis we define a performance experiment as
follows:

Definition 2.2. A performance experiment is a methodical procedure to as-
sess the value of a performance characteristic or the validity of a hypothesis
on the performance behavior of a system.

Experimental design deals with the statistical design of experiments. It
aims at reducing the number of experiment runs while still obtaining results
with adequate accuracy. The outcome of an experiment is called response

variable. It is influenced by various variables which are called factors. The
levels of a factor constitute the values for which a factor can be varied.
Experimental designs aim at reducing the number of needed runs by re-
ducing the number of factors, levels, or a combination of them. We will
revisit experimental design in Chapter 6. For more details on the concepts
of experimental design in performance analysis, see [Jai91].

Benchmarking denotes the process of performance comparison for two
or more systems by measurements [Jai91]. The programs used for this are
called benchmarks. A benchmark is a program which resembles a real-
world workload. Sometimes, a synthetic workload (or microbenchmark)

21

2. Foundations

is used instead of a real-world benchmark for a more fine-grained, spe-
cific workload generation. Gray [Gra93] defines four properties a useful
domain-specific benchmark has to provide:

1. Relevance: The benchmark must measure the performance (or price
per performance) when the system performs typical operations in the
problem domain.

2. Portability: It should require little effort to implement and deploy the
benchmark on many different systems.

3. Scalability: The benchmark should work on small and on large sys-
tems.

4. Simplicity: The benchmark must be understandable.

The same properties also hold for microbenchmarks. Microbenchmarks
are typically used to meet the second and fourth criteria: Due to its limited
amount of code and benchmark logic, it is generally easier to understand
and to implement. In this thesis, microbenchmarks are used for generat-
ing a certain type of workload on a target system, and to observe certain
performance effects while this workload is executed.

2.1.4. The Palladio Component Model

The Palladio Component Model (PCM) comprises a domain-specific lan-
guage for modeling component-based software architectures and related
QoS properties [BKR09], as well as integrated tooling for model-based
QoS predictions. It supports software performance analysis by following
the SPE approach and aims at encapsulating knowledge on performance
analysis as much as possible in attached tools. Therefore, the software
architect or performance analyst does not have to understand how perfor-
mance models can be analyzed or simulated using constructs from perfor-
mance theory, such as queues, tokens, Instead, he can focus on modeling

22

2.1. Software Performance Analysis

the software architecture using concepts from the software architecture do-
main, such as components, connectors, or servers. The software architec-
ture model is then automatically transformed into a performance analysis
model. Depending on the chosen prediction approach, this can be an ana-
lytical layered queueing network solver, or a simulation based on queueing
networks. The PCM approach has been presented in [BKR09] and is shown
in Figure 2.2.

Usage Model

Component Specifications

<<User>>

Assembly Model

Allocation Model

<<Component
Developer>>

part of

part of

part o
f

pa
rt

of

<<System
Architect>>

<<System
Deployer>>

<<Domain
Expert>>

PCM
Instance

Mod
el-

to-
Mod

el

Tran
sfo

rm
ati

on

Stochastic Regular Expressions

Queueing Network Model

Performance Prototype

Java Code Skeletons

Model-to-Model

Transformation

Model-to-Code
TransformationModel-to-Code

Transformation

Figure 2.2.: PCM performance prediction process (from [BKR09])

Compared to other approaches for model-based performance prediction,
the PCM is aligned with different developer rules, allowing for using per-
formance prediction in a development process of component-based soft-
ware engineering (CBSE). In addition, it supports the specification of para-
metric dependencies in the model, which facilitates the reuse of parts of a
model in different contexts. In the following, we give more details on the
structure of PCM models and explain how performance prediction can be
carried out with the PCM-based simulation.

Modeling software for performance prediction with the PCM

The PCM is based on the CBSE development process presented [KH06].
The process distinguishes four different developer roles: The component

developer is responsible for specifying and implementing software compo-

23

2. Foundations

nents. In a PCM model, he provides component models that include QoS-
relevant component specifications, such as an abstract behavior specifica-
tion called service effect specification (SEFF) or resource demands for per-
formance analysis. The software architect assembles components to build
the overall software architecture, which is called system in the PCM. The
assembled components are then deployed by the system deployer. In the
PCM model, he specifies the resource environment, i.e. the setup of the ex-
ecution environment, servers, and hardware resources, and the allocation of
components to servers. Finally, the domain expert is responsible for spec-
ifying the user workload, i.e. the frequency of user requests to the system,
or the parameters which are passed by the users to the services.

The PCM separates the information from the different developer roles in
different models. For example, the component specifications are stored in
a component repository that is located in a different model than the system
containing the software architecture. This way the different parts of the
models can be developed independently of one another. It also means that
information related to the software execution environment only has to be
specified in the resource environment model. This is one of the reasons
why the PCM was chosen as the software performance analysis tool for
this thesis.

Conducting a performance prediction with the PCM-based
simulation

In order to conduct a performance prediction for a PCM model, analytical
solvers or a simulation based on queueing networks can be used. While
analytical solvers provide fast analyses that can usually be executed within
seconds, the simulation yields more detailed results. Compared to analyti-
cal solvers, it does not only report average performance response times but
facilitates the calculation of fine-grained distribution functions for these
metrics. In addition, the simulation supports more modeling constructs,

24

2.1. Software Performance Analysis

such as multiple user scenarios [BKR09] In this thesis, we use the PCM-
based simulation for performance predictions.

The PCM performance simulation is available as a simulation framework
SimuCom. It is a Java-based simulation engine that is based on a generic
event-based simulation engine such as Desmo-J [DES]. To execute a simu-
lation for performance prediction, the performance analyst has to provide a
complete PCM model including the component repository, the system, the
resource environment, the allocation and the usage model. When a simula-
tion run is launched, the PCM model is then transformed into Java code that
represents the modeled system in a structure which can be used for simu-
lation. The code directly plugs into the simulation framework; the com-
bination of generated code and simulation frameworks forms a runnable
simulation instance.

After code generation, a simulation run is immediately initiated. Dur-
ing a simulation run, the simulation engine iteratively executes simulated
requests based on the modeled user workload. The requests lead to the ex-
ecution of component specifications, which in turn access the simulation
framework, for example when an issued resource demand is to be simu-
lated. The resource demand that occurs in a component is mapped to a
simulated resource management by the simulation framework. This re-
source simulates the performance behavior of the hardware resource which
is responsible for executing the demand. During simulation, the framework
calculates the response times of such a demand and collects performance
metrics (such as response times or resource utilization) in corresponding
sensors. For details on how the elements are mapped to SimuCom con-
structs and how the performance of the model is simulated in SimuCom,
see [Bec08].

25

2. Foundations

2.2. Model-driven Software Development

Model-driven software development (MDSD) is an approach in software
engineering that puts a strong focus on the creation of software through
models. Models are considered equal to code, as their implementation is
automated [SV06]: Based on models, executable code is automatically gen-
erated through model transformations or code generators. Using model-
driven engineering approaches in software development can have several
benefits. For example, it can increase productivity if it takes less time
to provide a model instead of the corresponding software implementation.
Typically, code generation is used to encapsulate recurring code constructs.
This code can then be generated automatically, leading to an improved de-
velopment speed and fewer bugs created by manually writing code. As
an example, take a web-based software application where part of the data
structure is represented through models. In this case, a lot of “glue code”
dealing with data management and database access, can be created auto-
matically and does not have to be written manually. Another advantage of
using models is that, due to the abstract level of models, the understandabil-
ity of the software can be increased if the models hide software complexity
in a reasonable way.

2.2.1. Models and Metamodels

The term model has been defined by Stachowiak as a formal representation
of entities and relationships in the real world (abtraction) with a certain
correspondence (isomorphism) for a certain purpose (pragmatics) [Sta73].
Abstraction means that only those details of the real-world, that serve the
purpose of being modeled are included in the model; other details are re-
moved. Isomorphism means that properties of the model elements also hold
for the real world properties. In other words, the projection of real-world
elements onto model elements has to be isomorphic. Finally, a pragmatic

26

2.2. Model-driven Software Development

model means that it serves a certain goal, and has not been created only for
the sake of its own.

Models are created using a formal specification called metamodel. In [Ern],
a metamodel is defined as a precise definition of the constructs and rules
needed for creating semantic models.

As an example, consider the Unified Modeling Language (UML) speci-
fied by the OMG for modeling object-oriented software systems [Obj11b,
Obj11c]. The UML serves as the metamodel that specifies the elements
and relationships that can be used to create UML models. For example, the
metamodel provides constructs to model classes, attributes, and references
between classes. Based on the UML metamodel, a UML model can be cre-
ated for a certain software application. This model can for example contain
the object-oriented classes of the software – these classes are instances of
the class metamodel element. Finally, the implemented software can again
instantiate the modeled classes.

To illustrate these dependencies, the OMG has specified a four-level
metamodel hierarchy [Obj11b]. The lowest level (M0) consists of the ac-
tual instances of the model, such as object-oriented runtime instances of the
classes. The next level (M1) features the object-oriented software model,
i.e. the modeled classes, attributes, references and so on. Again, the model
at the M1 level is an instance of the metamodel, which is located at the
metamodel level (M2). For every level holds that the elements in this level
are instances of the model specified in the next upper level. In addition,
the OMG defines a fourth level (M3) which consists of a so-called meta-
metamodel which can be used to model metamodels such as the UML. For
this case, the OMG has defined the Meta Object Facility (MOF) [Obj11a].
This level is self-referencing, i.e. the metamodel of the meta-metamodel
MOF is also the MOF. In other words, the MOF is modeled using MOF
elements.

Figure 2.3 illustrates the four metamodel levels with the example of mod-
eling persons in an object-oriented software. The “Person” class is modeled

27

2. Foundations

Type: Classifier
ID: 5346456
Name: Classifier

M3: Meta-Metamodel

describes instanceof

M2: Metamodel

describes instanceof

M1: Model

describes instanceof

M0: Instances

describes instanceof

Type: Classifier
ID: 764535
Name: Class
Features: Attributes,
Operations, Associations, ...

Type: Class
ID: 21436456
Name: Person
Attribute: Name, Surname
Operation: …
Association: ...

Type: Person
ID: 05034503
Name: Doe
Surname: John

Figure 2.3.: The four-level metamodel hierarchy of the OMG (based on [SV06])

using UML constructs, i.e. the UML “Class” element. An actual instance
of the “Person” class, i.e. a runtime instance of a person during execution
of the software, is denoted at the lowest level M0. For the sake of complete-
ness, it should be noted that the UML also provides modeling constructs to
model class instances at the same level as classes using UML object dia-
grams (not shown in the figure).

2.2.2. The Eclipse Modeling Project

The Eclipse development environment features a variety of technologies
and tools to support model-driven software development. These items are
bundled in the Eclipse Modeling Project [Thef]. In this thesis, we make
use of two Eclipse MDSD frameworks: the Eclipse Modeling Framework
for metamodeling, and the Eclipse Model to Text (M2T) project for code
generation.

The Eclipse Modeling Framework features a meta-metamodel called
Ecore [Thec]. Ecore is based on a subset of OMG’s meta-metamodel MOF
and can be used to create metamodels for the Eclipse platform. A subset of
the Ecore metamodel elements is shown in Figure 2.4.

28

2.2. Model-driven Software Development

EStructuralFeature

EClass

EReferenceEAttribute

EDataType

EClassifierEPackage

ENamedElement

0..1 eContainingClass

eStructuralFeatures0..*

1

eOpposite 0..1

eReferenceType

1eAttributeType

eClassifiers

ePackage

0..1

0..*

0..*
eSuperTypes

Figure 2.4.: Excerpt from the Ecore metamodel (based on [Gro09])

Based on an Ecore metamodel, the EMF framework can be used to auto-
matically generate model editors which facilitate the creation and editing of
metamodel instances. Furthermore, various framework for the automated
generation of additional graphical editors.

In model-based software engineering, models are not created for doc-
umentation purposes only, but are integrated into an executable software
toolchain. One possibility of using models in a software system could be
the modeling of a data structure. The structure can then for example be
transformed into a database schema. Another option is to model some kind
of software behavior which is then transformed into executable software.
In this thesis, we define a metamodel for specifying experiment logic. The
concrete metamodel instances are then transformed into executable Java
code, facilitating the specification of experiments without the need to write
any Java code.

To generate code based on metamodel instances, so called model to text
(M2T) approaches are used. For this purpose, the Eclipse Model to Text

29

2. Foundations

(M2T) project [Thee] provides various libraries for code generation. The
approach presented in this thesis has been implemented using the XPand
language of the M2T framework. In XPand, code generation templates are
specified that define which kind of source code has to be generated for every
element of the metamodel.

2.3. Operating System Scheduling and Virtualization

In this thesis, we discuss how to derive performance-relevant properties of
software execution environments. In particular, we present experiments to
derive CPU and OS scheduling properties as well as properties of virtual-
ized environments. To facilitate the comprehension of these experiments,
we discuss some concepts regarding OS scheduling and virtualization.

2.3.1. Operating System Scheduling

The operating system is a software that serves as a layer between the hard-
ware resources and the software applications. It encapsulates hardware ac-
cess and provides additional functionality for program execution, such as
simultaneous execution of applications.

The basic concept of an operating system for executing a software is a
process [Tan01]. A process is a program in execution managed by the op-
erating system. The operating system schedules the program on hardware
resources. It assigns the program to a CPU to perform CPU calculations,
or to a network or disk device to perform I/O operations. The operating
system can manage multiple processes at the same time. If multiple re-
sources of the same kind are available, such as CPU cores, true hardware
parallelism can be exploited for parallel execution of processes. If the hard-
ware resource does not permit to be used by multiple processes at the same
time, such as a single-core CPU or a simple hard disk device, the operat-
ing system switches between the processes, giving each process access to
the resource for a short time period (tens to hundreds of milliseconds) and

30

2.3. Operating System Scheduling and Virtualization

thus creating the illusion of parallelism to the user (also called pseudopar-
allelism) [Tan01].

Besides processes, operating systems provide the constructs of threads.
A thread is a light-weight process that involves less overhead in creating
and executing. Multiple threads can be executed in the context of a process;
they share the resources of the process, such as the address space or open
files.

In performance analysis, the differentiation between processes and threads
is often not necessary [Hap08]. This is also the case for the experiments
presented in this thesis. Hence, in this thesis we use the term task as a
generic term that covers both processes and threads.

When multiple tasks are to be executed in parallel, the operating system
is responsible for assigning the tasks to the available CPU cores. If more
tasks are available for execution than CPU cores, the operating system has
to decide when and which task to schedule on which CPU core. This op-
eration is called scheduling. For this purpose, different scheduling strate-
gies exist. While real-world operating systems typically use more complex
strategies, we briefly discuss two basic scheduling policies, which are also
commonly used in performance analysis approaches:

• The first come, first served scheduling policy assigns a CPU core to
the tasks in the order the tasks request it. If a task does not voluntar-
ily stop running on the CPU, other tasks have to wait until the tasks
completes. This policy is typically used in batch systems where inter-
active behavior (which is typically achieved through pausing running
tasks and moving other tasks to the CPU) is not needed.

• The round robin scheduling policy is a widely used scheduling policy
which supports a fair scheduling of parallel tasks. Each task is exe-
cuted on the CPU for a specified duration, which is called timeslice

or quantum. After a timeslice is completed, the scheduler pauses the
currently running task and switches to the next one. The timeslice

31

2. Foundations

length differs between different scheduler implementations. Short
timeslices lead to a higher overhead for context switching, longer
timeslices can cause poor response times for interactive requests. In
performance analysis approaches, for example in performance sim-
ulations, a modification of the round-robin policy called processor

sharing often is used. Processor sharing assumes a theoretical in-
finitely short timeslice length, abstracts from context switches, and
simulates real parallel execution of all running processes.

Most scheduling policies used in general-purpose operating systems
(GPOS) are based on some kind of round robin scheduling. Typical en-
hancements include priorities to favor certain tasks (especially in interac-
tive systems, where responsive UI tasks are desired), or the introduction of
additional scheduling queues. Real-time schedulers for embedded systems
often use different scheduling policies, because in real-time systems the
meeting of deadlines is an important requirement. As embedded systems
are not in the focus of this thesis, we refer the reader to [Kop11] for further
information on real-time scheduling policies. Details on GPOS scheduling
and general concepts of operating systems can be found in [Tan01].

2.3.2. Detecting CPU and OS Scheduling Properties

In this thesis, we present an approach to detect CPU and OS properties
in a automated, platform-independent way. Without such an approach,
platform-specific tasks have to be performed. Some of them are discussed
in the following.

For detecting CPU properties, OS-specific operations can be executed.
Linux and other Unix-based systems provides the virtual file \proc\cpuinfo
that contains information about the available CPU processors. On Windows
systems, the user can consult the Windows Device Manager. Obtaining
CPU information this way requires manual efforts and performing proce-
dures that cannot be applied across different operating system families. In

32

2.3. Operating System Scheduling and Virtualization

addition, OS-specific operations can sometimes return incorrect CPU in-
formation. For example, some AMD or Intel processors might use certain
flags to indicate simultaneous multithreading (SMT) availability although
SMT is not available [Wik].

Instead of issuing calls to the operating system API for querying CPU
information, various tools exist that report information about the available
CPU hardware. The Intel Processor Identification Utility [Intc] is a tool
that identifies different properties of the CPU processor. In addition to
other CPU properties, it also identifies the number of CPU cores as well as
whether simultaneous multithreading (SMT) is supported by the processor.
However, the tool reports SMT availability even if it has been disabled in
the system setup. In addition, the tool is only applicable to newer Intel pro-
cessors. For older processors, a legacy product has to be used [Intb]. The
tools only work on Windows machines, or can be installed as a bootable
version which does not require an operating system, but the access to re-
booting the machine. It is not executable from within different operating
systems, such as Unix-based systems.

A third-party tool that works with CPUs of different vendors is for exam-
ple CPU-Z [CPU]. It detects, among others, the number of available virtual
and physical cores. From this information, SMT availability can be derived
manually. However, this tool can also only be used on Windows machines.

A platform-independent approach for querying CPU information can be
taken by querying CPU information from within the programming environ-
ment, for example the Java Virtual Machine. The Java library provides the
API call Runtime.getRuntime().availableProcessors() which re-
turns the number of virtual CPU cores. However, if SMT is available, the
number of available physical CPU cores cannot be retrieved this way.

In all cases, the user has to query this information manually (or automate
the queries on his own), and provide an integration of the detected infor-
mation in performance analysis. The experiments presented in this thesis
for detecting CPU properties run automatically on all platforms supporting

33

2. Foundations

Java and yield results that can be directly used in the Palladio Component
Model for performance analysis.

Regarding OS scheduling properties, no uniform approach exists for de-
tecting such properties on the different general-purpose operating systems
that are usually installed on servers. In this thesis, we focus on different
Windows and Linux operating systems. Here, no uniform approach exists
for detecting certain OS scheduling properties. In general, obtaining infor-
mation on the scheduler requires manually researching OS specifications
and in-depth OS documentation which is usually spread among various
websites on the Internet. Neither does a uniform approach or classifica-
tion for documenting scheduler properties exist, nor can such properties
queried automatically inside the different operating systems.

For the OS scheduling properties that are in the focus of this thesis, we
used various primary sources for obtaining information on the different
schedulers ([Aas05, Mol07, RS05]). Additional details on the OS sched-
ulers can be found in [Jon] and [SQ]. In [Hap08], different operating sys-
tem schedulers are presented and their performance-relevant properties are
compared.

2.3.3. Virtualization

Gartner defines virtualization as an abstraction that masks the physical na-
ture and boundaries of those resources from resource users [Gar]. An IT
resource can for example be a server or a hardware device, but also an
application. For instance, the Java Virtual Machine (JVM) provides a vir-
tual runtime environment in which Java programs can be executed. The
JVM software can be installed on various operating systems, facilitating
the OS-independent development of software applications. Another form
of virtualization called system virtualization provides a complete system
environment [SN05]. System virtualization makes it possible to run multi-
ple operating systems in parallel on the same machine. This requires that

34

2.3. Operating System Scheduling and Virtualization

a virtualization software called hypervisor (or virtual machine monitor) is
installed on the server instead of a conventional operating system. The hy-
pervisor serves as the virtualization layer. On top of this layer, multiple
virtualized operating systems (called Guest operating systems or Guest vir-
tual machines) can be installed. Just like the operating system manages the
execution of parallel processes, giving each process the illusion of running
on the machine alone, the hypervisor supports execution parallel operating
systems (in which the running applications do not have to know that they
run in a virtualized environment). In this thesis, we mean system virtual-
ization when we use the term virtualization.

Figure 2.5 illustrates the concept of system virtualization. It shows how
the hypervisor serves as a layer between the hardware and the virtualized
operating systems.

Hardware

Applications

Hardware

Non-virtualized server

Operating
system

HypervisorOperating
system

Operating
system ...

Applications Applications ...

Virtualized server

Figure 2.5.: System virtualization

The system virtualization structure shown in the right part of Figure 2.5
is called a native VM system [SN05] or type-1 virtualization resp. type-1
hypervisor [BKNT11]. In this case, the hypervisor is directly installed on
the hardware and not running on top of a host operating system. Type-2 vir-
tualization denotes a system virtualization technique where the hypervisor
is installed on top of an operating system. Typically, the hypervisor runs as
a process in the operating system like other applications, but still serves the
purpose of running multiple guest operating systems.

35

2. Foundations

Figure 2.6 illustrates these two concepts of system virtualization. Both
concepts may have different implications on the guest applications run-
ning in such virtualized environments, such as the performance overhead
induced by the virtualization layer. However, for this thesis it is not neces-
sary to further distinguish these virtualization types.

Virtualizing operating systems can have several benefits. First of all,
multiple servers can be consolidated on one server if the server’s operating
systems are transferred to Guest operating systems on the virtualized server.
This is often done in the area of server consolidation, where servers with lit-
tle resource utilizations are replaced by a single virtualized server, yielding
a better resource utilization and a reduced number of server machines.

In addition, virtualization can be used to run different types of operat-
ing systems in parallel. For example, a virtual machine can run an older
operating system to support the execution of legacy software that does not
run on newer operating systems anymore. Or virtual machines can be used
to separate the development and testing environment from the production
environment.

Another benefit of virtualization is the improved maintainability of the
execution environment. Virtual machines can be migrated from one server
to another. Virtualization solutions also provide the functionality of taking
virtual machine snapshot, i.e. storing the state, disk data and configuration

Hardware Hardware

Type-1 virtualization

Operating
system

Operating systemHypervisor

Operating
system ...

Applications Applications ...

Type-2 virtualization

Operating
system

Operating
system ...

Applications Applications ...

Hypervisor ...

Figure 2.6.: Type-1 and type-2 virtualization

36

2.3. Operating System Scheduling and Virtualization

of a virtual machine as a file. Such techniques enable a simple setup and
rollback of operating system installations as well as a easy way of transfer-
ring operating systems from one server to another.

Virtualization also provides the technical foundation for cloud comput-
ing, where virtual machines are used to provide infrastructure, middleware,
or software services on a pay-per-use basis.

Virtualization is not a new technology. Initial virtualization techniques
have been developed in the late 1960’s and a lot of research has been carried
out at that time [Gol74]. Back then, mainframe servers were expensive
and therefore multiple Guest operating systems had to be supported. With
the advent of low-cost computing power in the 1980’s, the importance of
virtualization declined. In the 1990’s the computing power of the x86-
based machine was high enough to support virtualization on mainstream
machines. This led to an increased number of virtualization installations
and paved the way for the cloud computing trend that could be observed in
recent years. For more details on virtualization techniques, see [SN05].

37

3. An Approach For Deriving Execution
Environment Properties

This chapter introduces the approach to derive performance-relevant prop-
erties of execution environments that is contributed by this thesis. In Sec-
tion 3.1, we first give a definition of the term execution environment and
discuss the relevance of including execution environment properties in soft-
ware performance analysis. We then present the scientific challenges for an
automated approach to derive such properties in Section 3.2. The method of
the approach itself is introduced in Section 3.3. Afterwards, we present sce-
narios in which the approach can be applied (Section 3.4) and discuss limi-
tations and assumptions of the approach (Section 3.5). Section 3.6 recapit-
ulates the chapter and summarizes the core benefits of the approach. Parts
of the approach have been initially published in [HHR11], [HKHR11], and
[HKHR13].

3.1. Research Context

The work of this thesis aims at enhancing architecture-based software per-
formance analysis. In the following, we illustrate the research context on
which the work of this thesis is based on.

We first give a definition on the term “execution environment” in Sec-
tion 3.1.1. In the following Section 3.1.2, we present and group differ-
ent performance-relevant properties of the execution environment. Finally,
Section 3.1.3 illustrates how the execution environment has to be reflected
in software performance analysis in by separating the execution environ-
ment model from the software architecture model.

39

3. An Approach For Deriving Execution Environment Properties

3.1.1. A Definition of the Execution Environment

In related work, there is no clear definition of the term “software execution
environment”. Instead, the term is used in different meanings. Often, a
clear definition is omitted. In addition, other terms, such as “infrastructure”
or “platform” are used as well, sometimes referring to slightly different
parts, sometimes denoting the same thing.

The specification of the Unified Modeling Language (UML) defines the
execution environment as “a node that offers an execution environment for
specific types of components that are deployed on it in the form of exe-
cutable artifacts” [Obj11c]. A node is defined as a “computational resource
upon which artifacts may be deployed for execution” [Obj11c]. An execu-
tion environment in the UML denotes software components but no hard-
ware resources; those are represented by the “device” element.

A different definition can be found in the area of real-time systems:
Burns and Wellings [BW01] describe the execution environment as the
“components that are used together with the application’s code to make
the complete system: the processors, networks, operating systems and so
on.” Here, both hardware resources, such as processors and the network,
and software middleware, such as operating systems, are included in the
term “execution environment”.

Another definition is used in [Mal12], a work rooted in the area of
component-based software development. Here, the term ‘execution envi-
ronment’ is used for denoting a component platform on which components
can be deployed and executed. The underlying operating system and hard-
ware resources are not part of the execution environment (the term “system
execution infrastructure” is used for subsuming resources, operating system
and the component platform).

As no uniform definition of the term “software execution environment”
exists, we use the following definition in the scope of this thesis:

40

3.1. Research Context

Definition 3.1. The software execution environment denotes the infrastruc-
ture on which the software is running on. It comprises hardware resources
and software, such as operating systems and middleware technologies.

For the sake of readability, the terms “software execution environment”
and “execution environment” are used interchangeably in this thesis.

3.1.2. Performance-relevant Properties of the Execution
Environment

Based on Definition 3.1, we group the various parts into the following cat-
egories:

Hardware resources. Hardware resources include all physical re-
sources that are accessed when executing the software. For business
information systems, such resources include CPU processors, the
available main memory, as well as hard disk and network devices.
Certain systems might involve additional special resources, such as
tape data storage systems or barcode readers.
Performance-relevant properties of a CPU resource include the pro-
cessing rate, the number of cores, and simultaneous multithread-
ing capability (for more details, see Chapter 5). Hard Disk proper-
ties include disk throughput and the scheduling policy of the hard
disk controller. The performance impact of the network depends on
various factors, such as network bandwidth, network load, but also
on the type of network communication used (packet size, network
overhead, etc.).

Hardware virtualization. In order to run multiple guest operating
systems on a single physical server, virtualization mechanisms can
be used. A typical scenario for virtualization of operating systems
involves a hypervisor running on the hardware which manages the
execution of virtual machines (VMs) and the scheduling of demands

41

3. An Approach For Deriving Execution Environment Properties

occurring in VMs to the available physical resources. In addition to
the guest operating systems, the software performance is influenced
by the employed virtualization. Performance-relevant properties in-
clude hypervisor and virtual machine properties (such as resource
priorities) as well as virtualization overheads. Chapter 6 deals with
the integration of such properties in performance prediction.
The provisioning of computing resources over a network, which is
denoted by the cloud computing paradigm, also falls into this cate-
gory, as cloud computing approaches heavily utilize hardware virtu-
alization mechanisms. Here, additional properties might have to be
regarded, such properties of elastic systems, or additional system
load stemming from the fact that resources are shared with other
users.

Operating systems. Depending on the number of servers, different
kinds of operating systems can be involved in a software setup.
Business information systems usually run on so-called general-
purpose operating systems (GPOS), which are targeted at software
applications that are not time-critical (compared to real-time sys-
tems). A major impact on software performance that stems from
the operating system is the scheduling policy: operating systems
differ in how tasks are scheduled on the available CPU processors.
The scheduling policy can influence the response time of a software
by several orders of magnitude [SWHB06]. Details on deriving
GPOS scheduling policy properties for performance prediction can
be found in Chapter 5.

Middleware. On top of the operating system, additional software
can be deployed which is usually not considered part of the business
application, but, like operating systems, reused off-the-shelf. Such
software involves middleware approaches and application servers
providing functionality for distributed systems, runtime environ-
ments facilitating the execution of programs such as the Java Virtual

42

3.1. Research Context

Machine, and database management systems. Middleware provides
logic that can be reused for different software applications. Hence,
it can be distinguished from business components that make use of
or are deployed on middleware, and thus be considered as another
part of the execution environment.
Apparently, various performance-relevant properties can be found
in those systems. For example, consider the thread pool functional-
ity of an application server that is used to handle incoming requests.
Properties related to thread pool logic include the invocation costs
of process or thread creation, or the invocation costs of accessing
the thread pool. In addition, contention effects when accessing the
thread pool can occur as well as performance delays, when the re-
quest is blocked because the maximum number of running threads
has been reached.

Influence factors of the execution environment, such as the ones men-
tioned above, occur in various kinds even for small systems. As an exam-
ple, consider the simple three-tiered software architecture shown in Fig-
ure 3.1. The software consists of four components: a database component,

 Server 1

 VM A

Business
Comp. A

 Client

Web
Browser

 VM B

Business
Comp. B

 Server 2

Database
Component

Figure 3.1.: Exemplary three-tier architecture

43

3. An Approach For Deriving Execution Environment Properties

two components forming the business layer, and a user interface compo-
nent executed in the web browser on the client machine. The user calls
are propagated to the business component Business Comp. A, which del-
egates the calls to another business component Business Comp. B and to
the database layer component “Database Component”. While the database
component is deployed on a different physical server (for example, a server
equipped with sufficient disk storage), the business components share the
same physical server, but are deployed in separate virtual machines.

Even though the considered architecture is kept simple, various potential
performance impacts of the execution environment on the system’s perfor-
mance can be observed in the architecture:

• Client machine: On the client machine, the Web Browser component
requires system resources, typically memory and CPU, to provide the
presentation logic (e.g. UI rendering). While these effects are irrele-
vant for server performance management (such as capacity planning
or server performance bottleneck analysis), they can influence the
overall software response time observed by the end user.

• Call Client to Server 1: Calls from a browser to the server tier occur
over a network, which can be a limited area network, such as a local
area network (for example, if server and all client machines are lo-
cated in the same office building), or a broad network, such as a wide
area network or the internet. While performance analysis is much
easier for the former type of network, systems typically involve the
latter type of networks for communication.

• Delegating call to Business Comp. A: Once a call to Server 1 has been
transmitted over the network, additional steps may occur which in-
duce performance overhead due to the execution environment. First,
the call has to be dispatched from the network device of Server 1

to the local network device of the virtual machine VM A. This can
include contention effects (for example on a limited resource such

44

3.1. Research Context

as a network device) or CPU resource overhead (for example due to
virtualization hypervisor activity for mapping sever network device
requests to virtual machine network devices).
In many software systems, business components are deployed inside
an application server, which provides additional functionality. In this
case, additional performance impact can occur, such as accessing a
thread pool, as described above.

• Execute service of Business Comp. A: When a service of Business

Comp. A is executed, resource demands occur. Depending on the
amount of issued demands, they have to be regarded in performance
analysis to gain accurate analysis results. Typical resource demands
include CPU and disk resource demands. Performance-relevant prop-
erties include properties of the accessed hardware resources, OS
scheduling properties, and virtualization properties.
While Business Comp. B shares the same properties, differences to
Business Comp. A can stem from different reasons: For example, a
certain resource type access might by negligible in Business Comp. B.
If the component does not perform any disk accesses, disk proper-
ties can be neglected here. In addition, some execution environ-
ment properties might have different values compared to Business

Comp. A, for example if the component is deployed on a different
guest operating system, or if a part of the infrastructure is configured
in a different way.

• Call Business Comp. A to Business Comp. B: These calls occur on
the same physical machine, and thus do not go over a network con-
nection. However, as Business Comp. B is deployed on VM B, calls
have to pass the virtualization hypervisor, which might incur perfor-
mance overhead. In addition, performance influences can be caused
by additional communication overhead, such as marshalling and de-
marshalling operations.

45

3. An Approach For Deriving Execution Environment Properties

• Call Business Comp. A to Database Component: These calls occur
between two physical machines. Thus the performance of the call
is influenced by the network adapters involved (including mapping
a virtual machine network device to a physical machine network de-
vice) and the network connection. In addition, marshalling and de-
marshalling overhead can influence the performance.

• Execute service of Database Component: The component deployed
on Server 2 provides data access. Similar to the application server,
the underlying database is a part of the execution environment that
introduces further performance-relevant properties. For performance
analysis, disk access typically needs to be reflected, but database
functionality often involves a mixture of CPU and disk accesses (for
example, when evaluating database queries), as well as transaction
properties. Accurate analyses thus need to reflect the corresponding
properties.

Additional properties can be observed if the software (or a part of the
software) is running in a cloud computing environment.

To sum up, even for the small example shown in Figure 3.1 various per-
formance infrastructure properties can be observed that may need to be re-
flected in software performance analysis. The list of properties and impact
factors presented above is by no means exhaustive; further properties can
for example be found in different infrastructure libraries or frameworks,
such as middleware communication systems or MapReduce [DG08] im-
plementations for highly parallelized applications. In addition, the system
presented above is an example of a Client-server system with synchronous
calls; other properties can for example arise in systems with P2P commu-
nication or other asynchronous calls.

In this thesis, we focus on server-based systems as the one described in
the example above, but the general approach can be applied to different
systems as well. We also do not cover database and network properties in

46

3.1. Research Context

this thesis, although they can play an important role in performance anal-
ysis, as discussed in the example. An extension of the approach to these
properties is out of the scope of this thesis and regarded as future work (see
Section 8.4).

3.1.3. Separating the Execution Environment Model from the
Software Architecture Model

Software Performance Engineering helps in detecting performance prob-
lems of a software system at early stages of the life-cycle. Architecture-
based performance prediction can be used to analyze the software perfor-
mance by using architecture models. To reflect the impact of the execution
environment in such predictions, a model of the execution environment has
to be available.

In the following, we discuss how the execution environment model has
to be separated from the software architecture model. We argue that this is
necessary in order to (i) get accurate performance prediction results and (ii)
conduct performance predictions in a feasible way.

Execution Environment

Performance-relevant Properties

Software Architecture Model Software Analysis Model

ha
s

transform
into

Prediction Results

feedback

System

Model

de
riv

e

reflects

SoftwareUser
Workload

ha
s

ha
s

ab
st

ra
ct

solve

Figure 3.2.: Reflecting performance-relevant properties in model-based software
performance prediction

47

3. An Approach For Deriving Execution Environment Properties

The integration of performance-relevant properties of the execution en-
vironment is illustrated in Figure 3.2. The upper part of the figure de-
picts the traditional model-based software performance engineering ap-
proach, where the software performance model is transformed into a soft-
ware analysis model for performance analysis. Based on the analysis
results, performance questions can be answered, which then reflect in
changes to the software system and the corresponding software perfor-
mance model. Performance-relevant properties that have to be reflected
can stem from the software itself (both the architecture and the implemen-
tation), the user workload, and the execution environment [LFG05]. To
include performance-relevant properties in software performance analysis,
they can either be included in the software architecture model, or in the
analysis model. In the former case, the degree of abstraction used in the
performance model determines which information can already be included
in this model. As the performance model is constructed from architectural
and design-level information, the architecture model often provides an ab-
stract view. It is typically not designed to include fine-grained properties.
In the latter case, derived performance properties are directly included in
the analysis model during or after the transformation of the software ar-
chitecture model. In this case, it depends on the features of the analysis
model which kind of performance-relevant properties can be included. As
the analysis model typically consists of a more fine-grained model on a dif-
ferent abstraction level (for example, a simulation of a queueing network,
implemented in a high-level programming language), in general more prop-
erties can be included and reflected during analysis compared to including
properties on the level of the software architecture model.

Many existing performance analysis approaches neglect most influences
of the execution environment and use only abstract representations of the
environment. Hence, depending on the scenario, arbitrarily high prediction
errors can be introduced in the analyses. Other approaches are tailored to-
wards a certain part of the execution environment, but neglect other parts

48

3.1. Research Context

of the execution environment. In addition, existing models have to be in-
stantiated manually, which requires domain knowledge about the execution
environment and is a cumbersome and error-prone approach.

Other approaches fail to include certain execution environment proper-
ties, as platform-dependent information is directly encoded in the software
model. For example, ROBOCOP [BMdW+04] and CUTS [SBHS06] pro-
vide component models with support of performance prediction, but com-
ponent resource demands have to be specified in milliseconds in both mod-
els. Thus, when using these models for performance prediction, resource
demands are only valid for a certain platform. If one is interested in predict-
ing the performance of a component deployed in a different execution envi-
ronment, he or she has to adapt the resource demands in the model, which
is typically only possible by deploying the component and taking resource
demand measurements on the new platform. For performance prediction,
this has several disadvantages:

• For analyzing the software’s performance on multiple different exe-
cution environments, resource demands have to be obtained for every
execution environment, for example by conducting measurements. If
different software is to be analyzed, measurements have to be re-
peated.

• The software has to be deployed on the target execution environ-
ment environment to predict its performance. This is not possible in
all cases, for example when the software performance is to be pre-
dicted in a migration project. Here, typically effort has to be put
first into adapting the software before it can be deployed on the tar-
get platform. Performance predictions at early stages of a migration
project are not possible in this case, if properties of the execution en-
vironment have to be reflected in prediction. Another problem arises
when the deployment itself requires much effort, for example be-
cause of the size and complexity of the software system. In this case,

49

3. An Approach For Deriving Execution Environment Properties

if performance models already exist, but resource demands have to
be adapted, deployment efforts are required in order to take new re-
source demand measurements.

To overcome the issue of having to deploy the software on the target
platform in order to make accurate predictions, infrastructure-specific in-
formation has to be separated from the software-specific information in the
performance model. For example, performance prediction approaches such
as PCM [BKR09], SPE·ED/PMIF [SL04], or KLAPER [GMS07] support
the specification of platform-independent demands that occur during exe-
cution of a component’s service, such as number of operations or number
of resource instructions. Such specifications are then transformed into a
performance analysis model, where concrete, platform-specific execution
times are calculated by incorporating information of the execution environ-
ment, such as resource processing rates.

The separation of platform-independent and platform-dependent infor-
mation in software performance models is for example utilized by Krog-
mann et al. [KKR10]. The authors specify resource demands of Java com-
ponents by quantifying platform-independent bytecode instructions and
map the duration of bytecode instructions to specific platforms by employ-
ing bytecode benchmarking. However, the approach only aims at quantify-
ing a specific property of the execution environment and cannot be reused
for deriving different execution environment properties. The same holds
for other existing approaches (see also the survey on related work in Chap-
ter 7).

3.2. Scientific Challenges

In the previous sections, we discussed the influences of the execution envi-
ronment on performance prediction and how the execution environment
has to be integrated in performance prediction approaches. To reflect
performance-relevant execution environment properties in software per-

50

3.2. Scientific Challenges

formance prediction, this thesis presents an automated approach to derive
such properties by predefined experiments. In the following, we present the
scientific challenges for the approach.

1. Structuring performance-relevant properties out of the huge
amount of execution environment properties. As described in
Section 3.1.2, the execution environment typically consists of vari-
ous middleware and hardware systems, all featuring different prop-
erties. Without a useful structure, the software architect may be
overwhelmed with a vast amount of execution environment proper-
ties and corresponding experiments. Thus, to ease the integration of
such properties into performance analysis, it has to be investigated
how properties of different parts of the execution environment can
be structured in a meaningful way in order to be derived using an
automated, uniform approach.

2. Automating the derivation of performance-relevant execution
environment properties for software performance prediction.
Software performance prediction is usually conducted by software
architects or performance analysts. Manual derivation of execution
environment properties is error-prone and cumbersome. In addition,
it involves domain knowledge on how to retrieve the properties. To
overcome these issues by using an automated approach, it has to be
investigated which concepts are necessary that support the specifica-
tion of automated experiments.

3. Deriving execution environment properties through experiments
that are reproducible and have a good performance. An auto-
mated approach to derive performance properties only becomes fea-
sible if the experiments yield reproducible results and run with ac-
ceptable performance. Thus, it has to be investigated how the ap-
proach can support the experiment designer in specifying experi-
ments that meet these requirements.

51

3. An Approach For Deriving Execution Environment Properties

4. Integrating performance-relevant execution environment prop-
erties into software performance analyses. In order to reflect exe-
cution environment properties, software performance prediction ap-
proaches have to be enhanced. For example, current model-based
performance prediction approaches only provide limited means for
configuring execution environment properties. A generic approach
to integrate derived properties into software performance analysis,
for example by using a configuration model, should be developed.
As the approach should run in an automated way where possible,
analysis tool configuration should also happen in an automated way.

More detailed scientific challenges are presented in Section 5.2 and Sec-
tion 6.2.

3.3. A Method for Automated Derivation of Execution
Environment Properties

In order to face the identified research challenges, we introduce an approach
called GINPEX (Goal-oriented INfrastructure Performance EXperiments).
This approach features

(i) the automated derivation of performance-relevant properties based
on goal-oriented measurements and

(ii) the integration of the derived properties into a performance analysis
approach. By embedding the approach into SPE approaches, model-
based performance predictions can be enhanced.

The idea of the approach is to provide a set of predefined experiments
that can be executed by the performance analyst on the target platform with
little effort. The experiments encapsulate the logic of performing actions
on the platform, such as issuing load and taking appropriate measurements.
They also contain predefined analysis logic, which is executed to derive

52

3.3. A Method for Automated Derivation of Execution Environment Properties

certain properties of the execution environment based on the measurement
results. The derived properties of the execution environment are then fed
into a performance prediction tool, leading to an automated procedure of
deriving performance-relevant execution environment properties and aug-
menting performance prediction approaches with those properties.

The approach features two different levels: the level of experiment de-
sign, and the level of experiment execution.

3.3.1. Experiment Design

In order to detect performance-relevant properties through automated ex-
periments, those experiments have to be designed and predefined at first.
This can be done using the workflow shown in Figure 3.3.

Identify and validate
performance-relevant

property

Design
experiment to

detect property

Automate
experiment

Validate
experiment

Store
experiment
for reuse

Figure 3.3.: Experiment design workflow of the approach

The workflow consists of the following five steps: In the first step (“Iden-
tify and validate performance-relevant property”), a property of the execu-
tion environment has to be identified as performance-relevant. It should
then be validated that reflecting the property in performance prediction is
appropriate (e.g. that reflecting the property leads to significantly improved
prediction accuracy). It also has to be checked how the property can be
supported in a performance prediction approach (e.g. a simulation of per-
formance models). Existing approaches can be applied to execute this step,
for example the method for experiment-based performance model deriva-
tion introduced in [Hap08]. This method aims at employing experiments
to identify and validate properties of a system and design a performance
model based on the experiment results.

53

3. An Approach For Deriving Execution Environment Properties

Afterwards (step “Design experiment to detect property”), a manual ex-
periment should be designed in which the experiment designer evaluates
how the value of the property can be detected by issuing certain load pat-
terns and taking measurements on the platform. As a result of this step,
the designer has learned how to specify experiment logic and analysis in
order to derive the property value. In the following step (“Automate exper-
iment”), the designer implements an automated experiment to derive the
property value. Compared to the previous step, the designer might have to
provide an parametric experiment that depends on certain input parameters,
or he might have to fine-tune the experiment logic so that it runs robust and
on a variety of platforms. Automating the experiment also involves embed-
ding the experiment into the framework that is used later by performance
analysts. For issuing load and taking measurements on the target platform,
a small and lightweight tool called “Load Driver” is deployed on each ma-
chine on which measurements are to be taken.

These two steps might have to be executed multiple times, as imple-
menting automated experiments might lead to new insights for which the
experiment design has to be adapted. To derive performance-relevant prop-
erties, the load patterns in the experiments have to be designed in a way
that the measured results allow to infer the properties through statistical
analyses. This requires domain knowledge and careful experiment design.
Which load exactly is issued depends on the type of experiment (i.e. the
execution environment property under focus). In this thesis, mainly mi-
crobenchmarks are used for generating load, but different kinds of load can
be issued as well.

Afterwards, the experiment should be validated (step “Validate experi-
ment”), i.e. the experiment designer should check that the experiment is
able to detect the value of the corresponding property correctly on a variety
of platforms, runs in reasonable time, and is robust enough so that it can
be executed by performance analysts who are not familiar with experiment
design. Again, if the validation shows that the experiment does not work

54

3.3. A Method for Automated Derivation of Execution Environment Properties

properly, the experiment designer should go back to the previous step in
order to improve the experiment.

Once the experiment has been validated successfully, the experiment de-
signer can complete the process of developing the experiment. In the last
step (“Store experiment for reuse”), the designer moves the implementation
of the automated experiment in a repository where it can be reused later by
performance analysts. Besides, the designer should provide a documenta-
tion of the experiment. In Chapter 4, we present a template that can be used
for experiment documentation.

3.3.2. Experiment Execution

After experiments have been predefined for automated execution, the per-
formance analyst can use such experiments in order to derive properties of
the execution environment for performance prediction. An overview of this
workflow is given in Figure 3.4 and explained in the following.

Deploy
drivers

Perform
measurements

Derive
performance-relevant

properties
Conduct

performance
prediction

Integrate derived
properties into

performance analysis tool

Create software
performance model

Figure 3.4.: Experiment execution workflow of the approach. The gray boxes indi-
cate the steps that are explicitly covered by the approach

In the first step (“Deploy drivers”), the Load Driver tool has to be de-
ployed on each machine on which measurements are to be taken. Once the
Load Drivers are deployed, experiments can be selected for execution.

In the second step (“Perform measurements”), different patterns of load
are issued by the Load Driver(s) and certain measurements (e.g. response
times or CPU utilization) are taken for specific parts of the issued load. The
predefined experiment logic specifies in detail which load patterns are to be

55

3. An Approach For Deriving Execution Environment Properties

issued and during which parts of the experiment measurements are to be
taken.

In the third step (“Derive performance-relevant properties”), the mea-
surement results serve as input for an analysis to derive the performance-
relevant properties. Like the experiment execution logic, the analysis logic
is predefined and is executed without user interaction. During analysis, the
properties are derived using statistical methods. If necessary, further ex-
periment runs can be triggered during analysis in order to obtain additional
analysis input.

Finally, in the fourth step (“Integrate derived properties into performance
prediction tool”), the detected properties are integrated into the perfor-
mance prediction processes and tools. The performance prediction tool
has to support configuration of the relevant execution environment param-
eters, which can for example be done by using a configuration model. In
this case, the detected properties would be passed to the prediction tool as
a configuration instance.

Once the performance prediction tool is configured based on the detected
performance properties, the software architect can conduct a performance
analysis using a software performance model. This is done following the
traditional SPE approach (steps “Create software performance model” and
“Conduct performance prediction”). During prediction, the experimentally
derived execution environment performance properties are taken into ac-
count to increase prediction accuracy. The GINPEX approach explicitly
covers the steps denoted by the gray boxes in Figure 3.4. In the follow-
ing chapters, we show how the approach can be realized by tooling that
provides automated execution of the four steps.

We also show how the approach works with a software performance pre-
diction tool, namely the Palladio Component Model (PCM) [BKR09]. To
include execution environment properties into performance prediction tool-
ing, we use a configuration model to export the detected properties. The
configuration model is then used to automatically configure the PCM per-

56

3.4. Scenarios

formance analysis tooling. To use a different performance prediction tool,
only the output format of the detected properties would have to be adapted.
The integration of the execution environment properties via a configura-
tion model into performance analysis then follows the scenario presented
in Figure 3.2 from Section 3.1.3.

By storing predefined and validated experiments in an experiment li-
brary, the approach facilitates the execution of experiments on different
platforms and by different performance analysts who do not have to take
care of experiment design anymore. Each experiment makes certain as-
sumptions on the condition of the system: Some experiments may require
idle systems to yield meaningful measurement results. Other experiments
may be designed more robust against measurement noise or can explicitly
take additional load on the system into account. The description of the ex-
periment in the experiment library supports the analyst in selecting suitable
experiments.

3.4. Scenarios

In the following, we discuss different scenarios in software performance en-
gineering where applying the GINPEX approach can enhance performance
analysis.

First of all, the approach can be used to yield more accurate performance
analyses due to a more sophisticated model of the execution environment
used in analysis. Here, all well-known SPE scenarios are affected where
software performance is analyzed (i) based on software models and (ii) at
early stages of the software life-cycle. These scenarios include the follow-
ing:

Assessing performance implications of decisions regarding soft-
ware design and architecture. Model-based performance anal-
ysis can be used for modeling high-level decisions, such as archi-

57

3. An Approach For Deriving Execution Environment Properties

tectural patterns or design decisions. Examples include the perfor-
mance impact of architectures such as Client-server vs. Peer-to-peer
communication, and component design decisions such as thin client
vs. rich client solutions. A multitude of papers have been published
using design-time performance predictions to answer questions on
architecture design, for example Gomaa and Menascé [GM00],
Cortellessa et al. [CDI01], or Becker et al. [BKR09].

Predicting the performance impact of changes in deployment or
workload. Another group of scenarios includes the variation of
certain parameters, such as the workload profile of the software or
deployment settings. This helps in analyzing whether a software
architecture can handle a certain amount of parallel user requests,
or predict the impact on resource utilization due to component de-
ployment changes. Such scenarios can be found in the work on SPE
conducted by Sharma et al. [SJT05] (varying user workload) or Wu
and Woodside [WW04] (varying deployment environment).

Identifying potential performance problems in the architecture.
Performance models can be used to identify architectural flaws
which should be corrected in order to improve performance, or com-
ponents whose implementation can lead to a low performance of
the overall system. For instance, if the performance model reflects
how the different components are invoked during the processing
of user requests, performance analysis can be carried out in order
to identify the component or connection that forms a performance
bottleneck in the software architecture. Examples can be found in
Sharma et al. [SJT05] and [MM07].

Capacity planning or resource utilization analysis. Finally,
design-time performance prediction can be carried out in order to
reason about the overall system utilization or the amount of re-
sources needed. Case studies on performance predictions con-

58

3.4. Scenarios

ducted for capacity planning can be found in Kounev and Buch-
mann [KB03] or Menascé et al. [MAD04].

If performance analysis takes place at early stages of the software life-
cycle, typically only coarse-grained models can be provided. However,
performance analysis still can yield useful results (for example, to com-
pare alternatives based on relative quantification of performance metrics).
Nevertheless, performance impacts of the execution environments can still
be significant in order to be considered at early analyses, for example in
the scenarios outlined above. If the execution environment is available, the
GINPEX approach can be used to derive performance-relevant execution
environment properties and include them into performance analysis.

In addition to the SPE scenarios described above, the approach can be
used in scenarios where the performance impact of the execution environ-
ment is of particular importance. In the following, we present such scenar-
ios in detail.

Predicting the performance impact of changes in software deploy-
ment. This scenario has already been described above as part of
the typical SPE scenarios. However, we also list this scenario here,
as the execution environment is directly involved when software is
deployed and thus has to be considered in performance analysis.
Typical architectural questions regarding software deployment are:
On which servers or virtual machines should the components be

deployed in order to yield acceptable performance? What is the

best configuration of the execution environment for the target soft-

ware application? What is the performance impact when a certain

part of the execution environment (e.g. a middleware solution) is

replaced by a different but feature-equivalent solution? To answer
such questions, the performance impact of the execution environ-
ment has to be reflected in performance analysis. Depending on
the granularity of the software (analysis) model, fine-grained per-

59

3. An Approach For Deriving Execution Environment Properties

formance properties of the execution environment may have to be
supported in analysis.

Predicting the effect on performance when components are mi-
grated to a different system. When a software application is
migrated to different resources, execution environment properties
often change. For example, a migration to a different server can
involve new hardware resources like faster disks or new CPU pro-
cessors. On the other hand, migration projects often involve mi-
grating a software to run on a newer version of a middleware tech-
nology (e.g. a virtualization technology or an application server).
In both cases, the performance of the software can be affected due
to the changed execution environment. Sometimes, the changes in
the execution environment can easily be integrated in performance
analysis, such as an improved throughput due to a new hard disk re-
source. However, other causes for may be harder to detect, such as
for example changes in the scheduling policy of operating systems,
virtualization hypervisors, or middleware containers. Such proper-
ties are usually not reflected in coarse-grained performance models
of the execution environment, but have to be integrated in order to
allow for the performance impact.

Predicting the effect on performance when a new infrastructure
technology is introduced. A typical scenario for this case can be
found in systems that are running on non-virtualized servers and for
which performance analyses are available. If a virtualization tech-
nology is now being introduced, for example in order to consolidate
servers, existing performance analyses cannot be reused, because
the new technology (in this case, the virtualization solution) has not
been considered yet. As already mentioned above, the performance
impact of this technology should be reflected in performance anal-
ysis.

60

3.5. Limitations and Assumptions

Reasoning on architectural patterns related to execution environ-
ment access. Certain architectural decisions are heavily tailored
towards certain properties of the execution environment. For exam-
ple, consider the decision whether to keep certain data in-memory
or store the data on a hard disk during normal system operation.
In this case, the decision can depend on the properties of the used
disk. The architect might for example consider SSD drives com-
pared to traditional HDD drives in order to avoid storing data in
volatile memory while still yielding adequate performance. How-
ever, as the performance speedup of an SSD compared to an HDD
also depends on the access pattern (see [PSG08]), the architect has
to model the target workload properly and conduct a performance
analysis where the performance influences due to the used disk re-
sources are taken into account.

In the following section, we discuss limitations and assumptions of the
approach. In contrast to the scenarios presented above, we also discuss
some scenarios for which the approach is less suitable.

3.5. Limitations and Assumptions

The GINPEX approach presented in the previous section is integrated in the
area of model-based software performance engineering. Thus, in order to
apply the approach, a model of the software and its performance-relevant
factors has to be available. This includes components and their perfor-
mance specifications, architectural information on how the components are
connected and deployed, and a usage model describing the workloads of
the system.

Furthermore, we assume that the target environment is available, as the
properties of the execution environment are derived by taking measure-
ments. In some cases, this assumption does not hold, for example in early
stages of the software life-cycle, when the target environment is not yet set

61

3. An Approach For Deriving Execution Environment Properties

up, or if the target environment cannot be used for taking measurements due
to other restrictions. If the target environment is not available, an equivalent
platform can be used, given that this platform shares the same properties as
the target environment. In this case, the derived properties can be adopted
for performance prediction of a software running on the target environment.

In Section 3.1, we provided a definition of the software execution envi-
ronment and a categorization of the different parts that make up the execu-
tion environment. While the GINPEX approach is not restricted to a certain
part of the execution environment, some parts can include properties that
are more suitable for automated detection and inclusion in performance
analysis than others. In Chapter 5 and Chapter 6, we apply the approach to
detect performance-relevant CPU, OS scheduling and virtualization prop-
erties. These properties can be easily included in a performance analysis
model while maintaining the separation of execution environment proper-
ties from software architectural properties. Hence, the properties can be
easily reflected in a performance analysis of a different software, where the
execution environment properties stay the same. Execution environment
properties that are not suited for automated experiment-based derivation
are properties that are strongly connected to software application behavior.
As an example, take a relational database which is accessed by a software
through SQL queries. SQL queries can get very complex and the perfor-
mance of a query (i.e. its response time as well as its impact on resource
utilization) strongly depends on both how the software specifies the query
and how the database handles it. In this case, our approach might not be
useful as the major challenge here is to find a model of the software and
how the software accesses the database for answering performance-related
questions. The approach could however be used to detect different database
properties which are not tightly coupled to the software, such as database
connection pool or cache sizes.

Similarly to execution environment properties that are strongly con-
nected to the software behavior, the approach is also not suited for detecting

62

3.5. Limitations and Assumptions

performance-relevant properties of a software instead of the execution en-
vironment. In this case, an experiment detecting such a property would
probably not be applicable to a different software. Hence, the benefits of
including such an experiment with the GINPEX approach would be lim-
ited. This motivation can also be used for specifying the border between
the software and the software execution environment w.r.t. the GINPEX ap-
proach: Every part of the infrastructure, whose performance-relevant prop-
erties might be relevant for multiple software applications, can be regarded
as part of the software execution environment for which GINPEX experi-
ments can be specified. Every property that is directly related to a single
software is not in the scope of GINPEX execution environment experiments.

In Section 3.4, we discussed various approaches where the GINPEX ap-
proach can help to ease software performance engineering. In contrast, the
following scenarios do not benefit from the approach:

Analyzing the performance impact of changes not related to the
execution environment. If the execution environment is already
modeled with sufficient granularity, additional execution environ-
ment properties do not have to be included in performance predic-
tion. This can for example be the case when analyzing the impact of
changes in the component implementation or component assembly,
as well as changes in the user workload.

Analyzing performance on a level where infrastructure can be
neglected. In certain scenarios, for example for very course-
grained predictions in early stages of the life-cycle, the influence
of the infrastructure can be neglected. In such cases, the rough esti-
mates made with the predictions do no require including execution
environment properties that need to be derived automatically. In-
stead, abstract performance models of the execution environment,
e.g. simple queues, suffice.

63

3. An Approach For Deriving Execution Environment Properties

Analyzing the performance of a deployed software. If the soft-
ware is already deployed on the target platform, run-time analysis
and monitoring approaches are usually utilized. Our approach is
not applicable here, as we aim at deriving a performance model for
conducting performance predictions (without having to deploy the
software on the target platform).

In the remainder of this thesis, we focus on business information sys-
tems, as performance prediction based on software architecture models is
highly applicable for such systems. However, the approach could also be
adopted for real-time systems. In this case, concepts of automating the exe-
cution of experiments and the derivation of performance-relevant properties
can be transferred to the domain of real-time systems. Usually, different
performance questions and performance-relevant properties are considered
for such systems. Hence, different experiments would have to be defined,
which is outside the scope of this thesis.

3.6. Summary

In this chapter, we motivated and introduced a novel approach called GIN-
PEX for deriving performance-relevant execution environment properties
for software performance prediction. The approach employs measurements
on the target platform by conducting automated experiments. The measure-
ment results are then analyzed in order to derive the properties under focus.
In summary, this approach has the following benefits:

Enhancing performance prediction accuracy. Performance pre-
dictions using a simple model of the execution environment fail to
include certain kinds of performance impact of the execution envi-
ronment and thus have to be enhanced. By including performance-
relevant properties of the execution environment into performance

64

3.6. Summary

prediction, the presented approach aims at increasing the prediction
accuracy.

Automation. The GINPEX approach facilitates automated experi-
ment execution and result analysis. Little effort is required for the
performance analyst to run the experiments. In addition, due to the
high level of automation, the experiments can easily be repeated if
platform properties have changed, or if the experiments are to be
conducted on a different execution environment.

Encapsulating domain knowledge. As the approach aims at pro-
viding predefined experiments to the performance analyst, a lot of
domain knowledge can be encapsulated in the experiments. This
spares the performance analyst from having to set up experiments
correctly, reasoning on what and how to measure, analyzing and in-
terpreting the experiment results, and configuring the performance
prediction tooling.

Structuring performance-relevant properties. As discussed in
Section 3.1.2, today’s software systems run in a complex execution
environment that features a variety of performance-relevant prop-
erties on different granularities and infrastructure levels. With the
presented approach, we introduce an experiment library that can be
used to classify experiments targeting different parts of the execu-
tion environment. In Section 4.2, we deal with this concept in detail.

Supporting execution environment design / operation. Although
the focus of this thesis is on supporting the software performance
analyst, the approach can also be used during the development or
operation of middleware or execution environment software. For
example, predefined experiments can be used as test cases that
check whether certain implementations or configurations of a cer-
tain part of the execution environment have a certain impact or do
not induce any unwanted side effects.

65

3. An Approach For Deriving Execution Environment Properties

We apply the approach in Chapter 5 and Chapter 6 to derive various
properties of different parts of the software execution environment. In the
following chapter, we present the approach in detail.

66

4. Model-based Definition and Execution of
Execution Environment Experiments

In the previous chapter, we introduced the GINPEX approach and high-
lighted several research challenges that have to be addressed when deriving
execution environment properties automatically. This chapter tackles the
research challenges by providing a structure for defining automated exper-
iments. This structure involves (a) a metamodel for modeling experiments
and grouping them, (b) a domain-specific language (DSL) for experiment
execution, and (c) a template for a structured, non-formal experiment de-
scription.

In Section 4.1, we elaborate on the concept of automated GINPEX exper-
iments and state some requirements such experiments have to fulfill. We
then introduce experiment libraries and experiment domains for structur-
ing experiments in Section 4.2 and the concept of parametric experiments
in Section 4.3. Section 4.4 presents a metamodel for the specification of
automated experiments. Afterwards, we refine experiment automation and
result analysis in Section 4.5. We continue with a discussion on how to
describe experiments in Section 4.6. We describe in Section 4.7 how the
presented approach can be extended and discuss the performance overhead
of experiments in Section 4.8. Finally, Section 4.9 summarizes the chap-
ter and discusses how the approach addresses the identified research chal-
lenges. Some contributions of this chapter have been initially published in
[HKHR11] and [HKHR13].

67

4. Model-based Definition and Execution of Execution Environment Experiments

4.1. Automated Execution Environment Experiments

Before discussing automated execution environment experiments in detail,
we first give a definition on the term “automated execution environment
experiment”:

Definition 4.1. An automated execution environment experiment is a pro-
cedure that aims at detecting the value of an execution environment prop-
erty without user interaction. The procedure involves measuring observable
execution environment parameters based on generated goal-oriented load,
and analyzing the measurement results to obtain the resulting value.

In this thesis, we use the term “experiment” interchangeably with “auto-
mated execution environment experiment” for the sake of readability.

As an example for an automated experiment, consider a simple exper-
iment that detects the number of available CPU cores. The experiment
procedure contains logic to generate CPU load and measure load response
times and CPU utilization for the issued load. Based on the measurements,
the experiment analysis can calculate the number of available CPU cores.
This value is then returned by the experiment. Details for this experiment
are given later in Chapter 5.

To enable experiment reusability and automated experiment execution,
experiments have to be predefined. In the following, we first highlight re-
quirements for automated experiments. We then present the structure of
such experiments and conclude the section with an illustration of the sys-
tem setup for experiment execution.

4.1.1. Requirements

Predefining an experiment means that both the execution of experiment
logic and the subsequent analysis of the taken measurements are encap-
sulated within the experiment and can be executed automatically without
user interaction. Those parts of the experiment have to be specified in ad-

68

4.1. Automated Execution Environment Experiments

vance so that the experiment can be reused later. Predefined, automated
experiments have to fulfill the following requirements:

1. Adequacy. The experiment has to aim at deriving a meaningful prop-
erty of the execution environment. This is either a performance-
relevant property, i.e. a property that should be reflected in perfor-
mance analysis, or a preliminary property whose value has to be
identified first before deriving an actual property in a later step.

2. Automation. The experiment has to be executed automatically, i.e.
ideally without any user interaction. This requirement is needed in
order to facilitate the work of the software architect or performance
analyst, who may have little experience in performing or analyzing
measurements to identify execution environment properties.

3. Broad range. The experiment has to be designed to derive all eligi-
ble values for the execution environment property under focus. For
example, if an experiment aims at detecting a load-balancing strat-
egy of operating systems, it should not be designed for only detecting
strategy A (which might by very popular on operating system X), but
should also be applicable on a different operating system Y , where
the strategy can be B. Likewise, the range of possible property val-
ues that can be derived by the experiment should be wide enough so
that frequent experiment adaptations to future systems are avoided.

4. Independence. In order to reflect properties of different execution
environments, automated derivation must not be tailored towards a
specific execution environment. Instead, the experiment should be
designed with as little platform and technology dependencies as pos-
sible. Such a design enables the experiment to run on a wide range
of platforms. For example, when comparing different execution en-
vironments in a performance analysis, it is desirable to execute an
experiment on different execution environments (e.g. different oper-

69

4. Model-based Definition and Execution of Execution Environment Experiments

ating systems, or different virtualization hypervisors). Thus, generat-
ing load and taking measurements should not restrict the experiment
to run on a small set of systems. Experiment logic can be speci-
fied in a platform-independent way by using platform-independent
programming languages such as Java. However, parts like special
sensors for taking measurements are often only available in platform-
specific libraries. While means to measure time spans are available
on many systems, some metrics such as resource utilization can only
be obtained in a platform-dependent way. Experiments should avoid
using platform-specific libraries where possible.

5. Robustness. The experiment has to be robust against measurement
noise, so that meaningful properties can be derived.

In this chapter, we will discuss how experiments can be implemented
within the GINPEX approach that fulfill these requirements.

4.1.2. Experiment Structure

In order to implement the GINPEX approach featuring predefined, auto-
mated experiments, we identified three parts of the experiment that can be
predefined:

Experiment execution logic. The main part of the experiment is
the execution logic that defines the tasks of the experiment, i.e.
which kind of load is issued and where measurements are taken. To
fulfill requirements 1 and 2, the experiment logic has to be designed
in such a way that, after experiment execution, meaningful conclu-
sions can be drawn from the measurement results, i.e. the value of
the performance-relevant property under focus can be derived from
the experiment, and it can be derived in an automated way.

Experiment analysis logic. After measurements are taken, the re-
sults are analyzed in order to derive the property value. Automating

70

4.1. Automated Execution Environment Experiments

this step means that measurement results are directly fed into anal-
ysis methods. Predefined analyses might also determine whether
additional kind of experiment logic should be executed based on
retrieved measurement results.

Experiment metadata. Experiment metadata describes certain ex-
periment properties that can be used for querying and selecting ex-
periments. In addition, experiment metadata can be used to describe
experiment dependencies (see Section 4.4.1).

Experiment selected
for execution

Execution logic

Machine under test 2

Run experiment, take
measurements

Controller machine Machine under test 1

Run experiment, take
measurements

Analysis logic

logic

measurement
results

Figure 4.1.: Exemplary experiment setup

Figure 4.1 shows how a system looks like during experiment execution.
Running experiments are managed on a controller machine. As experiment
management should not disturb the issued load and taken measurements
during an experiment, this machine should not be part of the system under
test. After selecting one or multiple experiments for execution, the prede-
fined experiment logic is executed on the system. The system can consist of
one or multiple machines that are accessed during the experiment depend-
ing on the defined logic. After the logic is executed, measurements that
have been taken on the machines are transferred to the controller machine.
Note that measurements might also be taken on the controller machine,
but in order to yield fine-grained measurement results, certain experiments
might require taking measurements directly on the machines under test, as
shown in Figure 4.1. Once the measurement results are transferred, they are

71

4. Model-based Definition and Execution of Execution Environment Experiments

analyzed based on the predefined experiment analysis logic. This step aims
at deriving the value of the execution environment property under focus.

A complete experiment might require multiple steps of running exper-
iment logic and analyzing measurement results. We call such a step an
“experiment run”:

Definition 4.2. An experiment run denotes the execution of experiment
logic and subsequent analysis of measurement results. An experiment can
consist of multiple experiment runs in order to detect the value of an exe-
cution environment property.

Hence, an experiment run of a predefined experiment features predefined
experiment logic and predefined analysis logic. Including multiple experi-
ment runs into an experiment facilitates the execution of experiment logic
based on prior analysis results. The value of the execution environment
property is then derived after the last experiment run has been executed.

If all three predefinable parts of an experiment are available, the exper-
iment can be executed by the software architect or performance analyst.
What remains to be specified manually is the actual system structure, i.e.
the IP addresses of the machines under test so that experiment logic can be
distributed.

4.2. Experiment Library and Experiment Domains

Section 3.1.2 listed various performance-relevant properties of the software
execution environment and pointed out that the execution environment can
be very complex since a lot of properties exist that may have to be reflected
in performance analyses. In addition, performance analysts or software
architects often do not have a detailed knowledge of the execution envi-
ronment. To conduct a performance analysis, they have to specify certain
information of the execution environment, such as the server structure and
how components are deployed on servers. To include detailed performance-

72

4.2. Experiment Library and Experiment Domains

relevant information in a performance analysis, a performance analyst has
to

• know that these properties exist and are performance-relevant,

• know how to obtain the property values on the target platform, and

• include the values in performance analysis.

As this requires detailed knowledge and efforts, the GINPEX approach aims
at automating the part of deriving detailed properties and including them in
performance analysis.

Since the execution environment features a lot of potential properties that
may have to be detected automatically, the list of predefined GINPEX ex-
periments can become very large as well. In order to help the performance
analyst in selecting suitable experiments, we define two concepts for struc-
turing and grouping predefined experiments: the experiment library and the
experiment domain.

The experiment library facilitates the storage of predefined experiments.
By accessing the experiment library, experiments can be selected for exe-
cution. When accessing experiments, two scenarios can be possible (see
Figure 4.2): In the first case, the performance analyst creates a software
architecture model for performance analysis and manually selects a set of
experiments for execution from the experiment library (a). In the second
case, the performance analyst has to create the software architecture model
only. Based on an automated analysis, a set of suitable experiments is then
selected from the library for execution (b). Such an analysis could for ex-
ample scan the architecture model for certain kinds of resource demands
that require specific experiments. For instance, if no disk requests are mod-
eled to occur on a certain machine, no disk properties have to be reflected
during performance analysis for that machine, and hence no disk experi-
ments are needed on this machine. Automated architecture model analysis
could also be used to detect the model granularity and the granularity of

73

4. Model-based Definition and Execution of Execution Environment Experiments

modeled resource demands. Depending on the granularity, certain exper-
iments might be selected for execution, where the detected properties can
improve prediction accuracy.

Software
Architecture
Model

Experiment
Library

Software
Analysis
Model

Experiments

create

(b)
select experiments

from library

software architect /
performance analyst

transform

execute experiments and
include results into analysis

(a)
select experiments

from library

Artifact

Workflow step

Automated
workflow step

Figure 4.2.: Manual and automated experiment selection from the experiment li-
brary

In the former case, the performance analyst can of course select all ex-
periments from the experiment library for execution; however, this might
take a very long time. Another option would be to support the performance
analyst by grouping experiments and presenting experiments in a way so
the analyst can figure out whether an experiment is appropriate for execu-
tion or not. In the latter case, it has to be investigated how the software
architecture model can be analyzed in order to derive a set of necessary
experiments. This is outside the scope of this thesis, but might be a useful
extension of the approach (see discussion on future work in Section 8.4).

To support the performance analyst in selecting experiments for execu-
tion, we specify a structure for grouping experiments called experiment
domain.

The use of an experiment domain is twofold: First, it groups experiments
that aim at detecting properties of the same part of the execution environ-
ment. For example, experiments detecting virtualization properties should

74

4.2. Experiment Library and Experiment Domains

reside in a different experiment domain than experiments detecting hard
disk properties. All experiments in one experiment domain should also
aim at detecting properties that are on the same level of granularity. For
example, detailed properties of the operating system scheduler are more
important for fine-grained analysis of demands. On the other hand, some
performance models feature more coarse-grained demands and thus may
not benefit from reflecting fine-grained execution environment properties
during analysis. In this case, abstract models can be augmented with ex-
periments aiming at coarse-grained properties. Even if the fine-grained and
coarse-grained properties belong to the same part of the execution environ-
ment, they should reside in different experiment domains.

Second, as all experiments in one experiment domain belong to the same
part of the execution environment, the experiment domain can be used to
specify the common machine setup that is required by all included exper-
iments. Here, the machine setup denotes information on the different ma-
chines involved in the experiment. When executing experiments, the user
has to specify the machine locations (e.g. by providing IP addresses) and
prepare the machines for experiment execution (in our case, by deploying
Load Drivers on the machines). For example, consider a set of experiments
aiming at OS scheduling properties, grouped in an experiment domain “OS
Scheduling”. Typically, such experiments run on a single machine only,
as they neglect execution environment properties involving multiple ma-
chines, and they do not require other machines for experiment execution.
In this case, the machine setup stated by the experiment domain is very sim-
ple, the user selecting this experiment domain has to provide information
for one machine only. On the other hand, consider experiments that aim at
detecting virtualization overhead of a virtual machine compared to a phys-
ical machine. Such experiments might require to run on both a physical
machine and a virtual machine, in order to calculate the resource demand
slowdown due to virtualization overhead. In this case, the corresponding
experiment domain would state that different types of machines are in-

75

4. Model-based Definition and Execution of Execution Environment Experiments

volved in the experiment; a physical machine and one or multiple virtual
machines.

A predefined experiment is kept independent from concrete execution
environments, only machine types are known to predefined experiments.
The specifics of the execution environment (e.g. machine IP addresses) are
mapped to predefined machine types once the performance analyst has se-
lected an experiment domain and specified the machine information.

Thus, to support the specification of experiments within experiment do-
mains, the experiment structure has to separate infrastructure-specific in-
formation from infrastructure-independent information. This is supported
by the metamodel we created for specifying automated experiments. Sec-
tion 4.4 deals with the metamodel in more detail.

The number of experiments per experiment domain depends on the num-
ber of performance-relevant properties for this domain that should be de-
rived through experiments. In this thesis, we introduce experiments for
three different experiment domains: CPU, OS Scheduling and Virtualiza-
tion. In the following chapters, we show that for these domains, only a
handful of properties can suffice to increase the performance prediction ac-
curacy. If the number of experiments and experiment domains increases,
automated selection of experiments might be useful to support the perfor-
mance analyst. This extension of the GINPEX approach is regarded as fu-
ture work (see Section 8.4).

4.3. Parametric Experiments

In this section, we introduce the concept of parametric experiments, which
we use for specifying experiment configuration parameters and experiment
dependencies.

When running experiments, there might be some information the user
has to specify in advance. Such information can then be used by the experi-
ments when setting up the experiment execution and analysis logic; in other

76

4.3. Parametric Experiments

words, the user should be able to specify configuration parameters for ex-
periments. Such a configuration parameter might be the maximum duration
of a certain experiment. It could be used to abort long-running experiments
where the time of abortion influences the precision of measurement results,
but yields a valid experiment result anyhow. Such a parameter could be
used to give the user the possibility to specify the trade-off between accu-
racy and experiment runtime.

Another kind of configuration parameter for an experiment might be a
certain property of the execution environment which the experiment needs
to know in order to generate suitable execution logic. For example, certain
experiments aiming at deriving OS scheduling properties need to take into
account the number of available CPU cores on the system. In this case,
this parameter can also be detected by a different experiment executed be-
forehand. The experiment is then parametrized with the detected execution
environment property value of another experiment.

By specifying the detected parameter (i.e. the execution environment
property) and an optional set of required configuration parameters for an
experiment, multiple experiments can be executed successively. A later
experiment can take parameters into account that are detected in earlier ex-
periments and adapt the execution logic if necessary.

Experiment A

(perform experiment
logic)

Exp. A result:
param A

Experiment B

(perform experiment
logic based on
param A)

Experiment C

(perform experiment
logic based on
param A or param B)

Exp. B result:
param B

Figure 4.3.: Joined execution of parametric experiments

Figure 4.3 illustrates how multiple experiments can be executed succes-
sively based on parametric dependencies: Experiment A detects a parame-
ter “param A” which is required by experiment B. Experiment B performs
experiment logic that depends on configuration parameter “param A” in or-
der to detect “param B”. Finally, experiment C depends on “param B” and

77

4. Model-based Definition and Execution of Execution Environment Experiments

can access both “param A” and “param B” in order to adjust its experiment
logic.

For parametric dependencies, we assume that among the dependent ex-
periments no cyclic dependencies exist. More formally, consider a set of
experiments E and a binary relation R on E ×E, with (e1,e2) ∈ R if ex-
periment e1 depends on the detected parameter of experiment e2, then we
require (E,R) to be a partially ordered set.

If (E,R) is a partially ordered set, the order of executed experiments can
be easily obtained through topological sorting.

By using parametric dependencies, the user does not have to select all
experiments required for execution. If he selects only a subset of experi-
ments for execution, additional experiments can be detected by calculating
the execution order based on the parametric dependencies. In this case, the
user could be presented with the adapted selection of executed experiments,
and he could then either specify the missing parameters by hand or execute
all required experiments.

To give an example, consider the simple experiment from the example
given in Section 4.1. The experiment detects the number of available CPU
cores. This parameter now can serve as a configuration parameter for a
different experiment. Such an experiment can be defined for detecting cer-
tain property values of operating system schedulers, such as the scheduling
timeslice length. This experiment and its logic are presented in detail in
Chapter 5. Here, we only need to know that the experiment logic consists
of putting CPU load on all available CPU cores. Hence, the experiment has
to start a certain number of parallel threads, where each thread issues load,
and the total number of threads depends on the number of available CPU
cores. As this parameter cannot be fixed during experiment design time, it
is specified as an configuration parameter for the experiment. When exe-
cuting the experiment, the user can either specify the number of cores, if
he knows this information, or select an experiment for prior execution that
detects the number of CPU cores. In the latter case, that experiment is ex-

78

4.4. A Metamodel for Specifying Experiments

ecuted and its output value, the number of available CPU cores, is used for
specifying the configuration parameter of the experiment detecting the OS
scheduling timeslice length.

As illustrated above, the detected parameter of an experiment is always
the value of an execution environment property. Experiment configuration
parameters might refer to such properties as well, but can also be used
to specify additional input parameters for an experiment. In this case, the
parameter value has to be specified in a different way, for instance manually
by the user executing the experiments.

4.4. A Metamodel for Specifying Experiments

In order to systematically set up new experiments, we developed a meta-
model which is used for specifying the experiments in detail. Both prede-
fined GINPEX experiments and additional experiments defined by the per-
formance analyst are based on this metamodel.

Before we explain the metamodel in detail, we first discuss why a model-
based approach is appropriate for specifying GINPEX experiments:

• A model-based approach provides an easy and elegant foundation to
specify experiment configurations. Additional experiments and their
specifications can easily be added by creating additional instances of
the metamodel. Furthermore, existing modeling frameworks come
with extensive tool support regarding the creation, display, and pro-
cessing of metamodel instances.

• Based on the modeling framework, modeling editors can be derived
which can be used to display experiments in a convenient way, and
allow for easily creating new experiments. When changing or en-
hancing the metamodel, these derived editors can be easily updated.
The GINPEX framework also provides programmatic access to the
model, which can be used for automated generation of experiment

79

4. Model-based Definition and Execution of Execution Environment Experiments

descriptions, rather than manual GUI-based DSL editing. Automated
generation of experiment descriptions is used for predefined experi-
ment logic and can be used for specifying large amounts of experi-
ments, which would be a cumbersome task if done with a GUI edi-
tor. On the other hand, the GUI editor enables manual specification
of experiments, which can be appropriate for conducting initial mea-
surements.

• By using a metamodel for the experiments, we separated the spec-
ification of an experiment from its execution: the (often platform-
specific) way of how an experiment is executed and interpreted is not
encoded in the model. For example, measurement of timing values
and resource utilization are highly platform-specific. The mapping of
metamodel constructs to executable experiment code is encapsulated
in the transformation and not in the metamodel. In this thesis, a trans-
formation to Java code has been implemented which facilitates the
direct execution of experiments based on instances of the experiment
metamodel. In addition, the implementation and the metamodel of
GINPEX itself can be extended in a systematic way, since we used es-
tablished model-driven technologies and transformation languages.

The GINPEX metamodel consists of four parts: The Experiments part
contributes to the experiment metadata and specifies the overall structure
of an experiment as well as dependencies between experiments. The Ex-

periment Logic Definition denotes the central element of the experiment
logic specification. The other two parts constitute the experiment logic in
detail, namely Experiment Tasks and Experiment Sensors. The metamodel
parts are explained in detail in the following subsections.

80

4.4. A Metamodel for Specifying Experiments

4.4.1. Experiments

The first part of the GINPEX metamodel provides a structure for modeling
experiment domains and experiments. An overview of the metamodel part
is given in Figure 4.4.

To structure experiments, we introduced the concept of experiment do-
mains in Section 4.2. An experiment domain is modeled with the Exper-

imentDomain object. It contains a set of Experiments and a set of Ma-
chineTypes. The Experiment element is used to describe a predefined
experiment which will be covered in the following sections. The Machine-
Type element is an abstract representation of the machines on which the
experiments of the domain are to be executed. A machine type can either
be single machine type or an unbounded machine type.

A SingleMachineType denotes one machine, whereas an Unbounded-

MachineType denotes a set of multiple machines. To give an example,
consider an experiment domain “OS Scheduling” that features experiments
detecting OS scheduling properties. These experiments only need a single
machine for execution. In contrast, an experiment domain “Virtualization”
might require different machine types for executing experiments. For ex-
ample, virtualization experiments could run on an arbitrary number of vir-
tual machines to detect certain virtual machine properties in a virtualized
server. In this case, the unbounded machine type can be used to indicate
that these experiment run on an arbitrary number of (virtual) machine in-
stances. If the optional attribute of a MachineType is set to true, exper-
iment logic may make use of the corresponding machine if it is specified,
but should not depend on it. In other words, a machine type should only be
marked as optional for an experiment domain if the parameters that are to
be detected in this experiment domain can be detected by experiments that
can run without this machine type.

Note that the MachineType element and its child elements denote a type
of a machine. Hence, on the instance level, machine types are modeled,

81

4. Model-based Definition and Execution of Execution Environment Experiments

1..*

1

1
*

+detectedParameter

+configurationParameter

*

*

1

1

1..*

1

Parameter

SingleMachineType UnboundedMachineType

MachineType

+ name : string
+ optional : boolean
+ description : string

ExperimentDomain

+ name : string
+ description : string

Experiment

+ id: string
+ name : string

ExperimentLogicDefinition

Figure 4.4.: GINPEX experiments metamodel

not machine instances. This is due to the fact that the metamodel focuses
on modeling predefined experiments. When modeling predefined experi-
ment, the information regarding machine instances is not available. This
information becomes available later when predefined experiments are exe-
cuted. During experiment design, experiment logic can only differ between
different machine types.

Parametric dependencies that have been introduced in Section 4.3 can be
modeled with the Parameter element. Every experiment references ex-
actly one detected parameter and optionally one or multiple configuration
parameters. The detected parameter represents the execution environment
property whose value is derived by the experiment. Finally, an experi-

ment contains an ExperimentLogicDefinition which specifies the ex-
periment logic in detail. This part of the metamodel is presented in the
following section.

82

4.4. A Metamodel for Specifying Experiments

4.4.2. Experiment Logic Definition

An ExperimentLogicDefinition denotes the container for experiment
logic modeled with the GINPEX metamodel. It is either generated on-the-
fly when predefined experiments are selected for execution, or generated by
a user who manually models an experiment using the modeling editor. As
shown in Figure 4.5, it consists of three parts:

First, an ExperimentLogicDefinition contains a set of MachineRef-
erences that are used to denote the target machines on which the experi-
ment is to be executed. Second, the referenced AbstractTask denotes the
root task of experiment logic, i.e. the entry point for executing experiment
tasks. The root task typically contains other tasks, spawning a fine-grained
task structure of experiment logic. Section 4.4.3 deals with tasks in detail.
Third, the SensorRepository contains sensors that indicate which mea-
surements have to be taken for which tasks. Sensors are presented in detail
in Section 4.4.4.

11..* +rootTask

SensorRepository

1

AbstractTaskMachineReference

+sensorRepository+machineReferences

ExperimentLogicDefinition

+ name : string

Figure 4.5.: GINPEX experiment logic definition metamodel

In contrast to the experiment structure presented in the previous sec-
tion, this part of the metamodel is used to model experiment runtime in-
stances. This means that a MachineReference denotes a machine in-
stance, whereas a MachineType denotes a machine on the type level. For
example, consider an experiment domain containing an unbounded ma-
chine type. When specifying predefined experiment logic, it is unknown
how many machine instances will be specified during experiment execu-

83

4. Model-based Definition and Execution of Execution Environment Experiments

tion. Instead, the predefined experiment logic has to generate the experi-
ment logic definition and its machine references depending on the specified
number of machine instances. If the user specified three machines when
executing the experiment, this would lead to three machine references in
the generated experiment description instance.

4.4.3. Experiment Tasks

Executable GINPEX tasks fall into two groups. The first groups denotes all
tasks that specify the control flow of the experiment. These tasks inherit
from the abstract ControlFlowTask element. The second group denotes
all task that perform a certain logic on one of the target machines. Those
tasks inherits from the abstract MachineTask element.

+machineUnderTest1

2..* 2..* 1 +nestedTask

+nestedTasks
+nestedTasks

1
+nestedTask

1

AbstractTask

MachineReference

SequenceTask

StopCondition

LoopTaskMachineTaskSet ParallelTask

+ stopAfterFirstTaskCompleted : boolean
+ useProcessInsteadOfThread : boolean

ControlFlowTask

Figure 4.6.: GINPEX control flow tasks metamodel

The different control flow tasks are shown in Figure 4.6. Control flow
tasks contain nested tasks that are to be executed in a certain way. A Se-

quenceTask executed all nested tasks one after another, while a Paral-

lelTask executes nested tasks concurrently. For the latter task, the use-

ProcessInsteadOfThread attribute can be used to specify how nested
tasks are parallelized. If it is set to true, a new process is forked for each

84

4.4. A Metamodel for Specifying Experiments

nested tasks. Otherwise, a thread is used for executing parallel tasks. Us-
ing processes instead of threads can be useful when separating the address
space of load issued in parallel in order to avoid mutual interference. The
stopAfterFirstTaskCompleted attribute of a ParallelTask indicates
whether its nested tasks should be aborted once the first nested task has
completed.

The LoopTask executes a nested task multiple times. By putting a task
into a loop task, repetitions can be modeled, which are for example nec-
essary to obtain multiple measurement values of the same task. The stop
condition of a LoopTask is modeled with the abstract StopCondition el-
ement. The concrete elements inheriting from StopCondition (not shown
in the figure) include the following:

FixedNumberOfIterationsReached Denotes a loop that repeats
the nested task for a fixed number of iterations. The number of
iterations is specified by the numberOfIterations attribute.

InternalTimesStable Denotes a loop that repeats until the mea-
sured response times of a nested task are stable, i.e. until a specified
level of confidence is reached. This facilitates taking stable mea-
surements while keeping the number of needed iterations low. This
stop condition is specified using the two attributes confidence (the
confidence level) and halfWidth (half the width of the confidence
interval).

InternalTimesChanged Denotes a loop that repeats until a change
in the measured response times of a nested task is observed. This
stop condition contains the attribute numberOfLastTimesRegarded
that indicates the number of previous iterations that should be taken
into account when determining a difference in response times. A
higher number means that the condition is more robust to outliers.

EndlessLoop Denotes a loop that runs without a specific stop con-
dition. Instead, the loop has to be aborted from outside. Endless

85

4. Model-based Definition and Execution of Execution Environment Experiments

loops can for example be used in a ParallelTask that aborts the
loop after another nested task has been completed.

UserAbort Denotes a loop that executes until the user manually
aborts the loop. This stop condition can be used in experiment de-
sign for manually specified experiments, but should be avoided in
predefined experiments that strive for high automation.

Finally, a MachineTaskSet denotes a control flow task that executes the
nested task on a certain target machine. The target machine is specified us-
ing the machineUnderTest reference pointing to a MachineReference.
By modeling experiment logic definitions containing multiple Machine-

TaskSets which reference different MachineReferences, the executed
experiment logic can be distributed to different target machines.

Only tasks that are nested inside a MachineTaskSet are executed on the
corresponding target machine. All other tasks are executed on the controller
machine.

+receivingMachine1

AbstractTask

DiskReadTaskDiskWriteTask
...

MachineTask

MachineReference

CpuLoadTask

+ duration : long
+ demand : CpuLoadDemand

NetworkLoadTask

+ load : long

ExecuteLibraryTask

+ pathToLibrary : string

«enumeration»
CpuLoadDemand

+ MandelbrotDemand
+ FibonacciDemand
+ SortArrayDemand
+ WaitDemand

DiskTask

+ amount : long

Figure 4.7.: GINPEX machine tasks metamodel

In addition to control flow tasks, MachineTasks can be specified (see
Figure 4.7). While control flow tasks can be nested inside a Machine-

TaskSet (but do not have to), MachineTasks have to be nested inside a

86

4.4. A Metamodel for Specifying Experiments

MachineTaskSet. This can be ensured by a metamodel constraint. For
specifying constraints, we use the OCL language [Obj12], which results in
the constraint
self->closure(parentTask)->select(task |

task.oclIsTypeOf(MachineTaskSet))->size() = 1

for the MachineTask metamodel element. We have specified different
tasks for load generation that are detailed in the following.

CpuLoadTask This task aims at issuing CPU load on a machine
in a single thread. It features an attribute duration that indicates
the amount of load to be issued, and a demand attribute denoting
the type of demand to be issued. The type of demand is specified
with the enumeration element CpuLoadDemand and can be chosen
out of MandelbrotDemand, FibonacciDemand, mmSortArrayDe-
mand, and WaitDemand. The issued MandelbrotDemand performs
Mandelbrot Set calculations which have a strong focus on floating
point operations, whereas FibonacciDemand calculates Fibonacci
numbers basically consists of integer operations. Compared to these
demands, the SortArrayDemand performs memory-bound array
sort operations. A WaitDemand does not directly issue CPU load,
but waits for the specified duration and can thus be regarded as an
“empty demand” type.
The specified duration of a CpuLoadTask denotes the duration the
task takes on the target machine on a single CPU core without con-
tention. This is achieved by a calibration step that is done prior
to experiment execution. This calibration determines the input pa-
rameters for the load generation algorithms to match the specified
duration times. Details on this approach are explained in [BDH08].

DiskTask, DiskReadTask, DiskWriteTask The abstract Disk-
Task denotes tasks that issue certain hard disk load. The amount
of issued disk load (in bytes) is specified with the amount at-

87

4. Model-based Definition and Execution of Execution Environment Experiments

tribute. The concrete tasks specify the kind of load that is is-
sued: a DiskReadTask reads the amount from the hard disk, a
DiskWriteTaskwrites the amount to disk. In order to avoid caching
effects that affect the runtime of disk tasks, random bytes are read
and written.

NetworkLoadTask This task sends network load from one machine
to another machine. The source machine issuing the network load
is the machine referenced by the MachineTaskSet the Network-

LoadTask is nested in. The target machine receiving the load is
denoted by the machine referenced by the task through the receiv-
ingMachine reference. The amount of network load (in bytes) is
specified with the load attribute. During task execution, random
bytes are transferred over the network.

ExecuteLibraryTask This task aims at executing additional logic
that is not encoded in the metamodel, but available in an external
library (e.g. a Java JAR library). This task facilitates execution of
task logic without extending the metamodel. Section 4.7 deals with
GINPEX extensibility in detail.

4.4.4. Experiment Sensors

Specifying the load that is issued during a predefined experiment is not
sufficient for automated analysis. It is also necessary to specify at where
and when measurements are to be taken during experiment execution. This
means that the experiment designer has to specify (i) where in the experi-
ment logic measurements are to be taken, i.e. on which machine at which
point of time, and (ii) which kind of counter or performance metric is read
to take a measurement. For this purpose, the GINPEX metamodel supports
the specification of sensors. During code generation, corresponding code
for taking measurements is then generated at the appropriate places in the
experiment code.

88

4.4. A Metamodel for Specifying Experiments

+measuredTask
1

SensorRepository

AbstractTask

CpuUtilizationSensorResponseTimeSensor

Sensor

1

*

ParallelSensorRunnable

+ waitTimeBetweenMeasurements : int

Figure 4.8.: GINPEX sensors metamodel

The GINPEX sensor metamodel is shown in Figure 4.8. All specified
sensors are located in the SensorRepository. Concrete sensor types in-
herit from the abstract Sensor element. Every sensor references a task it
belongs to. In the metamodel, the measuredTask reference of the Sensor
element is used for this. Sensor logic is only executed while the referenced
task is executed. The GINPEX metamodel distinguishes between two kinds
of sensors: sensors that run in the same thread as the referenced task, and
sensors that run in parallel to the referenced task. Sensors running in the
same thread simple inherit from the Sensor element; such a sensor can
take measurements right before or right after the task logic. An example of
this sensor can be found in the ResponseTimeSensor which measures the
response time of the referenced task’s duration. A sensor that runs in par-
allel to the referenced task has to inherit from ParallelSensorRunnable

as well. The sensor logic is executed repeatedly in a different thread as long
as the referenced task is executed. The waitTimeBetweenMeasurements
attribute can be used to denote the time between sensor logic execution,
i.e. the wait time between measurements. An example of such a sensor is
the CpuUtilizationSensor that measured the overall CPU utilization on
the machine on which the task is executed. Typically, CPU utilization is
calculated by repeatedly measuring CPU busy and idle time counters. By

89

4. Model-based Definition and Execution of Execution Environment Experiments

using the waitTimeBetweenMeasurements attribute, the granularity of
the CPU utilization results can be set. Additional sensors exist; we cover
all implemented sensors in the metamodel overview given in Appendix A.

Similar to GINPEX tasks, additional sensors can be added to the GIN-
PEX metamodel. Extending GINPEX sensors is covered in Section 4.7.
The following section deals with executing experiments based on GINPEX

metamodel instances and analyzing experiment results. An overview on all
GINPEX metamodel elements can be found in Appendix A.

4.4.5. Example

To give an example for a metamodel instance, we go back to the simple
experiments presented in Section 4.1 and 4.3. We introduced two experi-
ments, one for detecting the number of CPU cores, and one for detecting
the timeslice length of the operating system scheduler.

+machine

+machine

DetectNumberOfCpuCores :
Experiment

DetectOsSchedulerTimesliceLength :
Experiment

CPU:ExperimentDomain

OS Scheduler:ExperimentDomain:SingleMachineType

+ optional = false

:SingleMachineType

+ optional = false

TimesliceLength :
Parameter

NumberOfCpuCores :
Parameter

:ExperimentLogicDefinition

+experimentLogicDefinition
+experiment

+detected
Parameter

+configurationParameter

+detected
Parameter

+experimentLogicDefinition

:ExperimentLogicDefinition

+experiment

Figure 4.9.: Object diagram for an excerpt of a GINPEX metamodel instance

Figure 4.9 shows an excerpt of the corresponding GINPEX metamodel
instance in a UML object diagram. The two experiments reside in different
experiment domains, each featuring a SingleMachineType which denotes
the machine on which the experiment is executed. The first experiment

90

4.5. Experiment Execution and Results Analysis

for detecting the number of CPU cores is modeled with the Experiment

element named “DetectNumberOfCores”. It references a parameter called
“NumberOfCpuCores” which is the detected parameter of the experiment.
In addition, the experiment contains an ExperimentLogicDefinition

which holds the experiment logic with its tasks and sensors. This part of
the metamodel instance is omitted here. A metamodel instance example
covering tasks and sensors is given in Section 4.6.2. Besides, a detailed
description of the experiment logic for the experiments in this example is
given in the corresponding sections in Chapter 5.

The second experiment for detecting the OS scheduling timeslice length
is modeled in a similar way in the lower part of the figure. As explained in
Section 4.3, this experiment depends on the detected parameter of the first
experiment. Hence, it references the parameter “NumberOfCpuCores” as a
configuration parameter.

4.5. Experiment Execution and Results Analysis

In the following, we explain how experiments specified with the GINPEX

metamodel can be executed and analyzed.

4.5.1. Experiment Execution

For implementing experiment execution, different design alternatives exist.
One option would be to interpret a GINPEX experiment instance using a vis-
itor pattern on the instance. The interpreter would traverse the experiment
instance on the controller machine and issue certain commands in order to
execute experiment logic on the appropriate machines of the system un-
der test (SUT). However, interpreting the model can introduce performance
overheads, for example due to additional communication between the con-
troller machine and SUT machines. In order to keep such overheads low,
we decided to chose a second option for experiment execution. Instead of
interpreting the model, executable code is directly generated based on a

91

4. Model-based Definition and Execution of Execution Environment Experiments

model instance which is then directly executed on the SUT machines. In
detail, for each MachineTaskSet, Java code is being generated that con-
forms to the specified tasks inside the MachineTaskSet. The generated
code includes both the task logic to be executed, as well as sensor logic
(such as response tome or CPU utilization measurements), if sensors have
been specified for the tasks.

The generated source code is then transferred to the SUT machines. On
each machine, a program called Load Driver is running which is responsible
for receiving the generated code, compiling it, and executing the initial
preparation part of the experiment.

ExperimentExperiment

Experiment Model

ExperimentLogicDefinition

MachineTaskSet
MachineTaskSet

MachineUnderTest 1

MachineUnderTest 2
Ja

va
Ja

va Load
Driver

Load
Driver

ControllerMachine

Automated code
transformation and

execution

Figure 4.10.: Executing experiments through code generation

Figure 4.10 gives an overview on how an experiment is executed through
code generation based on the experiment setup shown in Figure 4.1.

The preparation part of an experiment, which is executed prior to the
experiment logic, is used for object initialization, different checks (for ex-
ample, to ensure that needed network connections are working etc.), or
calibration, such as the calibration step for CpuLoadTasks explained in
Section 4.4.3. As calibration might take some time, the calibration results
are stored in calibration files which are then reused in later runs.

After the code for all MachineTaskSets has been generated and com-
piled and the preparation phase has been completed, the experiment logic
is executed. Depending on the specified experiment control flow, the con-
troller machine asks the Load Drivers to execute the corresponding Ma-

chineTaskSets. Once the overall experiment control flow is completed,

92

4.5. Experiment Execution and Results Analysis

each Load Driver reports all measurement results for the executed Ma-

chineTaskSets to the controller machine.

4.5.2. Results Analysis

Experiment results are available for every specified sensor. For example, if
a response time sensor has been specified for a task nested inside a Loop-

Task, the measurement results for this task consist of multiple response
times. The amount of response time results depends on the number of task
iterations.

If the experiment has been specified and executed manually, the results
can be visualized to the user. If the experiment had been predefined, au-
tomated analysis is executed once the results are available. In this case,
the analysis step is executed in order to derive performance properties for
later performance predictions. For automated analysis, different kinds of
analysis methods can be executed:

• Statistical functions, such as mean, median, or variance calculations
for the result set of one sensor;

• Clustering methods such as k-means clustering or QT clustering for
the result set of one sensor;

• Prediction models such as MARS, Kriging, or CART, that can be de-
rived for sensor results of multiple experiment runs, yielding a per-
formance prediction function from measurement data.

GINPEX provides access to statistical libraries, for example the R statis-
tical computing engine [R F]. By using an engine for statistical computing
such as R, GINPEX can be easily enhanced with additional analysis logic.
We cover the extensibility of GINPEX in Section 4.7.

The output format of the detected parameters depends on the scenario
in which GINPEX is used. In this work, we apply GINPEX in the scope of

93

4. Model-based Definition and Execution of Execution Environment Experiments

model-based performance prediction with the Palladio Component Model
(PCM) [BKR09]. To integrate properties of the software execution envi-
ronment into performance prediction, GINPEX stores the detected proper-
ties in a configuration model that can be used by the PCM for performance
prediction. However, the GINPEX approach is not linked to a specific per-
formance prediction approach, but can also be enhanced to export detected
parameters in a different format.

4.6. A Template for Experiment Description

In Section 4.4, we introduced the GINPEX metamodel that can be used for
specifying the experiments that aim at deriving parameters of the software
execution environment. A GINPEX metamodel instance provides a formal
representation of an experiment. Code generation templates specify how
executable code has to be produced for a specified experiment.

However, a metamodel instance alone might not be sufficient for the soft-
ware architect in order to understand what the experiment does and whether
he should execute it. Also, an experiment designer might need additional
information about existing experiments when specifying new experiments.
Hence, we developed a template that provides a common format for de-
scribing the experiments. By using the templates, the experiments can be
presented in a structured way to performance analysts and software archi-
tects. The templates can also support people that do not have substantial
experience with measuring and/or performance analyses. By capturing do-
main knowledge of the experiment domain, the templates can ease the un-
derstanding of existing experiments as well as the process of defining new
experiments.

Note that the template is currently used to structure the experiments in a
non-formal way. The major focus of the template concept lies on presenting
a taxonomy for structuring the experiments. However, the template could
also be used by tools to parse the experiment description and present it in an

94

4.6. A Template for Experiment Description

appropriate way to the user. Another option might be to extend the template
to an ontology for a formal specification of various experiment properties.

In the following, we present the template in detail. To describe the ex-
periment logic, we use UML activity diagrams, which is explained in Sec-
tion 4.6.2.

4.6.1. Sections of the Experiment Template

The experiment template defines several sections which are presented be-
low. In Chapter 5 and Chapter 6, we use the template to present various
experiments in detail.

Experiment identifier The identifier of the experiment.
Experiment name The name of the experiment.
Experiment domain Used to group multiple experiments that aim

at detecting properties of the same type of infrastructure.
Detected experiment parameter The parameter whose value is to

be detected by the experiment. The experiment comes with prede-
fined execution logic as well as predefined analysis logic to analyze
the experiment results in order to detect the parameter value. A
parameter has a type (e.g. int, double, boolean) and can provide a
default value in case the experiment execution fails.

Importance for performance analysis Explains why the detected
experiment parameter is performance-relevant and should be re-
garded in performance prediction.

Configuration parameters Parameters that are used as input for
the experiment logic. Such parameters can be identified by other
experiments which would then be executed prior to this experiment.
If a parameter is already known, the user can specify the parameter
value. A parameter has a type (e.g. int, double, boolean).

95

4. Model-based Definition and Execution of Execution Environment Experiments

Experiment execution logic Describes the idea behind the experi-
ment and how the parameter is being detected based on the experi-
ment results.

Assumptions Assumptions that are made in the course of the ex-
periment design and requirements that have to be met in order to
get meaningful experiment results. Based on the assumptions and
requirements, the experiments have been designed to derive the ex-
periment parameter.
Assumptions and requirements can be distinguished in the follow-
ing groups:

• General infrastructure assumptions: Lists assumptions on
the infrastructure that have to be met, i.e. fundamental prop-
erties or platform behavior that have to be fulfilled.

• Assumptions for performance analysis: Lists assumptions
that have to be met by the performance analysis approach in
order to make use of the derived experiment parameter. For
example, a certain parameter can only be considered for per-
formance analysis if the performance analysis approach sup-
ports an analysis scenario where the parameter has an influ-
ence on the analysis.

• Required sensors: Sensors that are to be used during the
execution of the experiment. Often needed sensors like re-
sponse time sensors and CPU utilization sensors are available
on most platforms and should not be a problem. However, in
some cases an experiment might depend on a different sensor
which might not be available on all target platforms.
Common sensors for which implementations on most plat-
forms (Windows, Linux, Solaris, Mac) are available include:

96

4.6. A Template for Experiment Description

– Response time sensor: Uses Java System.nanotime()
to get time stamps with nanosecond accuracy.

– CPU utilization sensor: Queries the system’s counters
of the CPU being in idle state, system processing state,
or user processing state. Based on the counters, the CPU
utilization can be calculated.

The amount of specified sensors has also an impact on data
persistence when storing experiment results on the controller
machine. In this case, assumptions on data persistence can
also be listed here. For example, certain experiments may
feature multiple experiment runs collecting a lot of sensor
data. Such an experiment might require sensor data to be
stored in a file instead of memory.

Experiment robustness Describes actions that have been taken to
ensure the experiment results are robust and not prone to measure-
ment noise or other errors. Experiments might provide logic to de-
tect whether the results can be considered stable or not. In the lat-
ter case, the user might want to re-run the experiment or manually
check the experiment results.

Experiment performance Information about the experiment per-
formance can be given by using the following categories:

• Critical properties: Lists critical properties that may influ-
ence the performance (i.e. the runtime) of the experiment ex-
ecution or analysis.

• Ideal execution times: Gives an estimation on the experi-
ment duration including dependencies to critical parameters
(if present).

97

4. Model-based Definition and Execution of Execution Environment Experiments

• Exemplary execution times: Lists duration times of the ex-
ecuted experiment in a specific environment.

4.6.2. Describing the Experiment Logic

The template presented above contains a section “Experiment execution
logic” which aims at describing the logic that is executed in an experiment
run and how the measurement results are used to derive the value of the
execution environment property under focus. However, plain text is not
always suitable for illustrating experiment logic. For a visual representation
of experiment logic, we decided to adopt UML activity diagrams [Obj11c],
as they are easy to understand, widely used by software architects, and
suitable for visualizing GINPEX control flow tasks.

+nestedTask

+stopCondition

+nestedTask

+nestedTask

sensor:ResponseTimeSensor:SensorRepository

firstTask:LoopTask

:ParallelTask

+ stopAfterFirstTaskCompleted = false
+ useProcessInsteadOfThread = false

secondTask:LoopTask

cpuDemand:CpuLoadTask

+ duration = 200

+sensor

+measuredTask

stopCondition :
FixedNumberOfIterationsReached

+ numberOfIterations = 100

Figure 4.11.: Object diagram for an excerpt of a GINPEX experiment instance (tasks
and sensors)

As an example, consider the excerpt of a GINPEX experiment execution
logic shown in Figure 4.11. It consists of a ParallelTask that contains
two nested LoopTasks. The first LoopTask contains a CpuLoadTask that
is executed 100 times. The contents of the second LoopTask are not spec-
ified in detail for this example. In addition, a ResponseTimeSensor has

98

4.6. A Template for Experiment Description

been specified in the SensorRepository referencing the CpuLoadTask

nested in the first LoopTask.

Thread 2

200ms CPU Demand

100 iterations
reached?

Measure response time

No

Yes

Thread 1

secondTask

Figure 4.12.: UML activity diagram for the task logic shown in Figure 4.11

The corresponding UML activity diagram for the task logic is shown in
Figure 4.12. The ParallelTask is denoted by the UML fork node bars.
The two nested LoopTasks are displayed using a gray box as container. The
first LoopTask contains a CpuLoadTask, which is denoted with a UML ac-
tion element. By using the UML control flow and a UML merge node, the
LoopTask logic is displayed. The second LoopTask is not specified in de-
tail, hence we use a collapsed task notion to omit the details of this task.
Finally, the specified sensor for the CpuLoadTask is indicated using two
dashed bars around the task’s UML action element. The shown execution
logic is not targeted at detecting the value of a certain property, but only
serves for illustrating the usage of experiment tasks and sensors. In the fol-
lowing chapters, experiments for detecting different execution environment
properties will be presented.

A detailed presentation of various GINPEX metamodel elements using
UML activity diagrams can be found in Appendix A.

99

4. Model-based Definition and Execution of Execution Environment Experiments

4.7. Extensibility of the Approach

The GINPEX approach aims at deriving parameters of various parts of the
software execution environment using a common format for specifying au-
tomated experiments. The approach is designed to be extendable in several
ways. First, a main goal of the approach is to facilitate the specification of
new experiments and experiment domains. In addition, in some cases one
might want to extend GINPEX with additional experiment tasks, sensors, or
analysis logic.

In the remainder of this section, we explain how GINPEX supports the
specification of such extensions. To illustrate extensibility, we use as a
running example experiments that derive database properties.

4.7.1. Experiments

GINPEX is integrated into the Eclipse Equinox platform that is based on the
Eclipse OSGi architecture [Thed]. Eclipse Equinox supports the specifica-
tion of modular extensions within the Eclipse IDE using an extension reg-
istry. We used this framework to implement GINPEX extensibility w.r.t. ex-
periments and experiment domains. For both experiments and experiment
domains, Eclipse extension points have been defined, i.e. new experiment
domains and experiments can be added by specifying the corresponding
Eclipse extensions.

As an example for extending experiments and experiment domains, con-
sider the area of databases where a lot of database properties might be worth
including in software performance prediction.

GINPEX provides an API that indicates the methods that have to be im-
plemented by new experiments. Such methods include the specification of
the configuration parameters and the detected parameter, the generation of
the experiment model, and the analysis of the experiment results. Adding a
new experiment specification and the corresponding analysis logic certainly
requires detailed domain knowledge as well as some knowledge in experi-

100

4.7. Extensibility of the Approach

ment design. Domain knowledge is necessary in order to assess which ex-
ecution environment properties are adequate, i.e. they are relevant in order
to be reflected in performance prediction, and they can be derived by auto-
mated measurements. In addition, an experiment has to be defined in a way
to detect infrastructure properties without being tailored towards a certain
platform, as the experiment should be applicable to a variety of platforms.
For example, specifying an experiment that detects the throughput of write
requests to a storage device should be applicable to platforms equipped with
hard disks as well as solid state disks. Predefined experiments for detecting
database properties should work with multiple existing database implemen-
tations. Second, the experiment designer has to be familiar with experiment
design in order to design robust experiments. The GINPEX approach aims
at supporting the experiment designer as much as possible when it comes
to these requirements. For example, robust measurements can be specified
by a LoopTask with an appropriate stop condition.

Considering the example of database experiments, the experiment de-
signer would specify a new experiment for each relevant database property.
Typical performance-relevant properties could be how multiple executed
queries slow down query response time, whether inserting large amounts
of data scales linearly, overhead of transaction management, and so on.

In addition to the specification of automated experiments, GINPEX can
be used to execute experiments manually. Manual experiments support the
developer in performing explorative measurements which precede the defi-
nition of new experiments and automated analyses.

4.7.2. Experiment domains

To group predefined experiments, a new experiment domain can be spec-
ified. Similarly to extending GINPEX with new experiments, new exper-
iment domains can be specified by implementing the predefined Eclipse
extension point for experiment domains.

101

4. Model-based Definition and Execution of Execution Environment Experiments

To group experiments for detecting performance-relevant properties of
relational databases, a new experiment domain “Relational Databases”
could be specified to group database experiments.

4.7.3. Experiment tasks and sensors

Enhancing experiment tasks and sensors is possible through established
model-driven technologies provided by the Eclipse platform. The GIN-
PEX experiment metamodel is specified in Ecore [Thec]. Using the Eclipse
Modeling Framework, developers can add new tasks or sensors to the meta-
model. Extending the GINPEX metamodel by adding new tasks or sensors
can be done without changing the core metamodel. As new elements in-
herit from existing ones, the existing implementation of the experiment
controller, for example editor support for tasks and sensors, does not have
to be adapted in order to support new task and sensor elements.

For tasks, we restrict the extensibility of tasks to tasks that run on a cer-
tain target machine (and not on the controller machine). This is due to
the fact that the logic of such tasks is solely defined in code generation
templates (not to be confused with the experiment template presented in
Section 4.6). The templates are specified using the Xpand language of the
Eclipse Model-To-Text (M2T) framework [Thee]. Here, extensibility can
be achieved by adding new templates only. If a new task should be ex-
ecuted on the controller machine as well (as it is the case for all control
flow tasks), adding the tasks would require access to the controller machine
implementation. Hence, adding a new task can be done by specifying a
new task metamodel element that inherits from MachineTask. In order to
support the task execution on a Load Driver, the code generation templates
have to be enhanced in order to generate source code for the added task.
For adding a new task, four templates are available specifying the source
code to be generated:

102

4.7. Extensibility of the Approach

• The TaskVariablesDeclaration template contains all variable
definitions that the task accesses.

• The TaskPreparation template contains preparation logic. This
logic is called prior to the task execution in the preparation phase.

• The TaskExecution template contains the actual execution logic.
This logic is called in the execution phase.

• The TaskCleanup template contains cleanup logic which is called
after the experiment has been executed.

New task logic can also be added without adapting the metamodel. In-
stead, the ExecuteLibraryTask can be used to execute task logic that is
available in a library. In the case of generated Java code, we use JAR li-
braries for this purpose. The library has to provide an implementation of
a simple API that is aligned to the templates above and defines prepara-
tion, execution, and cleanup methods. These methods are then called at the
corresponding phases of the running experiment.

Specifying tasks that execute libraries facilitates the encapsulation of
new task logic while avoiding metamodel extensions. On the other side,
metamodel extensions can be packaged and shipped separately from the
GINPEX core, but can directly plug into existing GINPEX editors, and thus
can be easily used when specifying experiments.

Adding a new sensor to the metamodel can be done in a similar way to
adding new tasks. New sensor elements simply inherit from the Sensor

element. If the new sensor is to be executed in a parallel thread to the an-
notated task, it has to inherit from ParallelSensorRunnable as well. To
specify the sensor logic, the following Xpand templates have to be speci-
fied:

• The SensorVariablesDeclaration template contains all variable
definitions that the sensor accesses.

103

4. Model-based Definition and Execution of Execution Environment Experiments

• The SensorPreparation template contains preparation logic. This
logic is called prior to the execution in the preparation phase.

• The SensorLogicBeforeTask template contains sensor logic that
is executed before the annotated task is executed. This template is
not needed if the sensor inherits from ParallelSensorRunnable.

• The SensorLogicAfterTask template contains sensor logic that is
executed after the annotated task is executed. The template is also
not needed if the sensor inherits from ParallelSensorRunnable.

• The ParallelSensorLogic template is only needed if the sensor
inherits from ParallelSensorRunnable. It contains the sensor
logic that is called during the execution of the sensor. How often this
logic is called depends on the specified value of the sensor’s wait-
TimeBetweenMeasurements attribute.

• The SensorCleanup template contains cleanup logic which is called
after the experiment has been executed.

Going back to the example of database experiments, adding new exper-
iment logic for database access might become necessary. For instance, the
performance analyst could start with encapsulating database access logic in
a library. Afterwards, he would use this library in an ExecuteLibrary-

Task in initial database experiments. In order to facilitate the specification
of database experiments, he could then provide new task metamodel el-
ements which can be used to issue certain database load. For example,
typical database load could be generated by invoking database microbench-
marks such as the DBmbench microbenchmarks [SAF05]. To plug together
tasks in order to generate database access patterns, new tasks encapsulating
microbenchmark logic could be used in combination with existing control
flow tasks.

104

4.8. Experiment Performance Overhead

4.7.4. Analysis logic

In addition to extending predefined experiment domains, predefined exper-
iments, tasks and sensors, experiment analysis logic can also be enhanced
by adding arbitrary analysis logic. This is not done in a model-driven way.
Instead, evaluating experiment results in order to derive an execution en-
vironment property value is done programmatically. During experiment
evaluation, any analysis code (e.g. Java code or R scripts) can be invoked.

4.8. Experiment Performance Overhead

When executing performance experiments, the performance overhead of
such experiments typically has to be considered in order to assess the per-
formance impact of experiments on the system under test and on the con-
troller machine. The performance overhead of experiments includes two
different aspects; (i) performance overhead that incurs due to experiment
preparation and analysis, and (ii) overhead that incurs during experiment
execution.

Experiment preparation occurs partly on the controller machine and
partly on the system under test. On the controller machine, experiment
specifications are loaded or generated programmatically. Based on the
specification, source code is generated for the different MachineTaskSets.
The source code is then transferred to the Load Driver(s) on the system un-
der test, where the code is compiled and its preparation logic is executed.

Code compilation incurs some overhead on the target machine, but might
be performed on the controller machine as well. In the latter case, already
compiled experiments would be transferred to the Load Drivers. The ex-
periment preparation might incur some overhead on the target machines as
well. For instance, a CpuLoadTask requires a calibration that is performed
on each target machine the first time a CpuLoadTask is executed on the
machine. This calibration is based on the library presented in [BDH08]. In

105

4. Model-based Definition and Execution of Execution Environment Experiments

our experiments, we experienced the calibration to take 20 to 30 minutes
per CPU demand.

The experiment analysis is completely performed on the controller ma-
chine, hence no performance overhead occurs on the system under test at
this point. The runtime of the analysis depends on the type of analysis and
the amount of data that has to be processed.

Communication between the controller machine and the Load Drivers
only occurs before and after experiment execution. This is due to the fact
that the complete experiment logic is transferred to the Load Drivers before
experiment execution. Thus, we avoided additional communication over-
head that would otherwise occur during experiment execution and might
influence experiment results.

The performance impact of the experiment during its execution, i.e. the
resource consumption of an experiment on the target machines, strongly
depends on the modeled experiment logic. Some experiments might put
a strong load on the target platform, and might require the platform to be
idle in order to obtain useful experiment results. Other experiments might
have a stronger focus on performing monitoring logic instead of issuing
resource load. Such experiments can be used to detect certain properties on
a system where additional software is running. In such cases, a performance
degradation of running software due to performance experiments might not
be desired.

The actual performance overhead due to experiment execution also de-
pends on the experiment design, for example on the number of iterations of
a certain part of the experiment, or the number of experiment runs needed
when varying a parameter. Here, careful experiment design is needed in
order to keep the overall experiment runtime and the involved performance
overhead low while aiming at robust experiment results (for more details on
experiment design, see [Jai91]). The GINPEX metamodel already includes
certain logic to help the performance analyst in specifying experiments. For

106

4.9. Summary

example, the number of loop iterations can be kept low by specifying a stop
condition based on the confidence level of measurements.

As the performance overhead of an experiment during execution depends
on the experiment logic and the experiment design, no general statements
on the overhead can be made. Besides performing careful experiment de-
sign, the template presented in Section 4.6 should be used for document-
ing the performance impact. For example, the section “Experiment perfor-
mance” can be used to document the experiment runtime, and the section
“Assumptions” can be used to indicate whether an experiment requires a
system under test where no additional load is present, or if an experiment
can be executed on a production system.

4.9. Summary

In this chapter, we presented a model-based implementation of the GIN-
PEX approach. We defined a metamodel for the specification of automated
execution environment experiments. The metamodel can be used to spec-
ify experiments and parametric dependencies between experiments, as well
as experiment execution logic. In order to provide a structured presenta-
tions of experiments to software architects and performance analysts, we
developed a template format that captures the relevant information. In the
following chapters, we will use this template for presenting various exper-
iments. Finally, we explained how experiments are executed and analyzed
based on GINPEX metamodel instances, how the approach can be extended,
and discussed the performance overhead that incurs due to experiment ex-
ecution.

In the following chapters, we demonstrate how the approach can be ap-
plied to different experiment domains. We will first present experiments
that aim at deriving CPU and OS scheduling properties in Chapter 5. In
Chapter 6, we focus on experiments that aim at deriving properties in vir-
tualized systems.

107

5. Deriving CPU and OS Scheduling
Properties

In this chapter, we demonstrate how the approach presented in the previous
chapters can be applied to CPU and OS-related properties of the execution
environment. We chose this domain, as it features properties for which the
performance impact is well-known [Hap08]. We provide an automated ex-
periment for each property and show for every experiment that it is able to
derive the correct property value on multiple platforms featuring a differ-
ent characteristic of the property. Afterwards, we discuss how the derived
properties can be reflected in performance prediction. We then validate the
experiments by conducting a case study where we predict the performance
of a software system, using the derived properties in performance analysis,
and compare the prediction results with measurement results. Finally, we
discuss limitations and assumptions of the presented experiments and sum-
marize the chapter. Some experiments presented in this chapter have been
initially published in [HHR10], [HKHR11], and [HKHR13].

5.1. Experiments Overview

In Chapter 3, we introduced a workflow for executing GINPEX experiments
(see Section 3.3.2). By using the experiments in this chapter, this approach
can be instantiated for detecting certain CPU and operating system proper-
ties. Let us assume that a performance analyst wants to conduct a perfor-
mance prediction for a software while reflecting such execution environ-
ment properties. For this prediction, he has created a performance model of
the software architecture, and has set up the execution environment, e.g. a

109

5. Deriving CPU and OS Scheduling Properties

server of the production environment with the dedicated operating system
installed. He would then deploy the Load Driver on the target machine
which is used by GINPEX for automatically generating load and taking
measurements. The experiments in this chapter are grouped into experi-
ment domains which are selected by the analyst for execution. The GIN-
PEX tool would then execute the experiments and analyze the experiment
results which are available through measurements taken on the target ma-
chine. The analysis of the results would yield the values of the analyzed
execution environment properties for the target machine. These values are
then passed to the performance analysis tooling, where they are reflected
during performance prediction for the software architecture model.

The experiments presented in this chapter can be grouped into two ex-
periment domains. The first experiment domain “CPU” encompasses ex-
periments that aim at detecting CPU properties. Here, we present two
experiments aiming at detecting CPU simultaneous multithreading (SMT)
availability (CPU.01) and the number of CPU cores (CPU.02). The de-
tected SMT property of CPU.01 serves as configuration parameter for the
CPU.02 experiment. The second experiment domain “OS Scheduler” is
used to group three experiments aiming at detecting properties of general-
purpose operating system schedulers. The properties under focus are the
timeslice length of the scheduler (OSSCHEDULER.01) as well as strate-
gies for load-balancing, i.e. initial load-balancing (OSSCHEDULER.02)
and dynamic load-balancing (OSSCHEDULER.03). The number of cores
property detected by experiment CPU.02 is used as configuration parameter
for all three OS scheduling experiments.

Figure 5.1 gives an overview on the experiments of this chapter. The
arrows between the experiments denote a detected parameter that is used
as configuration parameter. Hence, they are indicating a possible order for
experiment execution (execute CPU.01 before CPU.02; execute CPU.02
before OSSCHEDULER.01, OSSCHEDULER.02, OSSCHEDULER.03).

110

5.2. Scientific Challenges

Experiment
CPU.01

Detect Simultaneous
Multithreading
(SMT)

smt
enabled

Experiment
CPU.02

Detect number of
available CPU cores

Experiment
OSSCHEDULER.01

Detect OS scheduler
timeslice length

number of
cores

Experiment
OSSCHEDULER.02

Detect OS scheduler
initial load-balancing
strategy

Experiment
OSSCHEDULER.03

Detect OS scheduler
dynamic load-
balancing strategy

number of
cores

number of
cores

Figure 5.1.: Overview on the experiments presented in this chapter

5.2. Scientific Challenges

In this chapter, we present experiments for deriving CPU and OS schedul-
ing properties automatically. While the scientific challenges outlined for
the overall approach in Section 3.2 apply to these properties as well, the
scientific challenges w.r.t. deriving CPU and OS scheduling properties in
particular are:

• How can CPU and OS scheduling properties be derived through au-
tomated experiments?

• How can the detected properties be integrated into software perfor-
mance prediction?

• What is the impact of the different properties on performance predic-
tion accuracy?

In the following sections, we present the different experiments in detail.

111

5. Deriving CPU and OS Scheduling Properties

5.3. CPU Simultaneous Multithreading

In this section, we present an experiment that detects whether the a ma-
chine is equipped with a CPU that has simultaneous multithreading (SMT)
enabled. Detecting this CPU feature can be useful if performance predic-
tion approaches support SMT in the prediction tooling. Besides, the fact
whether SMT is available or not has an impact on other experiments pre-
sented in this chapter. For those experiments, the results of this experiment
serves as an input parameter.

5.3.1. Motivation

Simultaneous multithreading (SMT) is a technique to provide hardware-
based multithreading. A processor supporting SMT is able to concurrently
execute multiple threads on the available cores. That is done by executing
multiple instructions of different threads in different functional units in the
same cycle [TEL95].

SMT can have several effects on performance. First, a speedup can be
observed for software applications which feature workloads that benefit
from SMT, e.g. applications with multiple CPU-bound threads in paral-
lel. However, the observed speedup strongly depends on the workload.
The performance of CPU-bound workloads can be increased by 10% to
40% [MMM+05], but as the parallel threads share the same resources
such as cache, branch prediction, or execution units, for certain work-
loads no performance gain or even a performance degradation can be ob-
served [EHK+02].

Second, a SMT CPU usually appears to the system as multiple CPUs
(depending on the number of parallel threads that can be executed concur-
rently. Thus, if a system is equipped with a dual-core CPU that supports si-
multaneous multithreading of two parallel threads per core (two-way SMT),
four CPU cores are visible to the system. As the operating system takes all
available cores into account when calculating and displaying the overall

112

5.3. CPU Simultaneous Multithreading

CPU utilization, the information whether SMT is available on the system
matters when interpreting the CPU utilization.

For example, consider the dual-core system with two-way SMT de-
scribed above. If one thread is running a CPU-bound workload on the
system (the other threads being idle), the operating system would record a
CPU utilization of approximately 25%. However, one must not conclude
that four identical threads can be executed in parallel with similar response
times for each thread, as only two physical cores are available and SMT
might not lead to a full parallel execution of the available threads.

To show how CPU demand response times vary depending on the avail-
ability of SMT, we executed a manual experiment with GINPEX on a ma-
chine with four physical cores running the Linux 2.6.31 kernel1. The first
run was executed on the machine while SMT was disabled (run A), in the
second run, SMT was enabled (run B). The experiment consisted of a se-
quence of ParallelTasks, each ParallelTask containing a set of Cpu-
LoadTasks. Every CpuLoadTask is executed multiple times and issued a
fixed amount of CPU demand (200 ms FibonacciDemand). As explained
in 4.4, the specified duration of a CpuLoadTask demand is based on the
task calibration and denotes the time the task would run if executed on a
machine’s core without contention. In every step of the experiment run’s
sequence, the number of parallel tasks is being increased from 1 to 10. For
every step, the response time for one nested CpuLoadTask as well as the
CPU utilization was measured.

Figure 5.2 shows the measured results for the two runs. In Figure 5.2 (a),
the results for run A where SMT was disabled are plotted. One can see that
the measured task response times match the specified task duration, if the
number of parallel executed CPU-bound task is not larger than the num-
ber of available (physical) cores (in this case, if no more than 4 tasks are
executed in parallel). For 1 to 4 parallel executed tasks, the CPU utiliza-
tion increases from around 25% to 100% which shows that the operating

1Intel Core i7-860, 2.80 GHz, 8 GB RAM

113

5. Deriving CPU and OS Scheduling Properties

2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

0
20

40
60

80
10

0

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)

Task response time
CPU utilization

(a) Without SMT

2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

0
20

40
60

80
10

0

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)

Task response time
CPU utilization

(b) With SMT

Figure 5.2.: SMT effects on CPU-bound tasks

system utilizes the available CPU cores. For a larger number of parallel
executed tasks, the CPU stays fully utilized, but as more tasks are executed
than CPU cores are available, the measured response times increase due to
CPU contention. For 8 parallel tasks, the measured response times are ap-
proximately twice as high as for 1 to 4 parallel tasks, as two parallel tasks
share one CPU core.

For the experiment run B on the machine with SMT enabled, the results
differ, as shown in Figure 5.2 (b). Similarly to the run with SMT disabled,
the measured task response times increase once the number of parallel ex-
ecuted tasks is larger than the number of available CPU cores. However,
the increase of response times is not as smooth as observed in run A, which
indicates that the availability of SMT already has an effect on the observed
response time. A significant difference in the measured results for the two
runs can be seen in the reported CPU utilization. In run B, the system re-
ports a lower CPU utilization for 1 to 7 parallel tasks compared to run A, as
the system calculates CPU utilization depending on the visible CPU cores,
which is the number of virtual cores and thus higher than the number of
physical cores. For 5 to 7 parallel tasks, run B reports a CPU utilization
that is lower than 100%, whereas the observed response time for the tasks
are increased indicating that CPU contention was present during the runs.

114

5.3. CPU Simultaneous Multithreading

5.3.2. Experiment Design

The experiment to detect whether SMT is available on the machine under
test is structured as follows. For a graphical description of the experiment
logic, see Figure 5.3.

Thread n

200ms CPU Demand

iterations
reached?

Measure response time

No

Yes

Thread 1

200ms CPU Demand

Thread 1
completed?

No

Yes

···
· ···

Measure CPU utilization

Measured
response time

increased
compared to

previous
iteration?

No

(increase n by 1)

n

Yes

Repeat experiment with a different CPU demand type
to assess robustness of results

Figure 5.3.: Simultaneous multithreading experiment logic

The experiment consists of multiple runs. In each run, a ParallelTask
is executed consisting of LoopTasks that are to be executed in parallel.
Each LoopTask contains a CpuLoadTasks specifying the CPU load to
issue (500 ms, FibonacciDemand). For the first nested CpuLoadTask

(called TaskMeas in the following), the response time is measured. This
task is iterated 100 times to gain stable response time measurements. Dur-
ing the execution of the CpuLoadTasks, the CPU utilization is measured as

115

5. Deriving CPU and OS Scheduling Properties

well. The remaining parallel LoopTasks are iterated until the first Loop-
Task completes (stop condition EndlessLoop). In every experiment run,
the number of parallel executed tasks is increased by one. After every run,
the results are analyzed. Once the measured mean response time of an ex-
periment run’s TaskMeas is significantly higher than the measured mean
response time of the previous experiment run, the first part of the exper-
iment is completed. An increased response time indicates that CPU con-
tention occurred during the run, i.e. the number of parallel CpuLoadTasks
was higher than the number of available physical cores. If the measured
CPU utilization during this run was significantly lower than 100%, the ex-
periment concludes that SMT is available on the machine under test, as
the operating system reported a system that was not fully utilized due to
present virtual cores. Otherwise, if the measured CPU utilization was near
or at 100% for increased measured response times, the system seems to
fully utilize all physical cores and thus, no SMT is assumed.

5.3.3. Experiment Template

In the following, we use the experiment template from Section 4.6 to give
a brief overview on the experiment.

Experiment ID: CPU.01
Experiment name: Detect simultaneous multithreading (SMT)
Experiment domain: CPU
Detected experiment parameter: SMT available (true/false); de-

fault: false
Importance for performance analysis: A performance speedup

for parallel CPU-bound workloads possible due to virtual CPU
cores. However, the performance gain of x virtual cores is typi-
cally lower than x physical cores. If SMT is available, the observed

116

5.3. CPU Simultaneous Multithreading

CPU utilization of a software application is based on the available
virtual cores.

Configuration parameters: None.
Experiment execution logic: Iteratively increase the number of

parallel executed CPU-bound tasks and measure its response times
and the CPU utilization. If response time increases, stop. If the
measured CPU utilization has not reached 100% once increased re-
sponse times have been measured, we assume that SMT is available.
For details, see Section 5.3.2 or the graphical description shown in
Figure 5.3.

Assumptions:

• The machine is idle.

• The operating system reports CPU utilization based on the
number of available virtual cores.

• Required sensors: Response time sensor, CPU utilization sen-
sor.

Experiment robustness: The experiment is being executed twice
with different types of CPU demands, one focusing on integer op-
erations, one focusing on floating-point operations. If at least one
of the demands yields measurements that indicate SMT availability,
the experiment result is set to true (SMT available).

Experiment performance: O(n) where n is the number of avail-
able CPU cores. If the number of cores is larger than 8, the num-
ber of parallel tasks is doubled instead of linearly increased, which
leads to a duration that lies in O(log(n)).

5.3.4. Experiment Robustness and Performance

In order to assess the robustness of the experiment results, the experiment
runs described in Section 5.3.2 are repeated with a different CpuLoadTask

117

5. Deriving CPU and OS Scheduling Properties

demand. For these runs, the demand is set to MandelbrotDemand. Com-
pared to the FibonacciDemand which generates CPU load containing in-
teger operations for the most parts, the MandelbrotDemand generates load
with a focus on floating-point operations. By using different CPU opera-
tions, we assume that the availability of SMT has an effect on at least one
of the executed demands. Thus, if SMT is being detected by the experi-
ment analysis of either part 1 or part 2, SMT availability is assumed by the
experiment and the experiment result is set to true.

The runtime of the presented experiment mainly depends on the number
of needed iterations when the number of parallel tasks is increased. As
the experiment completes once full utilization of the system is reached, the
runtime depends on the number of available CPU cores. The runtime of one
iteration is approximately 100 · 500 ms (100 iterations of a CpuLoadTask

taking 500 ms), i.e. 50 seconds. From this follows that the duration of the
experiment is O(n) where n is the number of available CPU cores.

As the experiment runtime increases linearly with the number of parallel
tasks, the experiment is suited for systems where the number of available
CPU cores is not too high. This is the case for many server systems, where
the number of available CPU cores can be considered to lie between 1 and
8. However, for systems with a higher number of available cores, the run-
time of the experiment can become very long due to the linear increase of
parallel tasks. To improve experiment runtime, we adapted the experiment
logic that increases the number of parallel tasks as explained in the follow-
ing.

The adapted experiment logic starts with 1 task in the first run and in-
creases the number of parallel tasks from 1 to 8 as described above. If the
experiment does not complete after the run in which 8 parallel tasks have
been executed, a higher number of physical cores has to be assumed. Now,
the experiment starts to double the number of parallel tasks until increased
response times are measured. Once an experiment run has been executed
for which increased response times are measured, the experiment completes

118

5.3. CPU Simultaneous Multithreading

if the measured CPU utilization was significantly lower than 100% for this
run. Otherwise, the experiment continues for the range [xa,xb] where xa is
the number of parallel tasks in the last experiment run that did not mea-
sure increased response times and xb is the number of parallel tasks in the
experiment run for which increased response times were measured. By
performing a binary search within the range, the experiment continues ex-
ecuting experiment runs until it detects xnew ∈ [xa,xb− 1] for which holds
that the experiment run with xnew parallel tasks did not yield increased re-
sponse time measurements, but the experiment run with xnew + 1 parallel
tasks did. As described above, the experiment assumes SMT availability
if the CPU utilization for the run with xnew + 1 parallel tasks was below
100%, and no SMT availability otherwise.

By using a combination of doubling the parallel tasks and binary search,
the duration of the experiment is O(log(n)) if executed on a system where
the number of available cores is higher than 8. By avoiding a linear increase
of parallel tasks for the experiment runs with a higher number of parallel
tasks, the experiment still completes with a tolerable amount of needed ex-
periment runs. For example, an experiment running on a 48-core machine
yielded 17 runs in part 1 (compared to 49 runs for a simple setup with linear
increase of parallel tasks) with a summarized part 1 execution runtime of
18 min 11 seconds.

5.3.5. Example

In the following, we illustrate how the experiment detects SMT availability
for different platforms.

We executed the experiment on five different machines:

• Machine A: A dual-core machine with no SMT support (Intel Core 2
Duo, 2.66 GHz, 3 GB RAM) running Windows 7 (run A)

119

5. Deriving CPU and OS Scheduling Properties

• Machine B: A dual-core machine with no SMT support (AMD
Athlon64 X2 Dual Core 4600, 2.4 GHz, 4 GB RAM) running the
Linux 2.6.32 kernel (run B)

• Machine C: A quad-core machine (Intel Core i7-860, 2.80 GHz, 8
GB RAM) running Windows 7, with SMT disabled (run C1) and
SMT enabled (run C2)

• Machine D: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running the Linux 2.6.31 kernel, with SMT disabled
(run D1) and SMT enabled (run D2)

• Machine E: A 48-core machine with no SMT support (4x AMD
Opteron 12 Core 6100, 2.1 GHz, 64 GB RAM) running the Linux
2.6.32 kernel (run E)

Run A and run B execute the experiment on CPUs of different vendors
which do not provide SMT support. Run C1, C2, D1 and D2 execute the
experiment on quad-core CPU machine with SMT support, but with differ-
ent operating systems. The last run E was executed on a server machine
equipped with four 12-core CPUs, which results in 48 available cores. We
executed the experiment on this machine to show how the runtime of the
experiment can be kept low by adapting the increase of parallel executed
tasks.

For machine A and machine B, the results for the experiment are shown
in Figure 5.4 (a) and Figure 5.4 (b), respectively. These machines feature a
CPU from different vendors (Intel CPU for machine A, AMD CPU for ma-
chine B), both CPUs are not supporting SMT. As each experiment consisted
of two parts (to assess robustness of results), the results for the two parts are
separated by the vertical line in each plot. From the results one can see that
the experiment detects missing SMT support after three runs in each part.
In the third run, both increased response times and a fully utilized CPU
were detected. Based on the experiment logic presented in Section 5.3.2,

120

5.3. CPU Simultaneous Multithreading

0
10

0
20

0
30

0
40

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 1 2 3

Part 1 Part 2

0
20

40
60

80
10

0

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)

Task response time
CPU utilization

(a) Experiment results for run A

0
50

15
0

25
0

35
0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 1 2 3

Part 1 Part 2

0
20

40
60

80
10

0

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)

Task response time
CPU utilization

(b) Experiment results for run B

Figure 5.4.: Exemplary experiment results for experiment CPU.01 (SMT):
run A, run B

this leads to an experiment result indicating no available SMT support. For
both experiments, the second part yielded the similar measurements as the
first part and thus lead to the same experiment result which indicates ro-
bust results. These results show that for a CPU without SMT support, the
experiment works.

Machine C and machine D feature a CPU that supports SMT, but run a
different operating system. We executed the experiment on these machines
to show that SMT is detected once it is available and enabled.

Figure 5.5 shows the results for run C1 and run C2 on the Windows 7
quad-core CPU machine. If SMT is disabled, the machine reaches a CPU
utilization of approx. 100% for four and more parallel tasks. An increased
response time is observed for more than four parallel tasks, and thus SMT
is derived in both experiment parts. Interestingly, as the threshold for de-
tecting increased response times has been set to 30 ms for the experiment,
the experiment detects increased response times not before the 6th run in
the first part. However, the detected results are correct for both parts. If
SMT is enabled, the experiment detects increased response times before a
full CPU utilization is reported (after 7 runs in the first part and after 5 runs

121

5. Deriving CPU and OS Scheduling Properties

0
10

0
20

0
30

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 4 5 6 1 2 3 4 5

Part 1 Part 2

0
20

40
60

80
10

0

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)

Task response time
CPU utilization

(a) Experiment results for run C1
(SMT disabled)

0
10

0
20

0
30

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 4 5 6 7 1 2 3 4 5

Part 1 Part 2

0
20

40
60

80
10

0

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)

Task response time
CPU utilization

(b) Experiment results for run C2
(SMT enabled)

Figure 5.5.: Exemplary experiment results for experiment CPU.01 (SMT):
run C1, run C2

in the second part). These observed results lead to an experiment result
indicating available SMT support.

Figure 5.6 shows the results for run D1 and run D2 on the Linux 2.6.31
quad-core CPU machine. The results are similar to the results of run C1
and C2. Missing SMT support is detect in D1 and available SMT support

0
10

0
20

0
30

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 4 5 1 2 3 4 5

Part 1 Part 2

0
20

40
60

80
10

0

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)

Task response time
CPU utilization

(a) Experiment results for run D1
(SMT disabled)

0
10

0
20

0
30

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 4 5 1 2 3 4 5 6 7

Part 1 Part 2

0
20

40
60

80
10

0

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)

Task response time
CPU utilization

(b) Experiment results for run D2
(SMT enabled)

Figure 5.6.: Exemplary experiment results for experiment CPU.01 (SMT):
run D1, run D2

122

5.3. CPU Simultaneous Multithreading

is detected in D2. Thus, the experiment yielded the correct results when
executed on machines with different operating systems.

50
0

55
0

60
0

65
0

70
0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 4 5 6 7 8 16 32 64 36 50 43 46 48 49

0
20

40
60

80
10

0

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)Task response time
CPU utilization

(a) Part 1

50
0

55
0

60
0

65
0

70
0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 4 5 6 7 8 16 32 64 36 50 43 46 48 49

0
20

40
60

80
10

0

C
P

U
 u

til
iz

at
io

n
(in

 p
er

ce
nt

)Task response time
CPU utilization

(b) Part 2

Figure 5.7.: Exemplary experiment results for experiment CPU.01 (SMT): run E

Finally, we performed the experiment on a 48-core machine to examine
how the experiment performs with a larger number of CPU cores (run E).
Figure 5.7 shows the experiment results for both experiment parts. The
figure illustrates how the experiment continues when no result is reached
after having executed 8 tasks in parallel. To minimize the number of needed
runs, the experiment now uses a binary search to find the number of parallel
tasks n where increased response times have been measured compared to
n−1. This happens for n = 49; in both parts, the CPU is fully utilized for

123

5. Deriving CPU and OS Scheduling Properties

this number of parallel tasks, thus the experiment detects that SMT support
is missing on this machine.

In comparison to a fully linear experiment, where 49 experiment runs
would be needed, run E shows that doubling the number of parallel tasks
leads to a significant reduction of needed experiment runs. The experiment
only needs 17 runs for each part.

5.4. Number of CPU Cores

In performance analyses, the number of CPU cores often has to be speci-
fied for a server of the system. This section introduces an experiment that
detects the number of available CPU cores in a platform-independent way.

5.4.1. Motivation

For many years now, server machines are equipped with multi-core CPUs.
A multi-core CPU consists of multiple identical physical processors that
share the same properties, such as the processing power, or the shared
address space. A symmetric multiprocessing (SMP) computer involves a
multi-core CPU where a task can be executed on any available core. In con-
trast, asymmetric multiprocessing (AMP) denotes a multi-core CPU system
where certain tasks have to be executed on dedicated cores (for example, an
AMP system can distinguish between operating system tasks executed on
a core on which the operating system runs on, and user tasks executed on
a core reserved for executing user applications). In the following, we focus
on SMP environments, as such CPUs are nowadays common for server ma-
chines and have replaced AMP environments in these fields (AMP can be
seen as a predecessor technology here). However, for embedded systems
or mobile devices, which gained a large momentum in recent years, AMP
techniques can be an alternative to SMP and might gain more relevance in
the future [Kal05].

124

5.4. Number of CPU Cores

Support for multi-core CPUs is available in different performance pre-
diction approaches such as Palladio [RBB+11], where the number of CPU
cores has to be specified in the model of the analyzed system. In perfor-
mance analysis, this attribute is then regarded, for example in a simula-
tion approach using multi-core-aware CPU scheduling strategies. In case
of Palladio, simple scheduling strategies, such as first come, first served
(FCFS) or processor sharing (PS) are supported [RBB+11] as well as com-
plex multi-core CPU scheduling strategies of general-purpose operating
systems [HGHR10].

As the number of available CPU cores can often be easily retrieved, spec-
ifying the number of CPU cores in the performance model is usually fea-
sible. However, we propose an automated experiment for detecting the
number of CPU cores for the following reasons:

• Querying the number of available CPU cores can only be achieved
through platform-dependent system calls. The proposed experiment
allows for detecting the number of available CPU cores in a platform-
independent way, which also works if the information cannot be re-
trieved in other ways.

• As the experiment runs automated, it can be used in performance
measurements on environments with a large number of machines,
where the experiment can run in parallel, with no manual efforts in-
volved, and detect the property value for every machine.

• If SMT is available, the experiment detects both the number of avail-
able physical cores and the number of virtual cores.

• The detected parameter of the experiment serves as input parameter
for various experiments that aim at detecting other parameters that
cannot be easily obtained otherwise. If such experiments are to be
executed, this experiment is automatically executed beforehand if the
parameter is not available.

125

5. Deriving CPU and OS Scheduling Properties

The experiment logic is based on the input parameter smt that is detected
by the CPU simultaneous multithreading (SMT) experiment CPU.01. If
SMT is available, the smt value is set to true, otherwise it is set to false.
By taking SMT availability into account, the experiment can be used for
a wide range of processors and is not restricted to non-SMT processors or
SMT processors only.

The experiment detects the number of available physical CPU cores, i.e.
the number of CPU cores that can be used to execute CPU-bound tasks in
parallel. If SMT is available, the experiment detects the number of virtual
cores as well, i.e. the number of cores that appear to the operating system.
For SMT, the number of virtual cores is usually a multiple of the number
of physical cores. For example, current Intel CPUs that feature SMT have
twice as many virtual cores as physical cores [Inta].

In the following, we describe the structure of the experiment in detail.

5.4.2. Experiment Design

The logic of the experiment is similar to the experiment CPU.01 that de-
tects whether SMT is available for a CPU (see Section 5.3). A graphical
description of the experiment is given in Figure 5.8.

As for the SMT experiment, this experiment issues a CPU load (200 ms
FibonacciDemand) and iteratively increases the number of parallel tasks
issuing CPU load. For the first CpuLoadTask (called TaskMeas in the fol-
lowing), the response time is measured. If smt is true, the CPU utilization
is measured during the execution of the CpuLoadTasks. The first part of
the experiment is completed based on the following conditions:

• If smt is false, the experiment part completes when the measured re-
sponse times of TaskMeas are significantly higher than the measured
response times of the first experiment run.

• If smt is true, the experiment part completes when the measured re-
sponse times of TaskMeas are significantly higher than the measured

126

5.4. Number of CPU Cores

Thread n

200ms CPU Demand

iterations
reached?

Measure response time

No

Yes

Thread 1

200ms CPU Demand

Thread 1
completed?

No

Yes

···
· ···

Measure CPU utilization
(if SMT is available)

Measured
response time

increased
compared to first

iteration?

No

(increase n by 1)

n

Yes

Repeat experiment with a different CPU demand type
to assess robustness of results

SMT
available?

No
Yes

Measured
CPU

utilization
reached 100%?

Yes

No

Figure 5.8.: Number of CPU cores experiment logic

response times of the first experiment run and the measured CPU
utilization reached 100%.

After the first part of the experiment is completed, the collected measure-
ments are analyzed. If smt is false, only response time measurements are
regarded. In this case, the number of physical cores equals the number of
parallel executed tasks in the second to last experiment run. As the exper-
iment part completes once an increase of the measured response times is
detected, the last iteration executed more parallel tasks than physical cores
are available. Thus, the second to last iteration featured the highest number
of parallel tasks that did not overutilize the available CPU cores. For this
iteration, the number of parallel tasks equals the number of available phys-
ical cores. As no SMT is available, the number of available virtual cores is
negligible and set by default to the number of physical cores.

127

5. Deriving CPU and OS Scheduling Properties

If smt is true, the experiment part does not complete once increased re-
sponse times are measured if the CPU utilization has not yet reached 100%.
This is to be expected, as due to SMT, the system does not report a full CPU
utilization because more virtual cores are available than physical cores (see
example in Section 5.3). The experiment continues increasing the number
of parallel executed tasks until the measured CPU utilization reaches 100%.
When analyzing the results, the number of physical cores equals the the
number of parallel tasks in the last iteration which did not yield increased
response time measurements. As for the case when SMT is not available, it
is assumed that increased response times appear when more parallel tasks
are executed than available physical cores are available. However, as there
are more virtual than physical cores available due to SMT, CPU utilization
only reaches 100% if enough parallel tasks are executed to utilize all vir-
tual cores. Thus, the number of virtual cores equals the number of parallel
tasks executed in the last execution of the experiment part (which denotes
the lowest number of parallel tasks needed to utilize all virtual cores).

5.4.3. Experiment Template

In this section, we give a brief overview on the experiment by using the
experiment template from Section 4.6.

Experiment ID: CPU.02
Experiment name: Detect number of available CPU cores
Experiment domain: CPU
Detected experiment parameter: Number of available physical

CPU cores (integer); if SMT is available, the number of available
virtual CPU cores (integer) is also detected

Importance for performance analysis: The number of available
CPU cores heavily influences the slowdown that can be observed for
CPU requests due to parallel CPU requests. The number of cores

128

5.4. Number of CPU Cores

for a CPU resource is a basic parameter this is typically reflected in
performance analysis tools such as the PCM.

Configuration parameters: smt: SMT available (true/false); de-
tected by Experiment CPU.01

Experiment execution logic: Iteratively increase the number of
parallel executed CPU-bound tasks and measure its response time
and (if smt is true) the CPU utilization. If response time increases
and smt is false, stop. If smt is true, continue until the CPU utiliza-
tion reaches 100%. The number of physical cores equals the num-
ber of parallel executed tasks in the last iteration before increased
response times were measured. If smt is true, the number of virtual
cores equals the number of parallel executed tasks in the last execu-
tion, where a CPU utilization of 100% was measured. For details,
see Section 5.4.2 or the graphical description shown in Figure 5.8.

Assumptions:

• The machine is idle.

• If the CPU is a multi-core CPU, it features symmetric multi-
processing (SMP). This is the case for current server CPUs.

• The OS scheduler spreads CPU load of parallel threads equally
across all available CPU cores.

• If smt is true, the operating system reports CPU utilization
based on the number of available virtual cores.

• Required sensors: Response time sensor, CPU utilization sen-
sor (only if smt is true).

Experiment robustness: The experiment is being executed twice
with different types of CPU demands, one focusing on integer oper-
ations, one focusing on floating-point operations. If the executions
lead to the same experiment result, results can be considered robust.

129

5. Deriving CPU and OS Scheduling Properties

Otherwise, results should be checked manually. Further checks to
assess robustness:

• If smt is true, the detected number of virtual cores should be
higher than the detected number of physical cores

• If smt is true, the detected number of virtual cores should be
a multiple of the detected number of physical cores

Experiment performance:
If smt is false: O(n) where n is the number of available physical
CPU cores.
If smt is true: O(n) where n is the number of available virtual CPU
cores.
If the number of cores is larger than 8, the number of parallel tasks
is doubled instead of linearly increased, which leads to a duration
that lies in O(log(n)).

5.4.4. Experiment Robustness and Performance

Similar to the SMT experiment, the experiment consists of two parts in
order to assess the robustness of the experiment result. The second part
closely resembles the first part with the exception of the type of CpuLoad-
Task demand that is used. The first part uses FibonacciDemands to gen-
erate CPU load containing mainly integer operations, the second part uses
MandelbrotDemands to generate CPU load focusing on floating-point op-
erations. The detected experiment results are derived twice for both parts
and compared. If the detected results are equal for both parts, the exper-
iment results can be considered robust. Typically, the operating system
should be able to distribute the parallel executed tasks to the available cores
regardless of the executed CPU demand. Also, the assumed SMT effects
(increased measured response times while the CPU is not fully utilized)
should occur for any demand as long as it is CPU-bound. However, if

130

5.4. Number of CPU Cores

different CPU demands lead to different detected result parameters, the ex-
periment execution can issue a warning indicating that the results should be
checked manually.

If the two parts of the experiment yield different results, we select the
overall experiment result from the part where an increase of response times
was measured earlier, i.e. for a smaller number of parallel tasks.

The runtime of the experiment mainly depends on the number of exe-
cuted iterations. In each iteration, the number of parallel executed tasks is
increased, until increased response times or a CPU utilization of 100% is
measured. The runtime of one iteration is governed by 100 iterations of
200 ms CPU demands resulting in approximately 20 seconds iteration run-
time if no response time slowdown occurs. Due to increased response times
of the CPU demands, the duration of one iteration can be longer, but is not
expected to exceed double the duration of an iteration without increased re-
sponse times. Hence, the overall duration of the experiment is O(n) where
n is the number of needed iterations for one experiment part, which is the
number of available physical CPU cores (if smt is false) or the number of
available virtual CPU cores (if smt is true).

In order to reduce the number of needed experiment runs for machines
equipped with a large number of physical cores, the experiment can be
adapted in the same way as experiment CPU.01 (see Section 5.3.4. Once
the number of parallel tasks reaches 8, the number of parallel tasks is dou-
bled until increased response times are measured. Binary search is used to
detect the number n of parallel tasks where n leads to increased response
times compared to the first iteration, and n− 1 does not. If smt is true,
the binary search is also used to detect the pair m− 1 parallel tasks and m

parallel tasks where m, in contrast to m−1, leads to 100% CPU utilization.

131

5. Deriving CPU and OS Scheduling Properties

5.4.5. Example

In the following, we illustrate how the experiment detects the number of
CPU cores on different platforms.

We executed the experiment on four different machines:

• Machine A: A dual-core machine with no SMT support (Intel Core 2
Duo, 2.66 GHz, 3 GB RAM) running Windows 7 (run A)

• Machine B: A dual-core machine with no SMT support (AMD
Athlon64 X2 Dual Core 4600, 2.4 GHz, 4 GB RAM) running the
Linux 2.6.32 kernel (run B)

• Machine C: A quad-core machine (Intel Core i7-860, 2.80 GHz, 8
GB RAM) running Windows 7, with SMT disabled (run C1) and
SMT enabled (run C2)

• Machine D: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running the Linux 2.6.31 kernel, with SMT disabled
(run D1) and SMT enabled (run D2)

Similarly to the SMT experiments, the first two experiments have been
executed on machines equipped with CPUs from different vendors (Intel,
AMD), both without SMT support. For both machines, the experiment
yields the correct results with both experiments parts (see results in Fig-
ure 5.9). In each part, the third run leads to increased response times, hence
two cores are detected.

On the quad-core machine C, we executed the experiment twice with
SMT support disabled in run C1 and enabled in run C2 (see results in Fig-
ure 5.10). In run C1, the experiment completes after five runs, as increased
response times have been observed, and four cores are detected. In run C2,
the experiment continues, as no full CPU utilization has been observed yet.
With 8 parallel tasks, CPU utilization reaches 100%, leading to experiment
completion. Here, 4 physical cores and 8 virtual cores are detected. In

132

5.4. Number of CPU Cores

0
10

0
20

0
30

0
40

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 1 2 3

Part 1 Part 2

Task response time

(a) Experiment results for run A

0
10

0
20

0
30

0
40

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 1 2 3

Part 1 Part 2

Task response time

(b) Experiment results for run B

Figure 5.9.: Exemplary experiment results for experiment CPU.02 (Number of
cores): run A, run B

run C2, a difference between the first and the second part of the experiment
can be observed w.r.t. the increase of response times. This illustrates how
different types of CPU demands can be used to obtain robust experiment
results.

0
10

0
20

0
30

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 4 5 1 2 3 4 5

Part 1 Part 2

Task response time

(a) Experiment results for run C1
(SMT disabled)

0
10

0
20

0
30

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Part 1 Part 2

0
20

40
60

80
10

0

Task response time
CPU utilization

(b) Experiment results for run C2
(SMT enabled)

Figure 5.10.: Exemplary experiment results for experiment CPU.02 (Number of
cores): run C1, run C2

Finally, we executed the experiment on machine D, which featured the
same hardware resources as machine C, but a different operating system

133

5. Deriving CPU and OS Scheduling Properties

(Linux 2.6.31 kernel instead of Windows 7). The results of run D1 (SMT
disabled) and run D2 (SMT enabled) are shown in Figure 5.11. They are
similar to the results of run C1 and run C2 and show that the experiment
works with different operating systems.

0
10

0
20

0
30

0
40

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 4 5 1 2 3 4 5

Part 1 Part 2

Task response time

(a) Experiment results for run D1
(SMT disabled)

0
10

0
20

0
30

0
40

0

Number of parallel tasks

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Part 1 Part 2

0
20

40
60

80
10

0

Task response time
CPU utilization

(b) Experiment results for run D2
(SMT enabled)

Figure 5.11.: Exemplary experiment results for experiment CPU.02 (Number of
cores): run D1, run D2

5.5. Operating System Scheduler Timeslice Length

Based on the experiment for detecting the number of cores presented in the
previous section, we can now continue with detecting performance-relevant
properties of the operating system scheduler. This section deals with an
experiment to detect the timeslice length of the scheduler.

5.5.1. Motivation

General-purpose operating system (GPOS) schedulers often have to deal
with situations where more tasks are ready for execution on a CPU core
than cores are available. Typically, GPOS schedulers use timeslices to as-
sign a task to a CPU for a certain amount of time, and iterate through the

134

5.5. Operating System Scheduler Timeslice Length

waiting tasks in a round-robin manner to share the available processing
times among all competing tasks.

In performance evaluation, typically scheduling strategies are used that
are simple and abstract from timeslices, such as the processor sharing
scheduling strategy used in the PCM simulation [BKR09]. Processor shar-
ing assumes infinitesimal small timeslices. The longer the simulated re-
source request, the lesser impact of the OS scheduler timeslice length can
be observed. In such cases, processor sharing can provide an adequate ab-
straction of the OS scheduler in performance simulation. However, smaller
requests tend to be affected more by the timeslice length of the operating
system. To accurately simulate the response time of such requests, the sim-
ulation scheduler has to reflect the timeslice length of the operating system.

However, neither can the timeslice length be easily obtained through an
OS call, nor is it always available from OS specifications, as it may also
depend on the actual configuration of the operating system (for example,
Windows supports configuration settings in the Windows Registry that af-
fect the scheduler timeslice length). Hence, an automated approach to de-
tect the timeslice length is desired. In the following, we present a GINPEX

experiment to detect the timeslice length on various operating systems.

5.5.2. Experiment Design

The idea of the experiment is as follows (see Figure 5.12 for a graphical de-
scription of the experiment logic): In parallel running processes, CPU load
is issued on the machine. The number of parallel processes is twice as high
as the number of available cores, so that every parallel task issuing CPU
load is assumed to share a core with another task. One of the tasks (called
TaskMeas) repeatedly issues small amounts of CPU load, i.e. 20 ms CPU
load (to get a sufficient amount of results, the task is executed 1000 times).
Between the demands, response time measurements are taken.

135

5. Deriving CPU and OS Scheduling Properties

Process 2

Start new Process

Start new Process

20ms CPU Demand

iterations
reached?

Measure response time

No

Yes

Process 1

500ms CPU Demand

Process 1 completed?

No

Yes

Process #Cores*2

500ms CPU Demand

Process 1 completed?

No

Yes

···
· ···

Start new Process

2*
#C

or
es

 -
1

Process 2

Start new Process

Start new Process

20ms CPU Demand

iterations
reached?

Measure response time

No

Yes

Process 1

500ms CPU Demand

Process 1 completed?

No

Yes

Process #Cores*3

500ms CPU Demand

Process 1 completed?

No

Yes

···
· ···

Start new Process

3*
#C

or
es

 -
1

(repeat experiment with additional parallel processes to assess robustness of results)

Figure 5.12.: Timeslice length experiment logic

The remaining tasks also continuously issue CPU demands in order to
put load on the CPUs. On these tasks, no measurements are taken, thus,

136

5.5. Operating System Scheduler Timeslice Length

only measurement results for the first task are regarded. The experiment
assumes that the measured task results fall into two clusters. One portion
of results is expected to be approximately around 20 ms, i.e. the scheduler
put the executed demand into one timeslice. The remaining results are ex-
pected to be a lot higher than 20 ms. In this case, the scheduler interrupted
the executed demand and put the parallel running task on the CPU. As all
tasks are running with the same priority, we assume that the task interrupted
for exactly one timeslice. The measured result in this case includes the ex-
ecution of the 20 ms demand, in addition to the interruption time of one
timeslice. The difference between the average measured time of the first
cluster and the average measured time of the second cluster can be inter-
preted as the timeslice length. We use a clustering algorithm [HKY99] for
this experiment, which is a derivation of the k-means clustering method.

In a second part of the experiment, the logic is repeated with a different
number of parallel tasks in order to assess the robustness of the experiment
result.

5.5.3. Experiment Template

In the following, the experiment template is used to describe the experi-
ment.

Experiment ID: OSSCHEDULER.01
Experiment name: Detect OS scheduler timeslice length
Experiment domain: OS Scheduler
Detected experiment parameter: Operating system scheduler times-

lice length (integer)
Importance for performance analysis: General-purpose operat-

ing system (GPOS) schedulers split work of parallel running tasks
by issuing timeslices to the tasks. Depending on the timeslice
length, processing the amount of work of a task is being interrupted

137

5. Deriving CPU and OS Scheduling Properties

if it does not fit in a timeslice. On the other hand, a small amount
of work may be completed within one timeslice and thus may not
suffer further delays.

Configuration parameters: number of cores: Number of available
physical CPU cores; detected by Experiment CPU.02

Experiment execution logic: Issue a small amount (20 ms) of CPU
load (called TaskMeas) on a core and measure its response time,
while additional CPU load is issued to the core by one another pro-
cess. In some cases, the measured response time is then signifi-
cantly larger than 20 ms, indicating that the operating system issues
the CPU load of the other process in between for a timeslice. The
difference to the original 20 ms is then the timeslice length used be
the OS scheduler. For details, see Section 5.5.2 or the graphical
description shown in Figure 5.12.

Assumptions:

• The machine is idle.

• All tasks are running with the same priority. As there is no
task interactivity (e.g. I/O access), it can be assumed that all
tasks are running with the same priority, and that TaskMeas

has been interrupted for exactly one timeslice.

• The actual timeslice length is larger than 20 ms. A timeslice
larger than 20 ms has to be assumed in order to yield mea-
surements that can be used for analysis. However, given the
fact that all common operating systems use average times-
lice lengths between 30 ms and 200 ms (cf. [RS05, Aas05,
Mol07]), this is a valid assumption.

• All CPU-bound tasks have to be equally distributed to the
available cores. As GPOS schedulers aim at fully utilize the
available resources, we believe this is also a valid assumption.

138

5.5. Operating System Scheduler Timeslice Length

• The experiment is not able to detect a timeslice length that is
being adjusted dynamically depending on the priority of pro-
cesses. In this case, the priority management of OS processes
would have to be reflected in further experiments which are
subject to future work.

• Assumption for performance analysis: The performance anal-
ysis approach has to support OS timeslices during analysis.

• Required sensors: Response time sensor for TaskMeas.

Experiment robustness: Repeat the experiment with two parallel
processes issuing CPU load instead of one parallel process. The
process where response times are measured should then be inter-
rupted for two timeslices, hence an increase of the response time
should be observed that is twice as high compared to the first run.

Experiment performance:
The experiment runtime only depends on the number of iterations
for TaskMeas.

5.5.4. Experiment Robustness

In a system with no or little measurement noise, the results of the experi-
ments would look similar if the number of parallel processes is three times
as high as the number of available cores. The only difference in the re-
sults would be a higher difference in the average measured times of the
two clusters which would be twice as high as in the original experiment (as
TaskMeas has suffered interruptions lasting two timeslices).

Thus, we repeat the experiment with the setting described above and
compare the detected timeslice length of both executions. If the timeslice
length of the second execution is approximately twice as high as the times-
lice length of the first execution, the experiment results are considered sta-
ble.

139

5. Deriving CPU and OS Scheduling Properties

5.5.5. Experiment Performance

As the number of parallel tasks is directly related to the number of available
CPU cores, the experiment runtime does not increase with the number of
available CPU cores. The experiment runtime depends on the number of
iterations of TaskMeas, which has been set to 1000 in order to yield stable
measurement results. The performance overhead of the experiment analysis
(the clustering) can be neglected compared to the experiment execution.

In the first part of the experiment, TaskMeas shares a CPU core with
one other task, which would lead to an ideal execution time of 1000 · 2 ·
20 ms = 40 seconds. In the second execution of the experiment (executed
for assessing the robustness of results), TaskMeas shares a CPU core with
two other tasks, so it should take three times as long as specified, which
would be 1000 ·3 ·20 ms = 60 seconds. Thus, the overall execution time of
the experiment should be 100 seconds.

Exemplary execution of the experiment on a dual-core machine (Intel
Core 2 Duo, 2.20 GHz, 3 GB RAM, Windows XP) took 113 seconds.

5.5.6. Example

To illustrate how the experiment detects the length of the OS scheduler
timeslice, we executed the experiment on different operating systems. We
executed the experiments on the following machines:

• Machine A: A dual-core machine (Intel Core 2 Duo, 2.20 GHz, 3 GB
RAM) running Windows XP (run A)

• Machine B: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running Windows Server 2003 (run B)

• Machine C: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running Windows 7 (run C)

140

5.5. Operating System Scheduler Timeslice Length

• Machine D: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running Linux 2.6.22 (run D)

• Machine E: A quad-core machine (Intel Core i7-860, 2.80 GHz, 8 GB
RAM) running Linux 2.6.31 (run E)

Figure 5.13 shows the result for run A. The diagram plots the response
time of the two tasks TaskMeas in the two experiment runs as a cumula-
tive distribution function. For both tasks, the two clusters that have been
described in Section 5.5.2 are clearly visible in the two sharp increases in
each CDF. For the first experiment run, the difference in the average results
is 31 ms. The second experiment run yields a difference of 62 ms, which is
exactly twice as large as the difference observed in the first run. Thus, the
experiment results can be considered stable and a timeslice length of 31 ms
is derived.

0 20 40 60 80 100

Task response time (in ms)

P
ro

ba
bi

lit
y

TaskMeas run 1
TaskMeas run 2

0.
0

0.
5

1.
0

Figure 5.13.: Exemplary experiment results for experiment
OSSCHEDULER.01 (Timeslice length): run A

The actual timeslice of Windows is specified as a multiple of a schedul-
ing quantum. This quantum depends on the CPU architecture; on x86 and
x64 systems, it is 15.625 ms. In Windows XP, the default timeslice is spec-
ified as two quanta, yielding an actual timeslice length of 31.5 ms [RS05].

Compared to Windows XP, much larger timeslices are used in Windows
Server 2003, which is targeted at server systems. Windows Server 2003
aims at reducing context switching overhead caused by short timeslices and

141

5. Deriving CPU and OS Scheduling Properties

thus uses a default timeslice of 12 quanta (timeslice length 187.5 ms). This
timeslice length is quite accurately detected by the GINPEX experiment
performed in run B (see Figure 5.14): The first run yields a difference in
the two cluster average results of 187 ms. The difference in the second run
is 374 ms and hence is exactly twice as large.

0 100 200 300 400

Task response time (in ms)

P
ro

ba
bi

lit
y

TaskMeas run 1
TaskMeas run 2

0.
0

0.
5

1.
0

Figure 5.14.: Exemplary experiment results for experiment
OSSCHEDULER.01 (Timeslice length): run B

Finally, Figure 5.15 shows the results for run C, run D, and run E.
Run C was performed on a machine with Windows 7. Here, a times-
lice of 46 ms is detected, which approximates three scheduling quanta
(3 · 15.625 ms= 46.875 ms). Run D and run E executed on machines with
Linux installations. Run D ran on a Linux 2.6.22 kernel machine, which
features the Linux O(1) scheduler. This scheduler has a timeslice length
of 100 ms [Aas05], which is detected by the experiment as well. Run E
ran on a newer kernel (Linux 2.6.31) where the newer Linux CFS sched-
uler is used. According to the literature, the Linux CFS scheduler does not
use the notion of timeslices [Mol07]. However, GINPEX still detects that
the TaskMeas task is interrupted for 50 ms in the first run, and assumes a
timeslice length of 50 ms.

To sum up, the example showed that the experiment works with different
operating systems where different timeslice lengths are used.

142

5.6. Operating System Scheduler Load-balancing Properties

0 20 40 60 80 100 120

Task response time (in ms)

P
ro

ba
bi

lit
y

TaskMeas run 1
TaskMeas run 2

0.
0

0.
5

1.
0

(a) Experiment results for run C

0 50 100 150 200

Task response time (in ms)

P
ro

ba
bi

lit
y

TaskMeas run 1
TaskMeas run 2

0.
0

0.
5

1.
0

(b) Experiment results for run D

0 20 40 60 80 100 120

Task response time (in ms)

P
ro

ba
bi

lit
y

TaskMeas run 1
TaskMeas run 2

0.
0

0.
5

1.
0

(c) Experiment results for run E

Figure 5.15.: Exemplary experiment results for experiment
OSSCHEDULER.01 (Timeslice length): run C, run D, run E

5.6. Operating System Scheduler Load-balancing Properties

In this section, we present experiments to detect properties of the OS sched-
uler regarding load-balancing.

5.6.1. Motivation

The load-balancing strategy of the OS scheduler defines how tasks are
scheduled to the available CPU cores. Therefore, the scheduler has to de-
cide on which CPU processor (or core) to place new tasks (initial load-
balancing), and when to move tasks from one core to another in order
to avoid imbalanced CPU cores and yield balanced cores (dynamic load-
balancing).

143

5. Deriving CPU and OS Scheduling Properties

For both load-balancing actions, different policies exist. Depending on
the used load-balancing strategy, certain situations can occur in heavy-
loaded systems where a task might suffer a stronger response time slow-
down compared to other tasks due to imbalanced CPU cores. Thus, the
load-balancing policies have to be reflected in software performance pre-
diction in order to obtain accurate predictions of the real system behavior.

The experiments presented in this section aim at deriving those proper-
ties. The supported OS scheduling policies for load-balancing are based on
the policies presented in [Hap08].

5.6.2. Initial Load-balancing Strategy

Initial load balancing specifies how newly created tasks are assigned to
CPU processors (or cores). In [Hap08], the following policies are consid-
ered for GPOS scheduler models:

CyclicSplitting. The CyclicSplitting strategy assigns new tasks
to the available cores based on a round-robin algorithm.

SameAsParent. The SameAsParent strategy assigns a new task to
the same core its creator task is currently running on.

Random. The Random strategy assigns new tasks randomly on the
available cores.

5.6.2.1. Experiment Design

The idea of the experiment to detect the initial load-balancing strategy is
explained in the following and shown in the activity diagram in Figure 5.16.

The experiment has one configuration parameter which denotes the num-
ber of available CPU cores on the system. The value of this property can be
detected by experiment CPU.02 (see Section 5.4). We now create N parallel
processes where N is the number of CPU cores. In every process, 100 ms
CPU demand is repeatedly issued and its response time is measured. Each

144

5.6. Operating System Scheduler Load-balancing Properties

Process #Cores

Start new Process

Start new Process

100ms CPU Demand

Process add
completed?

Measure response time

No

Yes

Process 1

100ms CPU Demand

Process add
completed?

No

Yes

Process add

5000ms CPU Demand

iterations
reached?

No

Yes

···
· ···

Start new Process

#C
or

es

Measure response time

Figure 5.16.: Initial load-balancing experiment logic

of these processes is running on a dedicated core, as we have N cores and
N processes. In parallel, another process is created (called process add),
which issues a large amount of CPU demand (5000 ms). Once this demand
is completed, the process completes as well and starts new. Depending
on the initial load-balancing strategy of the operating system, the newly
created add processes will be assigned to different CPU cores. The load-
balancing strategy can be detected based on the response times measured in
the N processes, which are running on separate cores. The response times
of these processes indicate which process shared its core with the newly
created add process.

To further illustrate this experiment, Figure 5.17 shows a schematic ex-
ample of the results expected for the experiment. The time series contains
the results for N tasks executed in the experiment: Task 1, ..., task j, ...,
task N (1 ≤ j ≤ N). When a new add process is created, we expect bursts
for one of the N tasks (the task whose process shares the CPU core with
the newly created process). We can detect the initial load-balancing strat-

145

5. Deriving CPU and OS Scheduling Properties

Process 1 Burst:
Process 1 running

on a core with
contention

Response time measurement for process 1

Response time measurement for process j

Response time measurement for process N

100 ms

200 ms

Measured response
time

Time

...

Additional
process running

Additional
process running

Additional
process running

Process j Burst:
Process j running

on a core with
contention

Process N Burst:
Process N running

on a core with
contention

1 < j < N

...

N = #Cores

Figure 5.17.: Expected results for initial load-balancing experiment

egy by looking at the bursts and identifying the tasks whose response times
have been affected: Let burstn be a burst of the measured response times of
task n, i.e. a continuous set of response times of task n that are about twice
as high as expected. We expect such a set to contain 50 measurements
(50 · 100 ms corresponds to the CPU demand issued in the newly created
process). If a burst contains more measurements, we split the burst into
several bursts. Now, we calculate the probability p(i, j) of the transition
corei → core j, which denotes the probability that a burst j, a burst of the
task running on core j, occurs directly after a bursti, a burst of the task
running on core i. The probability p(i, j) can be estimated by the number
of burst j that occur directly after a bursti, divided by the total number of
burst j.

To derive the initial load-balancing strategy, we use a state transition di-
agram representing the burst transitions. The diagram contains N nodes,
where each node i ∈ {1...N} denotes a CPU core. The calculated proba-
bilities p(i, j) serve as transition probabilities. In an ideal setting, without

146

5.6. Operating System Scheduler Load-balancing Properties

any measurement noise, the experiment would detect the state transition
diagrams shown in Figure 5.18 for a dual-core machine.

Core 1
1.0

Core 2 0.0
1.0

0.0

Core 1
0.5

Core 2 0.5
0.5

0.5

Core 1
0.0

Core 2 1.0
0.0

1.0

Cyclic Splitting

Random

Same as Parent

Figure 5.18.: Ideal experiment results for different initial load-balancing strategies
on a dual-core machine

For some GPOS schedulers, results might be too noisy in order to detect
bursts. We will present such a behavior in Section 5.6.2.4. In this case,
the results indicate that the assignment of processes to cores is not fixed;
the scheduler initiates further load-balancing after a new process has been
created. Hence, the experiment cannot detect an initial load-balancing strat-
egy. However, we assume that in this case, the initial load-balancing strat-
egy can be neglected in performance prediction, as its effect is not visible in
measurements. A dynamic load-balancing strategy should be detected in-
stead that explains this effect. The corresponding experiment is presented
in Section 5.6.3.

5.6.2.2. Experiment Template

A brief description of the experiment is given in the following template.

Experiment ID: OSSCHEDULER.02
Experiment name: Detect OS scheduler initial load-balancing

strategy
Experiment domain: OS Scheduler

147

5. Deriving CPU and OS Scheduling Properties

Detected experiment parameter: Operating system scheduler ini-
tial load-balancing strategy (CyclicSplitting, SameAsParent,
Random)

Importance for performance analysis: The initial load-balancing
strategy is used by the operating system to decide on which CPU
core newly created tasks are placed. Depending on the used strat-
egy, this can lead to balanced or unbalanced cores and should thus
be reflected in performance analysis.

Configuration parameters: number of cores: Number of available
physical CPU cores; detected by Experiment CPU.02

Experiment execution logic: Issue and measure CPU load in N pro-
cesses where N is the number of CPU cores. Repeatedly issue a
larger CPU load in a separate process add. Observing bursts in the
measured response times of the N processes indicates which pro-
cess has shared a core with the newly created process. Based on
the sequence of process bursts, an initial load-balancing strategy is
derived. For details, see Section 5.6.2.1 or the graphical description
shown in Figure 5.16.

Assumptions:

• The machine is idle.

• The system features SMP processors where the load is equally
distributed to the available cores.

• The experiment aims at detecting typical load-balancing strate-
gies for GPOS schedulers. Real-time system schedulers might
use different strategies for which the experiment would have
to be adapted.

• Assumption for performance analysis: The performance anal-
ysis has to feature a notion of processes and provide support
for the load-balancing strategies detected by the experiment.

148

5.6. Operating System Scheduler Load-balancing Properties

• Required sensors: Response time sensors for the N tasks.

Experiment robustness: Experiment robustness can be assessed
by analyzing the quality of the detected response time bursts. If
the number of the detected bursts does not match the number of
expected bursts, or if the measured response times are spread across
a very wide range, the experiments should be repeated or it should
be checked whether all experiment assumptions hold on the target
platform.

Experiment performance: The experiment performance only de-
pends on the iterations of the add process.

5.6.2.3. Experiment Robustness and Performance

The robustness of the experiment results can be assessed by analyzing the
detected bursts and burst transitions. If results are too noisy, no bursts can
be detected, as a burst only is detected if the additional process shares a
CPU core only with one of the running N tasks. With more noise present
on the system, either the operating system will perform additional load-
balancing actions, leading to blurred response time bursts, or multiple
bursts of can be observed at the same time. Both can be detected by the
experiment analysis logic. In this case, the experiment can report unstable
results to the user.

The runtime of this experiment mainly depends on the specified itera-
tions of the add process. The more iterations of the add process, the more
bursts can be observed, leading to more stable transition probabilities. In
the current experiment setup, we perform 100 iterations of the add process.
If we assume that the add process runs twice as long its specified CPU de-
mand (as it shares the CPU core with one of the running N tasks), we can
assume an experiment execution time of 1000 · 2 · 5000 ms = 16 minutes
40 seconds.

149

5. Deriving CPU and OS Scheduling Properties

Exemplary execution of the experiment on a quad-core machine (Intel
Core i7-860, 2.80 GHz, 8 GB RAM, Windows 7) took 17 min 13 seconds.

5.6.2.4. Example

We illustrate the experiment with three runs that are executed on different
operating systems:

• Machine A: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running Windows 7 (run A)

• Machine B: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running Linux 2.6.22 (run B)

• Machine C: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running Linux 2.6.31 (run C)

0 100 200 300 400 500

10
0

15
0

20
0

25
0

Time [sec]

Ti
m

e
S

pa
ns

 [m
se

c]

Task 1
Task 2
Task 3
Task 4

Burst for Task
1

|v

4

|v

4

|v

1

|v

3

|v

2

|v

4

|v

1

|v

4

|v

3

|v

4

|v

1

|v

4

|v

2

|v

1

|v

3

|v

4

|v

2

|v

1

|v

3

|v

4

|v

2

|v

3

|v

4

|v

3

|v

1

|v

2

|v

4

|v

3

|v

2

|v

4

|v

3

|v

1

|v

2

|v

4

|v

3

|v

1

|v

2

|v

4

|v

3

|v

1

|v

2

|v

4

|v

2

|v

1

|v

3

|v

4

|v

2

|v

1

|v

3

|v

1

|v

4

|v

3

|v

2

|v

1

|v

Figure 5.19.: Exemplary experiment results for experiment
OSSCHEDULER.02 (Initial load-balancing strategy): run A

Figure 5.19 shows an excerpt of the timeseries containing the measure-
ment results of example run A. For the sake of readability, we show only
the first 50% of the results. However, the other half of the results looks
similar.

150

5.6. Operating System Scheduler Load-balancing Properties

As the experiment was performed on a quad-core machine, 4 tasks run-
ning in parallel processes where measuring issued CPU demand. For better
readability, we also include marks in the diagram denoting the task bursts.
The bursts in these tasks are clearly visible in the increased response time
measurements that lie between 180 and 200 ms. Moreover, the burst occur
in a cyclic way; thus, cyclic splitting is assumed as initial load-balancing
strategy,

0 100 200 300 400 500

10
0

15
0

20
0

25
0

Time [sec]

Ti
m

e
S

pa
ns

 [m
se

c]

Task 1
Task 2
Task 3
Task 4

4

|v

4

|v

2
|v

4

|v

4

|v

1
|v

2
|v

4

|v

4

|v

4

|v

4

|v

4

|v

4

|v

4

|v

2
|v

4

|v

2
|v

4

|v

4

|v

3
|v

1
|v

4

|v

4

|v

4

|v

3
|v

2
|v

2
|v

3
|v

4

|v

2
|v

4

|v

3
|v

4

|v

4

|v

4

|v

2
|v

4

|v

4

|v

3
|v

4

|v

4

|v

2
|v

2
|v

4

|v

1
|v

3
|v

3
|v

4

|v

4

|v

4

|v

2
|v

4

|v

1
|v

4

|v

1
|v

4

|v

2
|v

2
|v

4

|v

Figure 5.20.: Exemplary experiment results for experiment
OSSCHEDULER.02 (Initial load-balancing strategy): run B

The scheduler of the Linux 2.6.22 kernel uses a different strategy for
initial load-balancing: here, the SameAsParent strategy is used. This is
also visible in the results for the experiment run B shown in the timeseries in
Figure 5.20 (again, only the first part of the experiment results are shown).
Here, a disproportionately large number of bursts occurs for task 4. In the
experiment setup, task 4 is running in the process which forked the add

processes. Thus, the SameAsParent is derived here.
Compared to run A and run B, run C executed on the Linux 2.6.31 ker-

nel does not yield any continuous response time bursts (see Figure 5.21).
This is due to the fact that the Linux CFS scheduler initiates further load-
balancing leading to scattered response time bursts across all tasks. Hence,
no initial load-balancing strategy can be derived for this scheduler. For per-

151

5. Deriving CPU and OS Scheduling Properties

0 100 200 300 400 500

10
0

15
0

20
0

25
0

Time (in seconds)

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

Task 1
Task 2
Task 3
Task 4

Figure 5.21.: Exemplary experiment results for experiment
OSSCHEDULER.02 (Initial load-balancing strategy): run C

formance prediction, we neglect the initial load-balancing strategy in this
case, and use a dynamic load-balancing strategy explaining the observed
effect. The corresponding experiment is presented in Section 5.6.3.

5.6.3. Dynamic Load-balancing Strategy

Dynamic load balancing policies are used by GPOS schedulers to provide a
load-balancing of running tasks. These policies define when running tasks
are moved from a busy core to a core with less contention. In [Hap08],
the dynamic load-balancing policies Lazy and Active are regarded. Lazy
load-balancing only initiates load balancing when a core becomes idle, and
moves a task of a busy core to the idle core. On the other hand, Active
load-balancing performs load-balancing upon certain events, such as task
creation or completion, and in periodic intervals. While these policies cover
a wide range of available GPOS schedulers, we noticed that recent sched-
ulers (see [Mol07]) use a different scheduling strategy for dynamic load-
balancing: The Linux CFS scheduler, available in the Linux kernel since
kernel version 2.6.23, initiates load-balancing much earlier once the sys-
tem becomes unbalanced. Thus, we enhanced the dynamic load-balancing
policies presented in [Hap08] by the Immediate load-balancing strategy.

152

5.6. Operating System Scheduler Load-balancing Properties

Summing up, the experiment deriving the dynamic load-balancing strat-
egy has to be able to detect the following strategies:

Lazy load-balancing. Load-balancing is only initiated once a CPU
core becomes idle.

Active load-balancing. Load-balancing is initiated upon certain
events, such as task creation or task completion, and in periodic
intervals.

Immediate load-balancing. Load-balancing is initiated immedi-
ately once the system becomes imbalanced.

In the following, we present an experiment that detects the three different
strategies.

5.6.3.1. Experiment Design

The idea of the experiment for detecting the dynamic load-balancing strat-
egy of GPOS schedulers is as follows: We spawn three times as many par-
allel processes as available CPU cores. In each process, a 400 ms CPU
demand task is issued and measured. In this phase, we assume that the
system is in a balanced state, i.e. three tasks share one CPU core. After
a fixed number of iterations, we terminate two tasks sharing a core. We
then analyze the response times of the remaining tasks in order to detect
the dynamic load-balancing strategy.

Once the first tasks are terminated, we expect the operating system to
behave differently depending on the implemented dynamic load-balancing
strategy. After the completion of two tasks sharing a core, there is only
one task left running on this core. If the system employs a Lazy load-
balancing strategy, no further load-balancing is performed (as no core has
become idle yet). Hence, we expect one task with measured response times
that indicate no CPU contention (response times lie around the specified
400 ms). In contrast, all other remaining tasks still share a CPU core with

153

5. Deriving CPU and OS Scheduling Properties

two other tasks. For these tasks, we expect that the measured response times
is approximately three times as high as the specified task CPU demand.

On the other hand, if the system employs an Active load-balancing
strategy, the imbalanced state after the two terminated tasks should lead
to initiated load-balancing. In this case, we assume that one task is taken
from the CPU cores where three tasks are running, and put to the CPU core
where only one task is left. Hence, multiple tasks should observe a reduc-
tion of measured response times from around 1200 ms to around 800 ms,
but no task should run on a CPU core without further CPU contention.

Finally, if an Immediate load-balancing strategy is used, we assume that
load-balancing affects the response times of all tasks as soon as the first task
is terminated.

Start new
Process

Start new
Process

400ms
CPU Demand

interations
reached?

Measure
response time

No

Yes

Process 1

3*
#C

or
es

 -
1

400ms
CPU Demand

Measured response
times changed?

Measure
response time

No

Yes

Process 2

400ms
CPU Demand

interations
reached?

Measure
response time

No

Yes

Start new
Process

···
· ···

400ms
CPU Demand

Measured response
times changed?

Measure
response time

No

Yes

Process 3*#Cores

400ms
CPU Demand

interations
reached?

Measure
response time

No

Yes

Figure 5.22.: Dynamic load-balancing experiment logic

Figure 5.22 shows the corresponding activity diagram of the experiment
logic. The experiment spawns 3 ·N parallel processes where N is the num-
ber of CPU cores. The number of CPU cores is a configuration parameter
and can be detected by experiment CPU.02 (see Section 5.4).

154

5.6. Operating System Scheduler Load-balancing Properties

The first task issues 400 ms CPU demand in a loop which terminated af-
ter a fixed number of iterations. The other 3 ·N−1 tasks issue the same CPU
demand, but do not terminate after a fixed number of iterations. Instead,
the termination is triggered by changes in the measured response times.
After taking a response time measurement, the measurement is compared
with previous measurements. If the measurement is significantly higher or
lower, the task terminates. Using this termination criteria, only those tasks
are terminated that run on the same core as an earlier stopped task.

In order to prevent all tasks on the same core to stop at the same time,
an additional number of task iterations is performed once a change in the
measured response times is observed. This number of additional iterations
varies for each of the 3 ·N− 1 tasks, so that two tasks do not terminate at
the same time.

Figure 5.23 shows exemplary results for the three different load-balancing
strategies supported by the experiment. In the subfigures, the response
times of five out of the 3 ·N tasks are shown. We assume that the first three
tasks (task 1, 2, 3) are sharing one CPU core, and the other two tasks (task 4
and task 5) are sharing another CPU core. After a certain amount of time,
task 1 is terminated.

In the case of Lazy load-balancing shown in Figure 5.23 (a), task 2 and
task 3 observe decreased task response times. A little later, task 2 is termi-
nated. Now, task 3 observes response times around 400 ms, which indicates
that the task is running on a CPU core without further CPU contention.
After termination of task 3, the operating system initiates load balancing,
leading to decreased response times of task 4 and task 5. In the case of Ac-
tive load-balancing (see Figure 5.23 (b)), load-balancing is initiated ear-
lier: Here, load-balancing is performed once the cores are unbalanced after
termination of task 2. Finally, Figure 5.23 (c) shows exemplary response
times on a system where the Immediate load-balancing strategy is used.
Here, all remaining tasks observe decreased response times once task 1 is
terminated.

155

5. Deriving CPU and OS Scheduling Properties

400 ms

800 ms

Measured
response time

Time

1200 ms

Task 1
complete

Task 2
complete

Task 3
complete

Decreased
response times:
Load-balancing
has been initiated

(a) Lazy load-balancing

400 ms

800 ms

Measured
response time

Time

1200 ms

Task 1
complete

Task 2
complete

Task 3
complete

Load-balancing
has been
initiated

Load-balancing
has been
initiated

(b) Active load-balancing

156

5.6. Operating System Scheduler Load-balancing Properties

400 ms

800 ms

Measured
response time

1200 ms

Task 1
complete

Decreased response times
of all other tasks

Legend

Response time measurement for task 1

Response time measurement for task 2

Response time measurement for task 4

Response time measurement for task 5

Response time measurement for task 3

(c) Immediate load-balancing

Figure 5.23.: Expected results for dynamic load-balancing experiment

5.6.3.2. Experiment Template

In the following template, we briefly describe the experiment for detecting
the dynamic load-balancing strategy.

Experiment ID: OSSCHEDULER.03
Experiment name: Detect OS scheduler dynamic load-balancing

strategy
Experiment domain: OS Scheduler
Detected experiment parameter: Operating system scheduler dy-

namic load-balancing strategy (Lazy, Active, Immediate)
Importance for performance analysis: The dynamic load-balancing

strategy is used by the operating system to decide when load-balancing

157

5. Deriving CPU and OS Scheduling Properties

is performed to avoid imbalanced CPU cores. Depending on the
used strategy, this can be done at a different frequency. If a load-
balancing strategy tolerates imbalanced cores for some time, this
can affect the response times of tasks that are running on the corre-
sponding CPU cores. Hence, the load-balancing strategy should be
reflected in performance analysis.

Configuration parameters: number of cores: Number of available
physical CPU cores; detected by Experiment CPU.02

Experiment execution logic: Issue and measure CPU load in 3 ·N
processes where N is the number of CPU cores. Iteratively termi-
nate the running processes and observe the performance of the CPU
load in the remaining processes. Depending on the pattern of de-
creased response times due to termination of processes, the used
dynamic load-balancing strategy can be inferred. For details, see
Section 5.6.3.1 or the graphical description shown in Figure 5.22.

Assumptions:

• The machine is idle.

• The system features SMP processors where the load is equally
distributed to the available cores.

• The experiment aims at detecting typical load-balancing strate-
gies for GPOS schedulers. Real-time system schedulers might
use different strategies for which the experiment would have
to be adapted.

• Assumption for performance analysis: The performance anal-
ysis has to feature a notion of processes and provide support
for the load-balancing strategies detected by the experiment.

• Required sensors: Response time sensors for the 3 ·N tasks.

158

5.6. Operating System Scheduler Load-balancing Properties

Experiment robustness: Experiment robustness is assessed by
checking the spread of measured response times between the termi-
nation of processes. If the range of measurements is too large, the
response times are too noisy in order to detect the load-balancing
strategy.

Experiment performance: O(n) where n is the number of avail-
able CPU cores.

5.6.3.3. Experiment Robustness and Performance

In order to assess the robustness of experiment results, the interval between
the termination of processes must be large enough in order to check whether
the measured response times in that interval are stable enough for obtain-
ing useful results. We specified the first process to terminate after 50 iter-
ations, and each other process after a minimum of 30 additional iterations
once a change in the measured response times has been observed. If mea-
surements are too noisy, we expect processes to terminate earlier or not
at all in the expected time. In this case, the experiment can indicate that
the observed results are not robust enough for detecting the dynamic load-
balancing strategy. The performance analyst should then check whether
the machine under test meets the experiment requirements, especially the
assumption that the machine is idle.

The runtime of the experiments primarily depends on the number of ex-
ecuted processes and the duration of those processes. In the experiment,
3 ·N processes are issued, where N denotes the number of available CPU
cores. The first process issues 400 ms of CPU demand and is repeated
50 times. The remaining processes issue the same demand and terminate
once they detect a significant change in the measured response times, but
execute a minimum of 30 additional iterations before terminating (in or-
der to get stable results and to avoid that two processes are terminated at
the same time). In the first third of the experiment, some or all processes

159

5. Deriving CPU and OS Scheduling Properties

share a CPU core with two other processes. In the second third, the pro-
cesses share a CPU core with one other process. Finally, in the last third,
most processes have been terminated, leaving the remaining processes on
a CPU core without additional load. However, we are not interested in the
measurements of the last third, as the load-balancing strategy can already
be detected by looking at the measurements up to the point when the first
N processes have been terminated. Hence, we specified the maximum num-
ber of iterations of all tasks as 50+(N ·3) ·30 ·2 in order to get a sufficient
number of additional iterations while terminating the first three processes.
If we assume that during these iterations, the measured response times are
three times as high as specified (because the tasks share a core with two
other tasks), we can calculate the upper bound of the experiment runtime as
(50+(N ·3) ·30 ·2) ·3 ·400 ms. On a quad-core machine, the runtime would
then be not longer than (50+(4 ·3) ·30 ·2) ·3 ·400 ms = 15 min 24 seconds.
The effective experiment runtime is expected to be considerably shorter,
as the response time of the CPU tasks should decrease as more and more
processes get terminated.

Exemplary execution of the experiment on a quad-core machine (Intel
Core i7-860, 2.80 GHz, 8 GB RAM, Windows 7) took 9 minutes 27 seconds.

5.6.3.4. Example

For illustration, we ran the experiment on the same machines as the initial
load-balancing experiment (see Section 5.6.2.4):

• Machine A: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running Windows 7 (run A)

• Machine B: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running Linux 2.6.22 (run B)

• Machine C: A quad-core machine (Intel Core i7-860, 2.80 GHz,
8 GB RAM) running Linux 2.6.31 (run C)

160

5.6. Operating System Scheduler Load-balancing Properties

As the runs were performed on a quad-core machine, 12 parallel running
processes executing CPU tasks were started in each run. As explained in
Section 5.6.3.1, each CPU task issued CPU load that is expected to last
400 ms on a core without CPU contention. Figure 5.24 shows an excerpt
of the timeseries with the response time measurements in run A (the Win-
dows 7 machine). In this run, task 1 terminates after approx. 56 seconds.
Now, task 5 and task 9 observe decreased response times, as they used to
share a core with task 1 and now only share a core with each other. The
change in response times lead to the termination of task 5 after approx.
160 seconds of experiment runtime and task 9 after approx. 255 seconds of
experiment runtime. Once task 5 has been terminated, task 9 measures re-
sponse times of approx. 400 ms, which indicates that task 9 now runs on a
core without contention. This also indicates that the operating system em-
ploys a Lazy load-balancing strategy, as the cores already are imbalanced,
but no load-balancing is performed yet. Only when task 9 terminates, the
CPU core that task was running on becomes idle. Now, the operating sys-
tem moves task 8 and task 12 to the idle core, which is indicated by the
decreased response times measured by these tasks.

0 50 100 150 200 250

40
0

60
0

80
0

10
00

12
00

14
00

Time (in seconds)

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

Task 1
Task 2,3,6,7,10,11
Task 4
Task 5
Task 8,12
Task 9

Figure 5.24.: Exemplary experiment results for experiment
OSSCHEDULER.03 (Dynamic load-balancing strategy): run A

161

5. Deriving CPU and OS Scheduling Properties

In run B (the Linux 2.6.22 machine), the results look similar at the begin-
ning (see Figure 5.25). After approx. 58 seconds, task 1 terminates, leading
to decreased response times of task 4 and task 10. Task 4 terminates af-
ter approx. 138 seconds of experiment runtime. This leads to decreased
response times of task 5, 8, and 9 as well. This indicates that the OS sched-
uler has moved one of the three tasks to the core the remaining task 10 was
running on. This behavior suggests that the OS scheduler is using an Ac-

tive load-balancing strategy, i.e. load-balancing is initiated upon process
completion when the cores are unbalanced.

0 50 100 150

40
0

60
0

80
0

10
00

12
00

14
00

Time (in seconds)

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

Task 1
Task 2, 3, 6, 7, 11, 12
Task 5, 8, 9
Task 4
Task 10

Figure 5.25.: Exemplary experiment results for experiment
OSSCHEDULER.03 (Dynamic load-balancing strategy): run B

Finally, Figure 5.26 shows the results for run C. Here, the results are
quite different to the results of run A and run B. After termination of task 1,
all other remaining tasks observe decreased response times. In addition,
the measured response times show a much higher variance than for the
other systems; for Lazy or Active load-balancing, the termination of task 1
did not affect the tasks running on the three remaining cores. This isola-
tion does not hold for the Linux 2.6.31 system used in run C. Here, load-
balancing is initiated immediately once the cores are imbalanced. Hence,
the Immediate load-balancing strategy is detected here.

162

5.7. Including Experiment Results in Performance Prediction

Detecting the Immediate load-balancing strategy for Linux 2.6.31 is
consistent with the experiment results obtained with the initial load-balancing
strategy experiment on the same machine (see Section 5.6.2.4): The Imme-
diate load-balancing strategy explains why no bursts can be detected in
the initial load-balancing strategy experiment.

0 50 100 150

40
0

60
0

80
0

10
00

12
00

14
00

Time (in seconds)

Ta
sk

 re
sp

on
se

 ti
m

e
(in

 m
s)

Task 1
Task 2 − 12

Figure 5.26.: Exemplary experiment results for experiment
OSSCHEDULER.03 (Dynamic load-balancing strategy): run C

5.7. Including Experiment Results in Performance Prediction

In the following, we explain how we adapted the performance simulation of
the PCM in order to take into account the derived properties of this chapter.

Experiments CPU.01 and CPU.02 aim at deriving CPU properties. The
first experiment CPU.01 derives SMT availability. This property is mainly
used as a configuration parameter for the following experiment CPU.02,
which detects the number of available CPU cores. The number of cores
property can directly be mapped to PCM models, as the number of cores
can be specified for a ProcessingResourceSpecification. This at-
tribute is then used in the PCM simulation to simulate a resource with the
corresponding number of resource queues. Reflecting SMT in performance
prediction is not yet supported. It is still unclear how the performance im-

163

5. Deriving CPU and OS Scheduling Properties

pact of a CPU with SMT support should be taken into account. One could
specify the number of virtual cores as number of cores for a PCM resource,
if SMT availability has been detected. However, then the simulation has to
be adapted in some way, as the number of virtual resources does not indicate
how many CPU requests can be executed in parallel without a slowdown
due to CPU contention. How large the actual performance impact of SMT
is depends not only on the used CPU technology, but also on the type of
CPU load that is issued to the CPU resource. Hence, in order to accurately
reflect SMT in performance prediction, the way CPU load is modeled in the
architecture model has to be adapted. As this probably requires changes in
the performance model, as well as a study on how to reflect SMT-related
CPU load at the architecture and/or design level of the software application,
we leave SMT support in performance prediction to future work.

The OS scheduling properties detected by the experiments OSSCHED-
ULER.01, OSSCHEDULER.02, and OSSCHEDULER.03 can be inte-
grated into the PCM performance prediction by introducing appropriate
configuration points in the PCM simulation scheduler. We included sup-
port for the properties in the simulation as follows: The timeslice length
property, if specified, leads to a round-robin scheduling strategy for the
corresponding CPU resource. If a process is issuing CPU demand to that
resource in the simulation, the simulation puts the demand in a CPU queue.
In regular intervals that correspond to the specified timeslice length, the
simulation interrupts the demand that is currently executing on one of the
CPU’s cores, inserts the demand at the end of the CPU queue, and as-
signs the next CPU demand in the queue to the core. If no timeslice length
is specified, the PCM simulation uses multi-queue processor sharing for
scheduling CPU demands.

Initial and dynamic load-balancing strategy support has been imple-
mented in the PCM as well. For initial load-balancing, the initial queue
on which a new demand is scheduled to, is chosen based on the speci-
fied cyclic-splitting, same-as-parent, and random strategy. For lacy load-

164

5.8. Validation

balancing strategy, load-balancing is only done in the simulation when a
core becomes idle. If an active load-balancing strategy is specified, the
simulation performs as soon as the length of two CPU queues differ by
more than 1. If such an imbalance occurs, a random task from the longer
waiting queue is transferred to the shorter waiting queue. Finally, imme-
diate load-balancing support can be represented in the simulation by using
the round-robin scheduling strategy (if the timeslice length is available) or
the MPS scheduling strategy (if no timeslice length is available).

In the following section, we show how the simulation predicts the per-
formance of a software for various operating systems while taking the OS
scheduling strategies into account.

5.8. Validation

In this chapter, we presented various experiments that derive CPU and
OS scheduling properties in an automated way. For each experiment, we
demonstrated that the correct results could be derived on different plat-
forms. In this section, we combine the various properties in software per-
formance prediction and validate whether a sufficient prediction accuracy
can be achieved while reflecting those properties.

The validation is based on the validation levels for model-based predic-
tion approaches defined by Böhme and Reussner [BR08]. Here, differ-
ent types of validation are distinguished. Level I validation (called metric
validation) is concerned with the comparisons of predictions and measure-
ments. The validation presented in this section resides on this level. Level II
validation (called applicability validation) checks whether input data can be
a obtained reliably and whether the prediction results can be interpreted by
humans in a meaningful way. While the first part is validated through the
examples provided for each experiments, the latter part can only be vali-
dated in a larger case study involving human participants. This is outside
the scope of this thesis; however we argue that the benefits of our approach,

165

5. Deriving CPU and OS Scheduling Properties

especially the high degree of automation supported, are evident. Finally,
level III validation (called benefit validation) empirically validates whether
the overall approach has benefits compared to competing approaches. As
this involves comparing different development projects (which partly use
the approach), this involves a lot of effort which again is outside the scope
of this thesis.

Every property whose value is detected by an experiment in this chapter
was chosen based on existing work that motivated and validated its rele-
vance for performance. For example, Happe [Hap08] also considered the
operating system scheduling properties detected in this chapter for a perfor-
mance model of operating system schedulers. However, for the set of this
chapter’s properties, no validation exists that compares performance predic-
tions with measurements. In [Hap08], a performance model that consists
of a larger set of properties is validated using a real-world case study. The
influence of a specific property on prediction accuracy cannot be identified
from this validation.

Hence, we provide a validation of performance-relevant properties de-
tected by experiments in this chapter using a real-world case study. Val-
idating the prediction accuracy of a performance prediction reflecting the
derived properties involves the following validation questions we are an-
swering in this section:

1. Does a performance prediction that reflects the derived properties
yield a prediction with sufficient prediction accuracy?

2. How is prediction accuracy influenced by the different properties?

3. Is the prediction accuracy increased compared to a performance pre-
diction that does not reflect those properties?

In the following, we present the validation scenario which we use to
answer these questions. Afterwards we describe how we executed the case
study and discuss the results.

166

5.8. Validation

5.8.1. Validation Scenario

For the validation, we compare the measurements of a software system’s
performance to the prediction results of a prediction based on a software
system model. As a case study, we selected the ray tracing software POV-
Ray [Per], which we deployed on a server as a service. We chose POV-Ray
due to several reasons: First, it is a freely available third-party software
that has been ported to various operating system platforms; second, POV-
Ray has been used in validation of performance analysis before [BBB96,
ENC+12]; and third, executing POV-Ray generates mainly CPU load, mak-
ing it an ideal candidate for validating CPU and OS scheduling properties.

 Client

Web
Browser

Server

PovRay
Server

 Client

Figure 5.27.: Overall on the POV-Ray case study setup

An overview on the case study setup is given in Figure 5.27. Users can
access the POV-Ray server and upload rendering scripts. The server takes
rendering scripts as input to render images. These images are then trans-
ferred to the user.

When it comes to the performance of the POV-Ray server, the perfor-
mance analyst might want to analyze how the server handles an increased
number of parallel users requests. In this case, a model-based performance
prediction approach can be applied, as it facilitates the simulation of heavy
load induced by a large number of parallel users. This saves the analyst
from having to generate parallel users requests on the real system. He
only has to provide a model of the POV-Ray server that includes perfor-
mance data which he can obtain from measuring the components when no
resource contention is present. The model is then used in performance anal-

167

5. Deriving CPU and OS Scheduling Properties

(a) Sign (b) Box (c) Vase

Figure 5.28.: Example of images for each of the three POV-Ray workload classes

ysis where the number of users is increased and the slowdown of response
times due to resource contention is taken into account.

For the case study, we use three different POV-Ray workloads, each us-
ing a different rendering script:

Sign: A simple image with no complex rendering effects.
Box: A three-dimensional box with objects inside.
Vase: A vase surrounded by mirrors. This script is part of the POV-

Ray benchmark.

All rendering scripts where taken from the POV-Ray sample script li-
brary. The rendered image for each workload class is shown in Figure 5.28.
The three rendering scripts feature a different rendering time. Details on
the workload are given in Table 5.1.

Table 5.1.: Workload of the POV-Ray case study
Request type Mean service time Relative frequency
Sign 408 ms 60%
Box 730 ms 30%
Vase 3590 ms 10%

168

5.8. Validation

5.8.2. Execution

Based on this workload information shown in Table 5.1, we created a per-
formance model of the POV-Ray rendering server using the Palladio Com-
ponent Model (see Section 2.1.4 for details on the Palladio Component
Model). For this case study, we used a quad-core system (Intel Core i7-860,
2.80 GHz, 8 GB RAM) and a user workload with an arrival rate of 250 re-
quests per minute, which resulted in a utilization of all cores. We deployed
the POV-Ray rendering service on three different operating systems: Win-
dows 7 (run A), Linux 2.6.22 kernel using the Linux O(1) scheduler (run B),
and Linux 2.6.31 kernel using the Linux CFS scheduler (run C). We derived
the scheduler properties using the GINPEX experiments described in Sec-
tion 5.3–5.6 (see the corresponding examples for details on the experiment
results). We then used the PCM with the specialized scheduler (see Sec-
tion 5.7) in order to simulate the performance of the different deployment
scenarios of the POV-Ray rendering server with the increased user load
(Prediction A).

5.8.3. Results

In the following, we present the prediction results for the POV-Ray server
case study. Figure 5.29 gives an overview on the different response time
results. The subfigures show the cumulative distribution function for mea-
surements and predictions of the different requests on the three operating
systems. The prediction results are taken from the PCM simulation reflect-
ing the derived OS scheduling properties.

The prediction error does not exceed 5% in most cases. Only for the Box
rendering request under Linux 2.6.22, the error is a bit higher (6.65%), but
still acceptable.

In order to answer the validation questions 2 and 3, we conducted addi-
tional predictions where only a subset of the detected properties was cov-
ered. First, we conducted a prediction with a scheduler configuration in-

169

5. Deriving CPU and OS Scheduling Properties

500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measurement

Prediction

(a) Sign rendering
under Windows 7

1000 1500 2000 2500 3000 3500 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measurement

Prediction

(b) Box rendering
under Windows 7

500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measurement

Prediction

(c) Vase rendering
under Windows 7

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measurement

Prediction

(d) Sign rendering
under Linux 2.6.22

0 500 1000 1500 2000 2500 3000 3500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measurement

Prediction

(e) Box rendering
under Linux 2.6.22

4000 6000 8000 10000 12000 14000 16000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measurement

Prediction

(f) Vase rendering
under Linux 2.6.22

400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measurement

Prediction

(g) Sign rendering
under Linux 2.6.31

1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measurement

Prediction

(h) Box rendering
under Linux 2.6.31

4000 6000 8000 10000 12000 14000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measurement

Prediction

(i) Vase rendering
under Linux 2.6.31

Figure 5.29.: Comparison of prediction and measurements for the POV-Ray ser-
vices running on Windows 7, Linux 2.6.22, and Linux 2.6.31

cluding the derived load-balancing properties, but no timeslice length (pre-
diction B). This prediction was done for the Windows 7 and the Linux 2.6.22
system. The configuration of the Linux 2.6.31 system did not use times-
lices anyway, as the detected dynamic load-balancing strategy is imple-
mented in the simulation using a MPS scheduling strategy. The prediction

170

5.8. Validation

yielded an increased prediction error that lies between 5.23% (Sign request,
Linux 2.6.22) and 27.21% (Vase request, Windows 7). The complete results
are given in Table 5.2.

Table 5.2.: Detailed prediction results of the POV-Ray case study
(all results in milliseconds; in brackets: prediction error)

Request Measured Predicted Predicted Predicted
(no timeslices) (using MPS)

Windows 7
Sign 748 745 (0.40%) 795 (6.28%) 592 (20.86%)
Box 1319 1290 (2.20%) 1454 (10.24%) 1102 (16.45%)
Vase 6987 6986 (0.01%) 8888 (27.21%) 5791 (17.12%)

Linux 2.6.22
Sign 688 686 (0.29%) 724 (5.23%) 592 (13.95%)
Box 1278 1193 (6.65%) 1191 (6.81%) 1102 (13.77%)
Vase 6282 6100 (2.90%) 5921 (5.75%) 5791 (7.82%)

Linux 2.6.31
Sign 543 545 (0.37%) → 592 (9.02%)
Box 1014 989 (2.47%) → 1102 (8.68%)
Vase 5251 5199 (0.99%) → 5791 (10.28%)

We then predicted the POV-Ray services with a scheduling strategy that
uses none of the detected properties (prediction C). Here, we used multi-
queue processor sharing (MPS, a widely used scheduling strategy to predict
resource behavior in software performance analysis. Compared to predic-
tion B, the average prediction error increases slightly. The prediction errors
lie between 7.82% (Vase request, Linux 2.6.22) and 20.86% (Sign request,
Windows 7). However, the difference in prediction error between predic-
tion A and prediction B was significantly larger than between prediction B
and prediction C. This indicates that the reflection of the timeslice length
has a stronger influence on prediction accuracy than the reflection of the
load-balancing strategies. Note that for Linux 2.6.31, the scheduling strat-
egy without using timeslices is identical to MPS, as the detected Immedi-

171

5. Deriving CPU and OS Scheduling Properties

ate load-balancing strategy is covered by the MPS strategy in the PCM
simulation.

5.8.4. Discussion

The POV-Ray case study showed that including fine-grained properties of
the execution environment, such as the OS scheduler timeslice length and
OS scheduler load-balancing strategies, can lead to improved accuracy in
performance prediction. In the case study, the overall prediction error could
be reduced to below 5% in most cases. A prediction not reflecting the
derived properties led to a prediction error of up to 20%. In some cases,
such a prediction error might be sufficient, for example if a prediction is
conducted at very early stages of the software life-cycle. However, the
derived properties can still be useful: For example, when predicting the
performance of shorter requests than in the case study, the influence of the
operating system can be stronger than for the requests that were present in
the POV-Ray case study. In this case, predicting the performance with and
without the derived properties can lead to a larger difference in prediction
results.

For the case study, we identified the following threats to validity:

• We just executed the POV-Ray service with a subset of predefined
POV-Ray rendering scripts. Different scripts might have an impact
on the performance model and also on the prediction results. How-
ever, we tried to choose a balanced set of rendering scripts with dif-
ferent performance characteristics in order to create a realistic sce-
nario of image rendering.

• The POV-Ray application mainly issues CPU load during execution.
This leads to performance behavior where reflecting the chosen ex-
ecution environment properties can yield significant improvements
in the predicted performance. However, a different case study, es-
pecially a case study for a different domain, might lead to different

172

5.9. Limitations and Assumptions

results. Extending the validation in this way has to be left to fu-
ture work. In literature, an extensive performance model with vari-
ous OS scheduling properties has been validated in a case study for
the domain of supply chain management (SCM) enterprise applica-
tions [Hap08]. We only cover a subset of these properties with the
experiments presented in this chapter, but the SCM case study indi-
cates that the predictions might work for different domains as well.

• We conducted the case study on three different operating systems, all
having different scheduler implementations. The results of the case
study may be limited to these operating systems.

5.9. Limitations and Assumptions

In the following, we discuss some limitations and assumptions of the ex-
periments presented in this chapter.

Controlled environment. We assume that the experiments of this
chapter are executed in a controlled environment, i.e. no additional
load is present on the machine on which the experiments are run-
ning. This is due to the fact that additional load would disturb the
measurements in a such a way that no meaningful property value
can be detected. We describe how noisy results can be detected
when analyzing experiment results. While detecting measurement
noise during experiment analysis does not help in deriving the prop-
erties on a machine with additional load, it can alert the performance
analyst who may not have monitored the system’s load.

SMP systems. The experiments assume that the machine is featur-
ing a symmetric multiprocessing (SMP) system. In SMP systems,
all processors or processor cores are similar with respect to their
performance properties. We assume that parallel CPU load is evenly
distributed to all available CPU processors or cores. In asymmetric

173

5. Deriving CPU and OS Scheduling Properties

multiprocessor environments, CPU load might be distributed to dif-
ferent processors or cores depending on their capability. The perfor-
mance influence of such environments needs further investigation.
In addition, such environments might involve different strategies for
load-balancing that are not yet reflected by our experiments.

GPOS schedulers. The experiments have been designed to derive
meaningful property values for general-purpose operating system
(GPOS) schedulers. Such schedulers are typically used in systems
running enterprise software. However, in other domains, such as
embedded systems, real-time schedulers are extensively used. Such
systems, as well as performance prediction approaches for such sys-
tems (e.g. [BMdW+04, Wal03]), might involve different scheduling
strategies that are not covered by the experiments. In order to apply
the GINPEX approach to these systems, additional experiments may
have to be defined.

Memory effects and further OS scheduling properties. When it
comes to CPU and OS scheduling properties, a lot more performance-
relevant properties exist that are not taken into account by the de-
fined experiments. This includes for example memory effects in
SMP environments (such as the effects of shared caches or mem-
ory buses). Here, additional research on how to model memory
demand in performance models (such as the PCM) is required first
of all. Then, additional experiment could be defined with GINPEX

deriving additional execution environment properties concerning
the memory. Other OS scheduling properties could also be taken
into account by additional experiments. The current experiments
do not focus on how the operating system handles processes that
have different priorities, or whether the scheduler provides some
mechanism to favor I/O-bound tasks over CPU-bound tasks. These
properties can affect software performance to a large extent [Hap08]
and are therefore also candidates for additional experiments.

174

5.10. Summary

5.10. Summary

In this chapter, we presented various experiments to detect CPU and OS
scheduling properties of the software execution environment. Regard-
ing CPU properties, the experiments detect simultaneous multithreading
(SMT) availability and the number of CPU cores. The OS scheduling
experiments detect the timeslice length of the scheduler as well as load-
balancing properties.

For each experiment, we discussed why the detected property can be
performance-relevant and provided a detailed description of the experiment
logic. In addition, we used the experiment template presented in Chapter 4
to further illustrate the experiment, and showed in various examples how
the experiment detects the corresponding property value on different plat-
forms.

We finally performed a case study where we showed that the prediction
accuracy of a performance prediction can be improved by taking the defined
properties into account.

The experiments of this chapter demonstrate the GINPEX approach w.r.t.
rather fine-grained execution environment properties. In the following
chapter, we will apply the approach to a different experiment domain: We
will cover experiments that aim at deriving properties present in virtualized
environments.

175

6. Deriving Virtualization Properties

In the previous chapter, we presented various experiments for the auto-
mated detection of CPU and OS scheduling properties. Reflecting such
properties in performance analysis can be beneficial when the analyzed
software system has a strong focus on CPU load. In this case, existing work
showed that such properties can have a significant impact on the software
performance [Hap08, SWHB06].

In this chapter, we apply the GINPEX approach to a different experiment
domain, i.e. the domain of software running in a virtualized environment.
We show that the approach, including the metamodel and its underlying
concepts presented in Chapter 4, can directly be reused for the experiments
presented in this chapter. The following experiments derive certain proper-
ties of the virtualized environment. In different case studies, we show that
reflecting these properties in performance analysis can increase the predic-
tion accuracy.

Benevenuto et al. argued in [BFS+06] that performance analysis in vir-
tualized environments can help to answer the following questions:

• What is the performance impact if a software is migrated from a non-
virtualized to a virtualized environment?

• How many servers will be needed to run a software in a virtualized
environment with acceptable performance?

• What is the best configuration of the virtualized environment for a
certain software?

177

6. Deriving Virtualization Properties

Existing performance prediction approaches, such as the PCM [BKR09],
can be used to answer such questions. By improving the performance anal-
ysis with properties detected by the experiments in this chapter, we aim at
increasing the accuracy of the predicted performance of virtualized soft-
ware applications.

6.1. Experiments Overview

In this chapter, we present two experiments in detail and discuss a third ex-
periment which all aim at detecting performance-relevant properties present
in virtualized systems. The first experiment detects the overhead induced
by the virtualization layer. When running in a virtual machine, accessing
certain resources (such as the CPU, disk or network) might take longer
compared to accessing the same amount in a non-virtualized environment.
The second experiment extends the overhead model detected by the first
experiment. In this experiment, we focus on additional overhead caused
by the virtualization layer. This overhead can be observed when parallel
requests are issued to resources at the same time. In this case, the observed
overhead can depend on the parallel load and thus has to be reflected in per-
formance prediction as well. Both experiments are validated using different
case studies. Finally, we provide the concept of a third experiment that aims
at deriving a simple model of additional load present on the platform. Ad-
ditional load can especially be a problem in virtualized environments, as
a virtual machine might share resources with a different virtual machine
where load is present.

The three experiments do not depend on each other, but depend on the
parameter detected by the experiment presented in Chapter 5 that detects
the number of available CPU cores. An overview on the experiments and
the experiment dependencies is given in Figure 6.1. As for the experiments
presented in Chapter 5, the arrows between the experiments indicate a de-
tected parameter that is used as a configuration parameter. In order to ex-

178

6.2. Scientific Challenges

ecute the experiments, either the number of cores available to the involved
machines has to be specified by the user, or the corresponding experiment
has to be executed first.

Experiment
VIRTUALIZATION.01

Detect virtualization
overhead

Experiment
VIRTUALIZATION.02

Detect load-dependent
overhead

Experiment
VIRTUALIZATION.03

Detect additional load

number of
CPU cores

(detected by
experiment

CPU.02;
see Chapter 5)

Figure 6.1.: Overview on the experiments presented in this chapter

6.2. Scientific Challenges

This chapter introduces experiments to detect performance-relevant prop-
erties that are especially relevant in virtualized systems. As for the exper-
iments in the previous chapter, the scientific challenges outlined in Sec-
tion 3.2 also apply to the experiments of this chapter. In addition, the fol-
lowing scientific challenges w.r.t. virtualization properties can be identified:

• How can performance-relevant factors of a virtualized environment,
such as virtualization overhead, load-dependent overhead, or addi-
tional load, be derived through automated experiments?

• How can the detected properties be integrated into software perfor-
mance prediction?

• What is the impact of the different properties on performance predic-
tion accuracy?

179

6. Deriving Virtualization Properties

The following Sections 6.3 to 6.5.1 deal with the different experiments
in detail.

6.3. Virtualization Overhead

In this section, we present an experiment that detects the overhead that
is induced by the virtualized environment. This overhead model will be
extended in Section 6.4 by an experiment that detects load-dependent over-
head.

6.3.1. Motivation

In a virtualized environment, the software runs inside virtualized operat-
ing systems instead of operating systems that are directly deployed on the
native hardware. A virtualized operating system is running on top of a
hypervisor which is responsible for managing virtual machines and dele-
gating resource requests of virtual machines (VMs) to the actual hardware
(see Section 2.3.3 for details). Compared to a software running in a non-
virtualized operating system, virtualized software can only access hardware
(such as CPU, disk, or network) through the hypervisor layer. This indi-
rection of resource access can lead to significant overhead in the observed
access response times. Hence, such overheads should be reflected in perfor-
mance prediction of software applications running in VMs or are migrated
to VMs.

Figure 6.2 gives an example for a scenario where performance overhead
due to virtualization can arise. A software system is to be migrated from a
non-virtualized to a virtualized system. We assume that the hardware stays
the same, only a virtualization layer is introduced (for example, in order
to add additional virtual machines in the future). The virtualization layer,
through which resource requests of the software are being delegated, adds
an overhead to the performance of such requests. The experiment presented
in the following aims at quantifying this overhead.

180

6.3. Virtualization Overhead

Virtual Machine

Server (virtualized)

CPU Disk Network

Application

resource requests (through
virtualization layer / hypervisor)

Server (non-virtualized)

CPU Disk Network

Application

resource
requests

changed
deployment

scenario

Operating System Operating System

Figure 6.2.: Migration scenario introducing virtualization overhead

6.3.2. Experiment Design

The idea of the experiment is as follows: For a certain resource demand
type, the same amount of resource demand is issued both on the non-
virtualized machine and on the virtualized machine. As we assume identi-
cal hardware in both settings, the observed response time in the virtualized
machine is not expected to be lower compared to the issued load on the
non-virtualized machine. If it is higher, we calculate a response time over-
head for this resource type. Afterwards, the experiment continues with a
different type of resource demand.

Figure 6.3 shows the activity diagram of the experiment logic. In the first
part, resource demands are issued on the non-virtualized machine. As an
example, the displayed logic contains two different resource demand types.
First, CPU demand is issued on the non-virtualized machine. In order to
fully utilize the CPU during the experiment, all CPU cores are utilized us-
ing parallel processes (the number of parallel processes equals the number
of available CPU cores that is passed to the experiment as a configuration
parameter). For each issued CPU demand, response time measurements
are taken. In order to gain stable measurements, CPU demand is repeatedly
issued multiple times before the experiment continues with a different re-
source demand type. As a second demand type, disk load is issued in the

181

6. Deriving Virtualization Properties

Process #Cores

500ms CPU Demand

iterations
reached?

Measure response time

No

Yes

Process 1

500ms CPU Demand

Thread 1
completed?

No

Yes

···
· ···

#C
or

es

Measure response time

10MB Disk Demand

iterations
reached?

Measure response time

No

Yes

Perform on non-virtualized machine

Process #Cores

500ms CPU Demand

iterations
reached?

Measure response time

No

Yes

Process 1

500ms CPU Demand

Thread 1
completed?

No

Yes

···
· ···

#C
or

es

Measure response time

10MB Disk Demand

iterations
reached?

Measure response time

No

Yes

Perform on virtualized machine

Repeat experiment with different resource demand types

Figure 6.3.: Virtualization overhead experiment logic

experiment logic shown in Figure 6.3. This can be a disk read or a disk write
demand (or a mixture of both) in order to measure the response times on
the non-virtualized machine for processing the disk requests. Afterwards,
the identical logic (for the CPU demands and the disk demands) is repeated
on the virtualized machine. Finally, the experiment can continue with the
same logic for a different type of resource demand (for example, a memory-
bound demand, or a demand issued to a network device), which is omitted
in the diagram. In the following, we focus on three different demands, i.e.
CPU demand, disk read demand and disk write demand. However, the con-

182

6.3. Virtualization Overhead

cept of the experiment could be reused for different demand types. For
details on how the demand is generated using the GINPEX metamodel, see
Section 4.4.3.

For a resource demand type res, let tres,nonvirt the average measured
response time of the corresponding resource type requests on the non-
virtualized machine, and tres,virt the average measured response time of
the requests on the virtualized machine. The overhead o(res) can then be
calculated as

o(res) = tres,virt
tres,nonvirt

.
For example, if a resource demand request yields 500 ms average re-

sponse times on the non-virtualized machine, and 600 ms on the virtualized
machine, the calculated overhead would be 1.2 (i.e. 20%).

6.3.3. Experiment Template

In the following template, we give a brief description of the experiment.

Experiment ID: VIRTUALIZATION.01
Experiment name: Detect virtualization overhead
Experiment domain: Virtualization
Detected experiment parameter: Virtualization overhead for each

resource demand type in focus (double)
Importance for performance analysis: When a software is mi-

grated from a non-virtualized to a virtualized environment, the vir-
tualization layer can induce a performance overhead on issued re-
source demands that should be reflected in performance analysis.

Configuration parameters: number of cores: Number of available
physical CPU cores for detecting CPU resource overhead; detected
by Experiment CPU.02

Experiment execution logic: Issue and measure identical resource
load on the non-virtualized machine and on the virtualized ma-

183

6. Deriving Virtualization Properties

chine. Compare the measurement results to calculate the virtual-
ization overhead. For details, see Section 6.3.2 or the graphical
description shown in Figure 6.3.

Assumptions:

• Both machines are idle.

• Both machines are equipped with the same hardware. Oth-
erwise, differences in the measured resource demands cannot
be attributed to the virtualization layer.

• Assumption for performance analysis: The performance anal-
ysis has to provide means for including the detected overhead
model in analysis. For example, the analysis could adapt is-
sued resource demands by adding the virtualization overhead
to it. Such an approach would facilitate the reuse of existing
software models for predicting its performance in virtualized
environments.

• Required sensors: Response time sensors for the tasks issuing
resource demands on the non-virtualized and the virtualized
machine.

Experiment robustness: Experiment robustness can be assessed
by analyzing the dispersion of the measurement results, i.e. by cal-
culating the interquartile range (IQR) for the measurements. If the
IQR exceeds a certain threshold, the experiments should be repeated
or it should be checked whether all experiment assumptions hold on
the target platform.

Experiment performance: The experiment performance mainly
depends on the number of resource demand types involved and the
number of performed iterations for each measurement. Additional
influences can stem from the performance of the accessed resource
and the overhead induced by the virtualization platform.

184

6.3. Virtualization Overhead

6.3.4. Experiment Robustness

The robustness of the experiment results can primarily be assessed using
a measure of statistical dispersion for the measured data. We use the in-
terquartile range (IQR) for calculating the dispersion. This measure de-
notes the range of the upper and lower quartiles, it belongs to the group of
robust measures (i.e. it is not strongly influenced by outliers). By setting
the IQR in relation to the arithmetic mean of the measurement data, we can
analyze whether the data can be considered robust.

For example, take a set of CPU measurements taken on the non-
virtualized machine and on the virtualized machine. The experiment gener-
ates synthetic load that should take 500 ms on the non-virtualized machine
for each taken measurement. For the results of the non-virtualized machine,
we calculate a mean of 499.1 ms and an IQR of 2. This indicates very robust
results, as 50% of all results lie in the range between 498 ms and 500 ms.
Repeating the measurements on the virtualized machine yields a mean of
511 ms and an IQR of 9.25. The higher mean indicates that a certain over-
head is introduced by the virtualization layer. The IQR is still very low. In
both cases, the IQR is below 10% of the mean, which we use as a threshold
for detecting noisy CPU measurements.

For different resources, the threshold can be different. When taking disk
measurements on a machine without additional noise, the virtualization
layer and the layout of the disk data can lead to a larger IQR compared to
the mean. We performed disk read measurements on the virtual machine,
where chunks of 10MB read bytes were measured. Since the specified
amount of bytes can be read from disk in a short time, the dispersion of the
measurements is larger compared to CPU measurements: Measurements
yielded a mean of 273.7 ms and an IQR of 93. Hence, for disk requests we
assume that the measurements are robust if the IQR is below 50% of the
mean.

185

6. Deriving Virtualization Properties

If experiment analysis detects an IQR that is higher than the threshold
for the resource type, the experiment can report possible non-robust results
to the user. The user can than either investigate whether the results can be
considered robust anyhow, or check whether additional load was present
on the platform leading to measurement noise. In the latter case, the user
should remove the additional load (if possible) and repeat the experiment.

6.3.5. Experiment Performance

The performance of the experiment mainly depends on the number of re-
source demand types involved and the number of iterations performed for
each measurement. Additionally, the performance can be influenced by
the performance of the involved resources and the overhead induced by the
virtualization layer.

As an example, consider four resource demand types, namely CPU,
RAM, Disk read and Disk write. For CPU and RAM, we repeat each
measurement 500 times. For disk demands, the measurements can be
more scattered, so we increased the number of iterations for each mea-
surement to 1000. If we assume an average response time of 500 ms for
CPU and RAM requests, 200 ms for Disk read and 400 ms for Disk write
requests on the non-virtualized machine, as well as a constant slowdown
of 10% for each resource type, the experiment execution time would be
500 ·2 ·500 ms +1000 ·(200 ms+400 ms)+1.1 ·500 ·2 ·500 ms +1.1 ·1000 ·
(200 ms+400 ms) = 38 minutes 30 seconds.

Exemplary execution of the experiment on a quad-core machine (Intel
Core i7-860, 2.80 GHz, 8 GB RAM) with a non-virtualized Windows 7 and
a virtualized Windows 7 using XenCenter 5.6 took 42 minutes 2 seconds.

6.3.6. Including Experiment Results in Performance Prediction

In the following, we describe how the detected virtualization overheads can
be included in a performance prediction approach. For illustration, we use

186

6.3. Virtualization Overhead

the Palladio Component Model (PCM) for performance prediction, which
has been introduced in Chapter 2 and used in Chapter 5 as well.

In the PCM, the software architect creates a model of the software archi-
tecture that includes performance-relevant information, such as resource
demands occurring in components, the usage profile for the system, or ba-
sic information on the execution environment. Virtual machines can be
modeled in PCM with nested resource containers [HKKR09]. The PCM
model is then transformed into a performance model that can be used for
performance analysis. In our case, we use the PCM simulation SimuCom
for performance analysis. When simulating the performance of software
models with SimuCom, a PCM model is being transformed into Java code
that plugs into the simulation framework.

In order to include the detected virtualization overheads into the PCM
performance analysis, we adapted the PCM as follows. The detected over-
heads are stored in a configuration model that is created by GINPEX after
the execution of the experiment VIRTUALIZATION.01. When conducting
a performance prediction with PCM SimuCom, the software architect can
select the configuration model in addition to the PCM input model. While
the PCM input model is transformed into simulation code as before, in ad-
dition the configuration model is read and the simulation is configured to
reflect the virtualization overheads in the simulated servers (called resource
containers in PCM). Figure 6.4 illustrates this process.

Figure 6.5 shows how the PCM simulation SimuCom includes the vir-
tualization overhead during a simulation run. During simulation, resource
requests of components deployed on the containers are issued to the con-
tainer’s resources (e.g. CPU, disk, or a network device). Each request leads
to an event indicating that the demand has to be put on the resource (step
(1) in the figure). We intercept this event (2) and read the virtualization
overhead from the configuration for the corresponding virtual machine the
request is issued on (3). The original resource demand is multiplied with
the overhead, leading to an adapted resource demand that is passed back to

187

6. Deriving Virtualization Properties

software architect /
performance analyst

create PCM Software
Architecture
Model

create Virtualization
Overhead
Configuration ModelGINPEX

select

transform PCM
SimuCom
Instance

simulate

configure

Artifact

Workflow step

Automated
workflow step

Figure 6.4.: Including virtualization overhead in PCM performance prediction

the simulation framework (4). The simulation processes the demand using
queues which simulate resource scheduling logic and resource contention
effects. Once a resource request is processed completely by the simula-
tion, the simulation sends an event indicating that the control flow of the
component issues the demand can be resumed (step (5) and (6)).

Virtualization Overhead Addon PCM Performance Simulation Framework

Simulated Software Component Control Flow

<<Event>>
New Resource Demand

<<Event>>
Resource Demand Completed

Simulated Resource Queues

(1) issue
resource demand

(2) intercept
event

Virtualization
Overhead Model

Overhead Controller

(5) resource demand
completed

(4) issue resource demand

(3) get
overhead

(6) resource demand
completed

Figure 6.5.: Integration of virtualization overhead in PCM SimuCom

6.3.7. Validation

In this section, we validate whether improvements on prediction accuracy
can be achieved by including the derived virtualization overhead model
in performance analysis. For this validation, we first executed the exper-

188

6.3. Virtualization Overhead

iment presented in this chapter on a machine running a non-virtualized
Windows 7, and a machine with a virtualized Windows 7 running on a
virtualization hypervisor (XenCenter 5.6). We then included the detected
overheads in a PCM performance prediction to predict the performance
of a software in the virtualized environment based on a PCM model that
was calibrated for the non-virtualized environment. By taking into ac-
count the detected overheads in the PCM performance analysis, we can
evaluate whether these overheads lead to increased prediction accuracy.
Some experiments presented in this chapter have been initially published
in [HKHR11] and [HKHR13].

6.3.7.1. Validation Scenario

As a case study, we chose an implementation of the TPC-W benchmark [Tra].
The TPC-W system specifies a web-based bookstore software application
and a realistic workload mix. The implementation is based on Java servlets
and a MySQL database [JMOb]. In this case study, we ran the benchmark
in a non-distributed environment, i.e. we deployed the application server
and the database on the same server instance. The workload is gener-
ated through emulated web browsers; the number of parallel web browsers
equals the number of parallel users that are active in the system.

Figure 6.6 shows the two different deployment scenarios used in the
case study. In scenario A, the server components are deployed on a non-
virtualized machine (Intel Core i7-860, 2.80 GHz, 8 GB RAM) running
Windows 7. In scenario B, the same hardware was used running a virtu-
alization hypervisor (XenCenter 5.6) and a Windows 7 virtual machine in
which the server components are deployed.

6.3.7.2. Execution

After setting up the execution environment, we performed the following
steps:

189

6. Deriving Virtualization Properties

 Client

Web
Browser

Server

TPC-W
Application
Server

 Client

TPC-W
Database

(a) TPC-W deployment on a non-virtualized machine (scenario A)

 Client

Web
Browser

Server

TPC-W
Application
Server

 Client

TPC-W
Database

Virtual Machine

(b) TPC-W deployment on a virtualized machine (scenario B)

Figure 6.6.: TPC-W case study deployment scenario

1. Create a performance model of the TPC-W application calibrated on
the non-virtualized machine

2. Conduct performance prediction for the TPC-W model (prediction 1)

3. Perform GINPEX experiment to detect virtualization overhead model

4. Conduct performance prediction for the TPC-W model using the de-
rived virtualization overhead model (prediction 2)

5. Measure the TPC-W application to compare the application’s perfor-
mance with the predicted performance

6. As a cross-check, create a TPC-W model calibrated on the virtual-
ized machine, and conduct a performance prediction with this model
(prediction 3)

In the step 1, we created an initial performance prediction model of the
TPC-W application using the Palladio Component Model. Component re-
source demands were obtained through measurements taken on the non-
virtualized machine. For this model, we did not use the virtual machine for

190

6.3. Virtualization Overhead

calibration, as such measurements would already contain possible virtual-
ization overhead. Instead, we use the experiment results in performance
prediction, as the experiment aims at facilitating performance predictions
of software applications which do not have to be deployed on the virtual
machines of the target environment.

Afterwards, we conducted a performance prediction of the TPC-W model
using the PCM simulation SimuCom for different workloads (prediction 1,
step 2). This prediction did not take into account any virtualization over-
head, as it was based on the PCM model calibrated on the non-virtualized
machine.

We then executed the GINPEX experiment on the execution environment
for detecting the virtualization overhead model (step 3). We focused on
three different resource demand types that are present in the TPC-W sys-
tem: CPU load, disk read load, and disk write load. Figure 6.7 shows the
cumulative distribution function of the measured response times for the dif-
ferent resource demand types on the non-virtualized and on the virtualized
machine.

The average measured response times and the resulting virtualization
overhead values are shown in Table 6.1. One can see that the detected
overhead differs between the resource types and is significantly higher for
disk read and disk write resource demands compared to CPU demands.

Table 6.1.: Measured resource demand response times and calculated overhead
Resource demand Avg. response time Calculated
type non-virtualized virtualized virtualization

Windows 7 Windows 7 overhead
CPU 499 ms 511 ms 1.02
Disk Read 179 ms 274 ms 1.53
Disk Write 412 ms 650 ms 1.58

The detected overheads were written into a configuration model that can
be read by the PCM simulation in order to reflect the virtualization over-

191

6. Deriving Virtualization Properties

500 550 600 650

Task response time (in ms)

P
ro

ba
bi

lit
y

CPU load task response time
on non−virtualized Windows 7

CPU load task response time
on virtualized Windows 7

0.
0

0.
5

1.
0

(a) CPU load

100 200 300 400 500 600 700 800

Task response time (in ms)

P
ro

ba
bi

lit
y Disk read load task

response time on
non−virtualized Windows 7

Disk read load task
response time on
virtualized Windows 7

0.
0

0.
5

1.
0

(b) Disk read load

400 600 800 1000 1200 1400

Task response time (in ms)

P
ro

ba
bi

lit
y Disk write load task

response time on
non−virtualized Windows 7

Disk write load task
response time on
virtualized Windows 7

0.
0

0.
5

1.
0

(c) Disk write load

Figure 6.7.: Virtualization overhead experiment results

head during simulation (see Section 6.3.6). Using this overhead model,
we repeated the PCM performance prediction (prediction 2, step 4). After-
wards, we ran a predefined workload mix (TPC-W WIPSo) on the appli-
cation with different amounts of parallel users (step 5). We measured the
response times of the workload requests and compared the measurements
with the PCM predictions. The results are presented in the next section.

In addition, we also calibrated the TPC-W performance prediction model
using TPC-W measurements on the virtualized machine (step 6). We con-
ducted a performance prediction for this model as well to check whether
the first TPC-W model, which has been calibrated using TPC-W measure-
ments on the non-virtualized machine, yields similar results with the de-
rived overhead model as the TPC-W model calibrated with measurements
on the virtualized machine.

192

6.3. Virtualization Overhead

6.3.7.3. Results

In the following, we compare the results of the TPC-W performance pre-
diction (with and without the virtualization overhead model) with the mea-
surements taken on the deployed TPC-W application.

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measurement
Prediction

(a) Non-virtualized Windows 7

0 100 200 300 400
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Time [msec]

P
ro

ba
bi

lit
y

Measurement
Prediction with overhead model
Prediction w/o overhead model
Prediction calibrated on virt. Win 7

(b) Virtualized Windows 7

Figure 6.8.: Comparison of prediction and measurements for TPC-W response
times of a 3-user workload running on a non-virtualized and a virtu-
alized Windows 7

Figure 6.8 shows cumulative distribution functions of the measured and
predicted response times of a 3-user TPC-W workload, i.e. the workload
consisted of 3 users accessing the TPC-W application in parallel.

For the non-virtualized scenario, the predicted response times (predic-
tion 1) are quite accurate (avg. 29.8 ms predicted vs. 32.8 ms measured),
leading to a prediction error of approx. 9%. For the virtualized scenario,
the measured response times are higher (avg. 57.3 ms). As the hardware
environment and the software configuration was the same on both scenar-
ios, the increase can be explained with the overhead introduced by the vir-
tualization layer. Without the overhead model, the predicted response times
apparently stay the same, leading to an increased prediction error of approx.
48%. This is an increase of 39% for the prediction error compared to the
prediction for the non-virtualized scenario. When taking into account the
overhead model (prediction 2), the prediction error is significantly lower

193

6. Deriving Virtualization Properties

(avg. predicted response time 40.3 ms, prediction error approx. 30%), but
still higher than for the non-virtualized scenario prediction. Hence, the in-
clusion of the virtualization layer can help to reduce the prediction error for
performance predictions of virtualized software, but still yields a significant
higher prediction error compared to predictions of non-virtualized software.
The prediction error for the TPC-W model that has been calibrated on the
virtualized machine (prediction 3) is similar to the prediction error obtained
by prediction 2 (avg. 36.7 ms, prediction error approx. 36%). The predic-
tion quality of a prediction model calibrated on a non-virtualized machine
using the derived overhead model is comparable to the quality of a predic-
tion model that has been calibrated on the virtualized machine. In other
words, for the TPC-W case study, the prediction results can be achieved by
conducting the overhead model experimentally and calibrating the model
using TPC-W measurements on the non-virtualized machine. One does not
have to deploy the TPC-W on the virtualized machine for the predictions.

While the overhead model leads to a decreased prediction error, the pre-
diction error is still higher compared to the prediction in the non-virtualized
scenario. For further analysis of the prediction error, we performed both
TPC-W measurements and predictions for both scenarios using different
user workloads. Table 6.2 lists the average response times of measure-
ment and predictions and the corresponding prediction error for the differ-
ent workloads.

The response times show that the prediction works in the non-virtualized
scenario for different amounts of parallel users: Due to resource contention,
the measured response times increase with an increasing amount of parallel
users. However, the prediction is able to capture this effect; the prediction
error stays below 20%. For the virtualized scenario, a stronger increase in
the measured response times can be observed. The single-user workload
yields an average response time of 28.38 ms, which is an increase of ap-
proximately 20% compared to the non-virtualized scenario. Predicting the
response times using the virtualization overhead model captures this effect.

194

6.3. Virtualization Overhead

Table 6.2.: Average response times for different numbers of parallel users (in brack-
ets: prediction error)

C
on

te
nt

io
n

(#
us

er
s)

M
ea

su
re

d

Pr
ed

ic
te

d
w

/o

o v
er

he
ad

m
od

el

Pr
ed

ic
te

d
w

ith

o v
er

he
ad

m
od

el

Pr
ed

ic
te

d
w

ith

m
od

el
ca

lib
ra

te
d

on

vi
rt

ua
liz

ed
m

ac
hi

ne

N
on

-v
ir

tu
al

iz
ed

1 23.46 ms 23.71 ms
(1.07%)

2 30.82 ms 26.22 ms
(14.93%)

3 32.77 ms 29.79 ms
(9.09%)

4 34.01 ms 34.46 ms
(1.32%)

5 42.80 ms 40.87 ms
(4.51%)

6 44.00 ms 47.58 ms
(8.14%)

8 54.58 ms 62.00 ms
(13.59%)

10 76.71 ms 77.50 ms
(1.03%)

V
ir

tu
al

iz
ed

1 28.37 ms 23.71 ms 28.23 ms 28.00 ms
(16.43%) (0.49%) (1.30%)

2 38.36 ms 26.22 ms 33.34 ms 31.71 ms
(31.65%) (13.09%) (17.34%)

3 57.26 ms 29.79 ms 40.32 ms 36.71 ms
(47.97%) (29.58%) (35.89%)

4 77.38 ms 34.46 ms 49.85 ms 43.46 ms
(55.47%) (35.58%) (43.84%)

5 118.06 ms 40.87 ms 60.48 ms 51.86 ms
(65.38%) (48.77%) (56.07%)

6 119.03 ms 47.58 ms 71.93 ms 60.94 ms
(60.03%) (39.57%) (48.80%)

8 189.48 ms 62.00 ms 95.66 ms 80.25 ms
(67.28%) (49.51%) (57.65%)

10 199.65 ms 77.50 ms 119.59 ms 100.29 ms
(61.18%) (40.10%) (49.77%)

195

6. Deriving Virtualization Properties

However, with increasing load the prediction underestimates the response
times although the overhead model is used.

For a higher amount of parallel users, i.e. 8 or 10 parallel users, the sys-
tem is under heavy load with measured response times over 6 times as high
compared to the single-user scenario. In the non-virtualized scenario, this
workload only yields response times 3 times as high compared to the single-
user scenario. Hence, an additional increase of response times for load ex-
ecuted on a virtualized system can be observed. This increase is caused by
the virtualization layer and depends on the amount of parallel load present
in the system, because this effect is not visible for the non-virtualized sce-
nario. The constant overhead factor that is derived by this chapter’s experi-
ment and used by the virtualization overhead model to adapt the prediction
is not sufficient to capture this performance effect. It is interesting to note
that the predictions with the model calibrated on the virtualized machine
(last column in Table 6.2) also yield an increased prediction error with a
higher amount of parallel users. In order to decrease the prediction error,
the prediction has to be adapted in a way that the load-dependent over-
head introduced by the virtualized environment is taken into account. In
the following chapter, we provide an experiment to cope with this effect.
This experiment derives a more fine-grained load-dependent model of the
overhead induced by the virtualization platform.

6.4. Load-dependent Overhead

In the previous section, we introduced an experiment to detect the perfor-
mance overhead that is introduced by the virtualization layer when a soft-
ware is migrated from a non-virtualized to a virtualized environment. How-
ever, the case study presented in Section 6.3.7 showed that even a model
calibrated on a virtualized environment based on a single-user workload
underpredicts the response times (which was not the case for similar pre-
dictions for a non-virtualized environment). This can be explained by load-

196

6.4. Load-dependent Overhead

dependent overhead that is introduced by the virtualization layer, but is not
reflected in the predictions yet. In the following, we present an experiment
to derive an overhead model that reflects such load-dependent overhead of
the virtualization layer.

6.4.1. Motivation

In the last section, an experiment was presented that aims at measuring
resource demand overheads that occur when existing software applications
are migrated from a non-virtualized machine to a virtual machine. This
experiment calculated a fixed overhead for different resource demands, e.g.
CPU or Disk demands. However, resource overheads depend on both the
infrastructure and the current load situation of the system, i.e. the number
of requests processed in parallel.

For illustration, let us return to the case study results of Section 6.3.
In the case study, an implementation of the TPC-W benchmark [Tra] was
deployed in a virtualized and in a non-virtualized Windows 7 environment.
A workload mix with different amounts of parallel users was executed and
the response times of the workload requests were measured. A run with
one user (i.e. no resource contention) yielded a low overall utilization of
the system, while a run with with 10 parallel users resulted in a heavily
utilized system and much higher response times.

Figure 6.9 shows the average response times of the different benchmark
runs. One can see that the results differ for both runs. For the first run with
a small number of parallel users, the response times vary a little (mean re-
sponse time 23.5 ms in the non-virtualized scenario compared to 28.4 ms
in the virtualized scenario). Thus, a slowdown of approx. 20% due to
the virtualization layer can be observed. However, when increasing the
number of users, the difference in response times is much larger (mean re-
sponse time 76.7 ms in the non-virtualized scenario compared to 199.7 ms
in the virtualized scenario), resulting in a slowdown of approx. 160%. Both

197

6. Deriving Virtualization Properties

1 user 10 users

Windows 7 native
Windows 7 virtualized

Av
g.

 re
sp

on
se

 ti
m

e
(in

 m
s)

0
50

10
0

15
0

20
0

Figure 6.9.: TPC-W response times on a non-virtualised and a virtualised Win-
dows 7

benchmark installations shared the same system setup, i.e. the used hard-
ware resources, operating system, and middleware installed on the operat-
ing system. Hence, the results show that the virtualization layer introduces
an overhead that depends on the load that is present in the system.

6.4.2. Experiment Design

In the following, we present an experiment to derive a load-dependent over-
head model for resource demands issued on a virtual machine. Compared
to the experiment VIRTUALIZATION.01 from Section 6.3, the following
experiment has the following features:

• The detected resource demand overhead for a virtual machine is not
constant, but depends on the overall load situation present in the sys-
tem. Multiple resource requests that are issued in parallel are taken
into account when calculating the overhead model.

• The experiment can run on multiple virtual machines and reflects
load on all involved virtual machines in the overhead model.

198

6.4. Load-dependent Overhead

Performance prediction of virtualized environments can benefit from a
load-dependent overhead model because in such environments, overheads
can occur at different levels. First, overheads can occur inside a single
VM when multiple processes have to be scheduled by the operating system
(similar to a non-virtualized environment). In this case, additional schedul-
ing logic executed by the operating system to dispatch parallel requests
may lead to overheads. In addition, in virtualized environments resource
demands are not directly issued on a hardware resource, but forwarded to
the hypervisor which deals with scheduling resource demands that can in-
cur in multiple virtual machines. The hypervisor usually adds additional
overhead which depends both on the resource type and the amount of re-
source requests that have to be scheduled by the hypervisor.

With increased parallel load, the combination of both resource demand
overhead causers can lead to the behavior shown in Figure 6.9: In a virtual-
ized environment, measured response times can be significantly improved
compared to response times measured in a non-virtualized system.

Our experiment aims at detecting the overhead on performance that
comes from different levels of the infrastructure, i.e. the operating sys-
tem and the hypervisor. The experiment shares some concepts from the
experiment VIRTUALIZATION.01 from Section 6.3, such as the concept
of issuing demand for a certain resource, measuring its response time and
comparing the measured time to a reference time for calculating an over-
head value. However, the structure of the experiment is quite different from
the experiment VIRTUALIZATION.01, as explained in the following.

The experiment runs on a number of virtual machines which are to be
included in performance analysis, i.e. for which the overhead on resource
demands should be detected. A typical experiment scenario is shown in
Figure 6.10. Here, two virtual machines are deployed on a single physical
server.

The experiment consists of multiple experiment runs. In one experiment
run, we issue load on each machine to resources using parallel processes.

199

6. Deriving Virtualization Properties

CPU Load

Disk Load

Network Load

Virtual Machine 1

CPU Load

Disk Load

Network Load

Virtual Machine 2

Server

Experiment Run
Configuration

Figure 6.10.: Exemplary experiment run setup on virtual machines

In each process, load to a certain resource is issued and response times of
resource requests are measured. For creating load, microbenchmarks are
used. We use tasks from the GINPEX metamodel (see Section 4.4.3) for
specifying the load to be issued. In particular, we use the CpuLoadTask,
DiskReadTask, DiskWriteTask and NetworkLoadTask to create load
to the CPU, disk, and network resource. Figure 6.10 shows how one ex-
periment run configuration could look like. In the shown scenario, CPU
resource load, disk resource load and network resource load is issued by
different processes in the virtual machines. By issuing parallel requests,
we aim at systematically creating resource contention for which we expect
infrastructure overhead (originating from the virtualized operating system
and the hypervisor).

For each resource request, the response time is measured. Based on the
measured response times, we calculate the overhead for each request type
with respect to the parallel load. For this purpose, we compare the measured
response times to the response time of the resource request without parallel
load (reference time). Let t̂res,m be the reference time for resource res on
virtual machine m. Furthermore, let ~r be a vector containing the number
of parallel requests for each resource request in every virtual machine; ~r
denotes the input configuration for an experiment run. Furthermore, let
tres,m,~r be the average measured response time of requests to resource res on
machine m in the experiment run denoted by~r, and let rres be the number of
parallel requests to resource res in that run. Then, the overhead o(res,m,~r)

200

6.4. Load-dependent Overhead

is calculated as follows:

o(res,m,~r) = 1+
| tres,m,~r

rres
− t̂res,m|

t̂res,m
(6.1)

We vary the number of parallel processes for each resource request on each
machine in multiple experiment runs. We can specify each experiment run
by the number of parallel resource requests on each machine in focus. For
each type of resource request and for each machine in focus, the overhead
is then calculated with Equation 6.1.

Take for example, a disk request taking 200 ms if running in a VM
(VM 1) with all other VMs being idle. Then, in a second experiment run,
requests to other resources occur in parallel while the same amount of disk
requests is issued and measured in VM 1. If the measured response time
of the disk request now yields 250 ms, an overhead of 1.25 is being cal-
culated. Now consider a third experiment run where two disk requests are
issued in parallel, yielding a measured response time of 550 ms per disk re-
quest. Then, the disk request overhead would be 1+((550/2)−200)/200
= 1.375. Here, we first divide the disk response time by 2, as the slowdown
due to parallel disk requests is caused by resource contention and reflected
by performance analysis tools anyhow.

For the remainder of this section, we focus on three different types of
resource requests, which are CPU, disk, and network requests. We chose
these resource types because they are usually regarded in performance pre-
dictions of business applications [BKR09]. However, the generic approach
of the experiment could also be applied to different resource requests or
a more fine grained requests structure (for example, by differentiating be-
tween disk read and disk write requests).

To include load-dependent overheads of resource demands in perfor-
mance analysis, we execute multiple experiment runs, each with different
input parameters, i.e. a different configuration of parallel resource requests.
For each resource type, we calculate an overhead that depends on the num-

201

6. Deriving Virtualization Properties

ber of competing resource requests. By including the different calculations
in a multi-dimensional regression model, we can estimate load-dependent
resource demand overheads during performance analysis for situations (i.e.
input parameter combinations) for which no experiment runs have been
executed. Although we focus on deriving infrastructure overhead for vir-
tual machines deployed on a single physical server, note that the experi-
ment can also be executed on multiple physical machines or on a single
non-virtualized machine. In the latter case, the experiment would focus on
detecting load-dependent overhead that is caused by the operating system
layer and the resource controllers of the machine.

In the following, we use terminology from experimental design to de-
scribe the experiment parameter variation in more detail (for more infor-
mation, see [Jai91]). The factors of an experiment are the variables that
affect the response variables and that can be varied. In our case, factors are
the resource types for which load is issued by GINPEX tasks and the vir-
tual machines in which the load is issued. The levels of a factor constitute
the values for which a factor can be varied. To vary the amount of load,
we spawn (for each resource type) multiple OS processes in parallel, each
process issuing resource load.

Let R be the set of resource types and N be the set of virtual machines
on which the experiment is running. Then, the set of factors F is the carte-
sian product of these sets: F = R×N. Further, let K be the set of levels.
Then, in a full-factorial experiment design, every possible combination at
all levels of all factors would yield |K||R|·|N| experiment runs. If we con-
sider R = {CPU,DISK,NETWORK} and K = {0,1,2,5}, a full parameter
exploration cannot be performed, even for a small number of virtual ma-
chines. For example, if |N| = 3, then the number of needed experiment
runs is 43·3−1 = 262,143 combinations (we can neglect the combination
((0,0,0),(0,0,0),(0,0,0))). If we assume an average duration of 5 min-
utes per experiment run to gain stable measurement results of the executed
microbenchmarks, 262,143 experiment runs yield an overall experiment

202

6.4. Load-dependent Overhead

runtime of approx. 2.5 years. In addition, the number of experiment runs
grows exponentially with the number of involved machines, rendering a
full-factorial experiment design infeasible.

To overcome this issue, we adapted the experiment design using a heuris-
tic to minimize the number of needed experiment runs. The adapted design
falls into two parts: First, we execute experiment runs that only create load
inside a single virtual machine, while no load is issued on the remaining
machines. We call the resource overhead calculated in these runs intra-
machine overhead, as it only reflects influences by load issued in the same
machine. Second, we execute runs issuing load across multiple virtual ma-
chines to detect inter-machine overhead. The following subsections deal
present these heuristics in detail.

6.4.2.1. Determine Intra-machine Overhead

To check how response times of issued load inside a virtual machine are
influenced by parallel load, we conducted measurements on microbench-
marks issuing different resource load. These benchmarks ran in one virtual
machine, while the other virtual machines were left idle. All virtual ma-
chines were deployed on a XenCenter 5.6 virtualization hypervisor.

As an example, we varied CPU and Disk requests inside a single virtual
machine running Windows 7 and measured the average response time (wall
clock time) of the request. We spawned multiple OS processes to issue
parallel requests.

Table 6.3 shows the average response times of the measured CPU re-
quests. If no Disk load is present in the system, CPU response times take
approximately twice as long when two parallel processes are issuing CPU
load compared to only one process issuing CPU load. Thus, additional
overhead is very low. If parallel Disk load is present, the measured CPU
response times slightly increase.

203

6. Deriving Virtualization Properties

Table 6.3.: Average CPU request response times for varied requests
CPU Load No Disk 1 Disk 2 Disk

Process Processes
1 CPU Process 150 ms 164 ms 175 ms
2 CPU Processes 300 ms 318 ms 336 ms

However, when we measure the response times of the Disk requests for
the same scenario, we see that the Disk response times heavily depend on
the parallel CPU load (see Table 6.4, note that the rows now indicate the
number of disk processes). In addition, the Disk response times do not
increase linearly with increasing CPU load, as it has been the case in the
previous case.

Table 6.4.: Average disk request response times for varied requests
Disk Load No CPU 1 CPU 2 CPU

Process Processes
1 Disk Process 1119 ms 1791 ms 4447 ms
2 Disk Processes 2258 ms 2578 ms 5222 ms

From these experiments, we conclude that (a) different resource load
overhead can occur for different resources and (b) resource overhead does
not necessarily increase linearly with parallel load.

Furthermore, we repeated the experiment on a second VM running a
different OS (Fedora 12 Linux instead of Windows 7). While the measured
CPU results are similar to the results presented in Table 6.3, the Disk results
differ, as shown in Table 6.5.

Table 6.5.: Average disk request response times for varied requests in VM2
Disk Load No CPU 1 CPU 2 CPU

Process Processes
1 Disk Process 870 ms 887 ms 889 ms
2 Disk Processes 1537 ms 1606 ms 1546 ms

204

6.4. Load-dependent Overhead

For the Linux system, only little influence on Disk request response times
can be observed due to parallel CPU load. Here, variations in measured re-
sponse times can mainly be attributed to measurement noise. Thus, the
measured resource overhead strongly depends on the guest operating sys-
tem, which means that experiment results obtained for a VM with one op-
erating system are not necessarily applicable to VMs with other operating
systems.

Due to the conclusions drawn from the presented experiments presented
above, we decided to use a full-factorial design for each machine in iso-
lation, i.e. no load was issued on the remaining machines. This leads to
|N| · (|K||R|− 1) experiment runs, were |N| denotes the number of virtual
machines, |R| the number of involved resource types, and |K| the number
of used load levels (we can neglect the combination (0, ...,0) where all re-
sources are idle). For the set of factors and levels used above, this leads to
|N| · 63 experiment runs. This number of experiments can be executed in
a couple of hours, and still provides a full-factorial parameter exploration
in every involved virtual machine, so that for every resource type, all influ-
ences on overheads caused by the other resource types, can be observed –
as long as the resource access occurs in the same machine (intra-machine
overhead). In general, if we have a limited number of resource types, the
number of needed combinations for varying parameters in a single machine
mainly depends on |R|. If |R|= 3, then the number of runs is O(|K|3), which
is still polynomial.

6.4.2.2. Determine Inter-machine Overhead

To determine overhead that cannot be detected by the first series of exper-
iment runs, we conduct additional experiment runs, where load is issued
in parallel across multiple VMs. These experiment runs aim at provoking
additional overhead that is caused by the hypervisor (inter-machine over-

205

6. Deriving Virtualization Properties

head). We applied a reduced 2k factorial design to limit the number of
experiment runs while still identifying all relevant influences.

For the experiments, we reduced the set of levels to K = {0,m}, where m

is the number of available logical resources for a specific resource type (e.g.
the number of cores for a CPU). Limiting the number of levels means that
we disregard the effect of the number of parallel requests within a virtual
machine on performance. Instead, we assume that the number of parallel
requests to a resource inside one machine has no impact on inter-machine
overheads. For example, a hypervisor schedules resource requests that oc-
cur for different virtual machines, but does not know how many parallel
requests inside one virtual machine actually have been issued to the re-
source. We further assume that across different VMs, not all resource types
have to be varied against each other. Thus, we only vary each resource
type in isolation and neglect interactions between resource types. Varying
only the load on one resource in different virtual machines leads to 2|N|−1
experiment runs for each resource type, where N denotes the set of ma-
chines across which parameter values are to be varied. As a consequence,
the number of experiment runs scales linearly with the number of resource
types, i.e. the number of runs is |R| · (2|N|− 1). This reduction leads to a
2k factorial experiment design and thus a significant reduction of required
experiment runs.

Another cause of inter-machine overhead can be the hypervisor requir-
ing CPU processing time when managing VM accesses to resources. There-
fore, it is quite likely that CPU load and other resource load issued in differ-
ent VMs affect each other [CG05]. To capture the effect of the hypervisor,
we repeat the inter-machine experiment runs for all resources (except the
CPU) with full CPU load issued in one VM. As we don’t know whether
CPU overhead on the hypervisor is constant or depending on the number of
virtual machines issuing resource requests, we vary these virtual machines,
leading to another (|R|−1) · (2|N|−1) experiment runs. Thus, we can ob-

206

6.4. Load-dependent Overhead

serve CPU overhead that occurs on the hypervisor due to resource requests
being issued in different VMs.

To sum up, the overall number of needed experiment runs can be speci-
fied as

|N| · (|K||R|−1)+(2|R|−1) · (2|N|−1).

In the case of 3 VMs, 3 resource types and 4 levels, we end up in an over-
all number of 224 experiment runs (compared to 262,143 runs in a full-
factorial experiment design).

6.4.2.3. Experiment Implementation

We implemented the experiment with Ginpex to enable automated experi-
ment execution and derivation of the load-dependent overheads. We spec-
ified the experiment for three different basic resource types, i.e. CPU, disk
and network resource type. During execution, GINPEX generates the logic
for each experiment run based on a GINPEX experiment definition. In a first
step, the experiment executes experiment runs using a full factorial design
(see Section 6.4.2.1) on each specified machine using a fixed set of lev-
els (K = {0,1,2,5}). Afterwards, experiment runs are performed issuing
load in parallel on multiple VMs using the experiment design presented in
Section 6.4.2.2.

Issuing resource load is done by spawning one or multiple processes us-
ing the GINPEX ParallelTask. Each process independently executes a
GINPEX load task repeatedly and measures the response times. For CPU
load, the CpuLoadTask which performs Fibonacci calculations to generate
CPU load, is used. For disk load, chunks of 5 MB random data are read and
written to the disk using DiskReadTasks and DiskWriteTasks (to avoid
cache effects, these tasks use a large set of files when generating disk load).
For network load, random data is sent in chunks of 5 MB to a different
machine not part of the system under test. For disk and network load pro-
cesses, the value of k denotes the number of parallel running processes. For

207

6. Deriving Virtualization Properties

the CPU resource, we multiply k by the number of available cores (which
is available as an experiment configuration parameter) to get the number of
parallel processes. Hence, for k = 2 on a virtual machine that is equipped
with 2 virtual CPU cores, the experiment runs 4 parallel processes issuing
CPU load so that the amount of CPU load of two parallel processes is put
on each available core.

6.4.3. Experiment Template

As with all experiments presented in this thesis, we use the experiment
template from Section 4.6 to give a brief overview on the experiment.

In the following template, we give a brief description of the experiment.

Experiment ID: VIRTUALIZATION.02
Experiment name: Detect load-dependent virtualization overhead
Experiment domain: Virtualization
Detected experiment parameter: Load-dependent virtualization

overhead for each resource demand type in focus (double)
Importance for performance analysis: The overhead induced by

the virtualization layer depends on both the resource type and the
load currently present on the platform. This load has to be reflected
in an overhead model for performance analysis to reduce the pre-
diction error.

Configuration parameters: number of cores: Number of available
physical CPU cores for detecting CPU resource overhead; detected
by Experiment CPU.02

Experiment execution logic: In multiple experiment runs, issue
different amounts of resource load in the different virtual machines
using parallel processes. Measure the response time of the resource
load and compare the overhead to a reference time (the response
time of the resource request when executed without parallel load).

208

6.4. Load-dependent Overhead

To avoid a full parameter exploitation (number of VMs × number
of resource types × number of load levels), use a set of heuristics
which minimize the number of experiments without degrading pre-
diction accuracy. For details, see Section 6.4.2.

Assumptions:

• The involved virtual machines are idle.

• The virtual machines share the involved resources, i.e. the
virtual CPU cores, disk and network devices are mapped to
the same physical devices.

• Assumption for performance analysis: The performance anal-
ysis has to provide means for including the detected overhead
model in analysis. Similar to the overhead model detected by
experiment VIRTUALIZATION.01, the analysis could adapt
issued resource demands by adding the virtualization over-
head to it. Such an approach would facilitate the reuse of
existing software models for predicting its performance in
virtualized environments.

• Required sensors: Response time sensors for the tasks issuing
resource demands on the different virtual machines.

Experiment robustness: Experiment robustness can be assessed
by analyzing the dispersion of the measurement results, i.e. by cal-
culating the interquartile range (IQR) for the measurements. If the
IQR exceeds a certain threshold, the experiments should be repeated
or it should be checked whether all experiment assumptions hold on
the target platform.

Experiment performance: The experiment performance depends
on the number of experiment runs and the duration of each experi-
ment run. The number of experiment runs depends on the number of
involved virtual machines, resource demand types, and load levels.

209

6. Deriving Virtualization Properties

To avoid a full parameter exploitation of these factors, we reduced
the number of experiment runs as described in Section 6.4.2.

6.4.4. Experiment Robustness and Performance

Similar to the experiment VIRTUALIZATION.01 presented in Section 6.3,
the robustness of the experiment results can be checked by analyzing the
statistical dispersion of the measured response times. If the dispersion, for
example the interquartile range (IQR) does not exceed a certain threshold,
the experiment can report robust results to the user. If non-robust results
are detected, additional load might be present on one of the involved virtual
machines or on a different virtual machines assessing the same resources.
In this case, the user should remove the additional load (if possible) and
repeat the experiment. It remains to be validated whether the experiment
can still yield a reasonable overhead model when measurements are taken
while additional load is present on the platform. This has not been done in
this thesis and is subject to future work.

The performance of the experiment depends on the number of experi-
ment runs and the iteration of one experiment run. As described in Sec-
tion 6.4.2, the overall number of experiments runs is

|N| · (|K||R|−1)+(2|R|−1) · (2|N|−1),

where N is the set of involved virtual machines, R is the set of resource
types, and K is the set of load levels. The runtime of a single experiment
run was set to 5 minutes. On a machine with 2 VMs, three resources (CPU,
disk, network), and four load levels (0, 1, 2, 5), the experiment yielded 141
experiment runs and an overall runtime of 12 hours 51 minutes (including
the time for preparing the experiment runs).

210

6.4. Load-dependent Overhead

6.4.5. Including Experiment Results in Performance Prediction

In the following, we describe how performance prediction for virtualized
environments can be enhanced based on the results of the experiment runs
presented in Section 6.4.2. First, a load-dependent overhead model is de-
rived based on the experiment results. This model is included in SimuCom
and used during simulation for calculating the overhead of requests.

The overhead model consists of a set of regression models. For each
VM, the intra-machine experiment results are used to calculate a multi-
dimensional regression model. To derive such an overhead model, we
implemented a regression model based on Classification and Regression
Trees (CART) [HTF09]. A CART regression model allows for predict-
ing the value of a dependent variable (in our case, the overhead for a re-
source demand) based on an input of independent variables (i.e. the num-
ber of parallel processes in the simulation accessing the different resources)
and has been applied successfully in case studies on performance predic-
tion ([WAA+04], [TZN10]). CART splits the feature space into a set of
regions and predicts the output parameter as the mean of the output param-
eter in each region. For a set of M regions, the corresponding regression
model is

f (x) =
M

∑
m=1

cmI(x ∈Rm) (6.2)

where cm is the mean of the output parameter in regionRm and I the iden-
tity matrix ([HTF09]). For details on the CART algorithm, see [HTF09].
We used the rpart package [TAR] (for details on the implementation, see
[TA13]) of the R statistical computing engine [R F] as a CART-based im-
plementation of the regression algorithm.

For the inter-VM experiments, a CART regression model is built in the
same way. The overall overhead of a resource request R in a VM can then
be calculated by first predicting the overhead of the intra-machine over-

211

6. Deriving Virtualization Properties

head model for the VM and then predicting the inter-machine overhead of
resource request R. We then multiply the request with the calculated over-
heads to obtain an adapted request reflecting a slowdown due to parallel
load.

Take for example a scenario with two VMs, the resources CPU , Disk,
Network shared by both VMs, and the load situation (1,0,2),(0,1,2). This
means that the physical CPU is fully utilized by a VM 1 process, 2 pro-
cesses in VM 1 issue network requests, 1 process issues disk requests in
VM 2, and 2 processes issue network requests in VM 2. Now, we assume
that a new process issues network requests in VM 2.

To determine the overhead that slows down this request due to the cur-
rent load situation, we compute the overhead as follows: We first compute
the overhead for the request with the intra-machine overhead model. This
overhead is calculated with the VM 2 intra-machine overhead model with
the input parameters CPU load = 0, Disk load = 1 and Network load = 3.

Then, the inter-machine overhead is calculated. As network requests
also occur in VM 1, we calculate the inter-machine network overhead for
VM 2 with the input parameters Network V M1= 1 and Network V M2= 1.
In addition, we have to add overhead that occurs on the hypervisor due
to handling CPU and disk resource requests. This is done by first calcu-
lating overhead for VM 2 with the input parameters CPU V M1 = 1 and
CPU V M2 = 0, and then calculating overhead for VM 2 with the input pa-
rameters Disk V M1 = 0 and Disk V M2 = 1. The issued network resource
demand in VM 2 is then multiplied by all calculated overheads to obtain
an adapted resource demand including the response time slowdown due to
parallel load in the system. Similarly, overheads are calculated for the other
resource requests in VM 1 and VM 2.

Figure 6.11 shows how the load-dependent overhead model is integrated
into the PCM simulation SimuCom. The software architect creates a model
of the software architecture and simulates its performance as described in
Section 2.1.4 and Section 6.3.6.

212

6.4. Load-dependent Overhead

Virtualization Overhead Addon PCM Performance Simulation Framework

Simulated Software Component Control Flow

<<Event>>
New Resource Demand

<<Event>>
Resource Demand Completed

Simulated Resource Queues

(1) issue
resource demand

(2) intercept
event

Load-dependent
Overhead Model

Overhead Controller

(7) resource demand
completed

(5) issue resource demand

(4),(10) predict
overhead

(11) resource demand completed

(3), (9) query queue length

(6), (12) adapt existing resource demands

(8) intercept event

Figure 6.11.: Integration of load-dependent virtualization overhead in PCM Simu-
Com

Compared to the SimuCom extension for experiment VIRTUALIZA-
TION.01, we extended SimuCom as follows in order to reflect the load-
dependent overhead model. For modeling virtual machines, the PCM pro-
vides the concept of nested resource containers [HKKR09]. During sim-
ulation, resource requests of components deployed on the containers are
issued to the container’s resources (e.g. CPU, disk, or a network device).
Each request leads to an event indicating that the demand has to be put on
the resource (step (1) in the figure). We intercept this event (2) and query
the resources for the current load situation (3). Based on this information,
we calculate the overhead as described above (4). With this information,
the platform performance model can be used to predict the overhead for the
issued demand based on the overall load situation. The adapted demand
is then passed on to the simulation framework (5), where the demand is
processed by queues which are used by the simulation to simulate resource
scheduling logic and resource contention effects. At this time, we also use
the platform performance model to adapt the demands of other requests
currently being processed by the simulation’s queues, as other demands are
affected by the changed load situation as well (6).

The same procedure is done once a resource request is processed com-
pletely by the simulation. In this case, the simulation sends a different event

213

6. Deriving Virtualization Properties

indicating that the control flow of the component issuing the demand can
be resumed (7). We again intercept this event (8), and adapt the demands of
all requests that are currently processed by the corresponding queues (steps
(9)–(12)).

6.4.6. Validation

In order to validate the experiment for detecting load-dependent virtualiza-
tion overhead, we conducted two case studies. We applied the experiment
to these case studies on a virtualized system to answer the following vali-
dation questions:

1. Does the load-dependent overhead model increase prediction accu-
racy?

2. Are the employed microbenchmarks suitable for deriving load-
dependent overhead models?

3. Is the CART regression model suitable for calculating the overhead?

4. Is the distinction into intra-machine overhead and inter-machine over-
head appropriate?

5. Can the derived overhead model be reused for predicting the perfor-
mance of different software applications?

In the first case study, we first conducted the implemented experiment on
a virtualized environment with two virtual machines. We then deployed the
TPCW application, which has also been used in the case study for the exper-
iment VIRTUALIZATION.01, on the virtual machines. Using the overhead
model based on the experiment results, we predicted the performance of the
TPC-W system and compared the results to a prediction that does not take
into account any overhead information. In the second case study, we de-
ployed a different software (an implementation of the RUBiS benchmark)

214

6.4. Load-dependent Overhead

on the virtual machine and conducted performance measurements and pre-
dictions for this system. Again, we compared predictions with and without
the derived overhead model against performance measurements, and evalu-
ate whether the overhead model, which has originally been derived for the
first case study, can be reused for a different software while still yielding
increased performance prediction results.

6.4.6.1. TPC-W Case Study

For the first case study, we reused the TPC-W implementation from the val-
idation of experiment VIRTUALIZATION.01 (see Section 6.3.7). When
predicting the performance of the TPC-W system using the simple virtu-
alization overhead model of experiment VIRTUALIZATION.01, the pre-
diction response times were significantly lower than the measured response
times, especially for situations with increased load. In addition, as the TPC-
W benchmark can be distributed to several servers, it can be used for val-
idating the load-dependent overhead model taking into account multiple
virtual machines.

Validation Scenario

As described in Section 6.3.7, the selected TPC-W implementation [Tra] is
based on Java servlets and a MySQL database [JMOb].

For the case study, we selected an implementation of the TPC-W bench-
mark [Tra] that was presented in Section 6.4.1. We deployed the TPC-W
application on a quad-core machine (Intel Core i7-860, 2.80 GHz, 8 GB
RAM) that runs a virtualization hypervisor (XenCenter 5.6) with two vir-
tual machines. On one virtual machine, we deployed the web server and
the servlet components of the TPC-W benchmark application, whereas on
the other virtual machine, we deployed the database server of the applica-
tion. Two provide a more heterogeneous environment, we used different
guest operating systems for the two virtual machines. The first virtual ma-

215

6. Deriving Virtualization Properties

chine runs Fedora 12 Linux (kernel 2.6.31), the second virtual machine runs
Windows 7. We pinned the hypervisor to one CPU core and both virtual
machines to the remaining three cores. Thus, the virtual machine shared all
available machine resources.

Virtual Machine 1
(Fedora 12 Linux)

Virtual Machine 2
(Windows 7)

Server

3 virtual CPUs
(pinned on
core 2-4)

3 virtual CPUs
(pinned on
core 2-4)

Hypervisor
(XenCenter 5.6)

(running on
core 1)

WebServer /
Tomcat servlets

Database
server

(a) Case study deployment scenario A

Virtual Machine 1
(Fedora 12 Linux)

Virtual Machine 2
(Windows 7)

Server

3 virtual CPUs
(pinned on
core 2-4)

3 virtual CPUs
(pinned on
core 2-4)

Hypervisor
(XenCenter 5.6)

(running on
core 1)

Database
server

WebServer /
Tomcat servlets

(b) Case study deployment scenario B

Figure 6.12.: TPC-W case study deployment scenarios

Figure 6.12 gives an overview of the deployment scenarios used in the
case study. In the first deployment scenario (Scenario A), the web server
and the servlet components ran on the Linux VM and the database server
on the Windows VM. In the second deployment scenario (Scenario B), we
deployed the web server and the servlet components on the Windows VM
and the database server on the Linux VM.

216

6.4. Load-dependent Overhead

Execution

For each deployment scenario, we created an initial PCM performance pre-
diction model for the TPC-W application by measuring the response times
of all servlet and database calls without contention, i.e. a single-user work-
load (the workload itself consists of 50% browsing requests and 50% order-
ing requests; see [Tra] for details on the WIPSo mix). Based on the derived
resource demands, we created a PCM component model of the system and
performed a performance simulation with the single-user workload. The
predicted simulation results of the average end-to-end response time of the
called services are close to the corresponding measured results, as shown in
the cumulative distribution functions in Figure 6.13 (22.6 ms measured vs.
17.7 ms predicted in scenario A, 22.9 ms measured vs. 18.0 ms predicted in
scenario B).

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measured
Predicted

(a) Response times for deployment
scenario A

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measured
Predicted

(b) Response times for deployment
scenario B

Figure 6.13.: Case study response times for single-user workload

Using these initial performance models, we now increase the user work-
load to evaluate scenarios with resource contention introduced on the sys-
tem.

To derive the overhead model, we executed the overhead experiments
with GINPEX on both VMs. As explained before, the experiments are in-

217

6. Deriving Virtualization Properties

dependent from the TPC-W system and can also be used for predicting the
performance of a different system. Table 6.6 shows some examples of ex-
periment run results for the intra-machine overhead experiment conducted
on the Windows VM. The first three columns indicate the levels of the ex-
periment runs, i.e. the amount of parallel CPU, disk and network requests.
The last three columns show the calculated overhead for the requests in this
experiment run. As explained above, the overhead is calculated based on
the response time of the resource request executed without parallel load.
For the sake of readability, we show only a subset of the experiment run
results.

One can see that the CPU overhead hardly increases with parallel Disk
requests, but increases with parallel network load. The calculated Network
overhead also increases slightly depending on the parallel load. Compared
to Network and CPU overhead, the calculated overhead of measured Disk
requests grows strongly with additional parallel load (CPU as well as net-
work load). Interestingly, when CPU load is present, the Disk overhead is

Table 6.6.: Example of measured resource demand overheads for different resource
requests on the Windows 7 VM

No. of parallel requests Calculated overhead
CPU Disk Network CPU Disk Netw.

1 0 0 1.0 n/a n/a
2 0 0 1.02 n/a n/a
0 1 0 n/a 1.0 n/a
1 1 0 1.07 2.693 n/a
0 2 0 n/a 1.144 n/a
2 2 0 1.023 2.241 n/a
0 0 1 n/a n/a 1.0
1 1 1 2.203 3.769 1.202
0 0 2 n/a n/a 1.023
2 0 2 2.13 n/a 1.102
0 2 2 n/a 1.145 1.733
2 2 2 1.133 3.449 1.029

218

6.4. Load-dependent Overhead

Table 6.7.: Average response times for different numbers of parallel users (in brack-
ets: prediction error)

Contention Measured Predicted w/o Predicted with
(# users) overhead model overhead model

Sc
en

ar
io

A

1 22.6 ms 17.66 ms (21.9%)
20 314.7 ms 116.9 ms (62.9%) 407.8 ms (29.6%)
30 564 ms 176.4 ms (68.7%) 629.4 ms (11.6%)
40 793.6 ms 237.3 ms (70.1%) 825.3 ms (4.0%)
50 1065 ms 294 ms (72.4%) 1007 ms (5.4%)
60 1257 ms 350.2 ms (72.1%) 1266 ms (0.7%)

Sc
en

ar
io

B

1 22.9 ms 17.97 ms (21.5%)
20 313.2 ms 119 ms (62.0%) 301.1 ms (3.9%)
30 466.7 ms 180.1 ms (61.4%) 449 ms (3.8%)
40 693.8 ms 239.5 ms (65.5%) 590.8 ms (14.8%)
50 808.6 ms 300.6 ms (62.8%) 740.9 ms (8.4%)
60 1036 ms 356.5 ms (71.6%) 892 ms (13.9%)

lower for two parallel Disk request processes compared to a single Disk
request process. One reason for this can be the Disk scheduler that creates
batches for requests and thus can reduce the overhead of a single request.

As described in Section 6.4.5, the set of input and output parameters
is used to build CART regression models. With the CART-based over-
head model, we configured the adapted PCM simulation to look up load-
dependent overheads during the simulation of resource requests (see Sec-
tion 6.4.5). Then, we performed measurements and predictions of TPC-W
request response times with a higher user workload to create resource con-
tention on the system.

Results

Table 6.7 gives an overview on measurement and prediction results for both
deployment scenarios. For each scenario, we varied the user workload and
performed two different PCM simulations, one without the overhead model
and one using the load-dependent overhead model. The performance sim-

219

6. Deriving Virtualization Properties

ulation with the load-dependent overhead model yields average response
times that are closer to the measured response times compared to the orig-
inal simulation without an overhead model: The prediction error is de-
creased from 60%–70% to 15% and less except for the 20 user workload in
scenario A, where the error is decreased from around 63% to 30%.

0
20

0
40

0
60

0
80

0
10

00

Contention (no. of parallel users)

Av
er

ag
e

re
su

lts
 (i

n
m

s)

1 20 30 40 50 60

Measurements
Prediction w/o overhead model
Prediction with overhead model

(a) Deployment scenario A

0
20

0
40

0
60

0
80

0
10

00

Contention (no. of parallel users)

Av
er

ag
e

re
su

lts
 (i

n
m

s)

1 20 30 40 50 60

Measurements
Prediction w/o overhead model
Prediction with overhead model

(b) Deployment scenario B

Figure 6.14.: Average case study prediction results for different user workloads

The average response times for the different user workloads are shown
in Figure 6.14. The figure plots the measured response times and the re-
sponse times for the different prediction methods (with and without load-
dependent overhead model) for the different user workloads.

From the results, one can see that the approach reduces the predic-
tion error for all workload scenarios. Note that a workload of 50 paral-
lel users leads to a situation in the system where a much higher resource
contention occurs compared to the resource contention created during the
microbenchmark-based experiment runs. Still, the derived overhead-model
is able to significantly decrease the prediction error. Thus, the prediction
accuracy can greatly be improved for performance predictions of software
running on complex infrastructures that involve heterogeneous operating
systems and virtualization layers.

220

6.4. Load-dependent Overhead

To answer the fourth validation question, we now look at the impact of
the intra-machine overhead model and inter-machine overhead model on
prediction accuracy. For this, we performed predictions in which we used
only the intra-machine overhead model or only the inter-machine overhead
model. Figure 6.15 shows the average prediction results for predictions
with the CART-based overhead model. Using only one of the two overhead
models led to a prediction error of 40% to 55% in most cases. From the
results one can see that both intra-machine overheads and inter-machine
overheads contribute to the enhanced prediction accuracy, as neglecting one
of the overheads leads to significantly worse prediction accuracy compared
to the complete overhead model.

0
50

0
10

00
15

00

Contention (no. of parallel users)

Av
er

ag
e

re
su

lts
 (i

n
m

s)

1 20 30 40 50 60

0

Measurements
Prediction w/o overhead model
Prediction with overhead model, intra−machine overhead only
Prediction with overhead model, inter−machine overhead only
Prediction with overhead model, complete

(a) Deployment scenario A

0
50

0
10

00
15

00

Contention (no. of parallel users)

Av
er

ag
e

re
su

lts
 (i

n
m

s)

1 20 30 40 50 60

0

Measurements
Prediction w/o overhead model
Prediction with overhead model, intra−machine overhead only
Prediction with overhead model, inter−machine overhead only
Prediction with overhead model, complete

(b) Deployment scenario B

Figure 6.15.: Overhead breakdown analysis:
average prediction results with complete and partial overhead model

6.4.6.2. RUBiS Case Study

In the TPC-W case study, we illustrated how the load-dependent overhead
model can lead to increased performance prediction accuracy of a software
running in a virtualized environment. The case study aimed at answering
the validation questions 1 to 4 that have been presented at the beginning

221

6. Deriving Virtualization Properties

of Section 6.4.6. It remains to be validated whether the experiment results
can be reused to predict the performance of a different software (validation
question 5). For this, we deployed a different software on the same execu-
tion environment and reused the derived overhead model from the TPC-W
case study to predict its performance. As a software application, we chose
an implementation of the RUBiS benchmark.

Validation Scenario

The RUBiS application is a web-based auctioning system modeled after
eBay.com [JMOa]. The implementation is based on Java servlets and uses
a MySQL database.

For deployment, we used a deployment scenario from the TPC-W case
study: The web server components were deployed on the first virtual ma-
chine running Fedora 12 Linux and the database was deployed on the sec-
ond virtual machine running Windows 7. The configuration of the execu-
tion environment, i.e. the hypervisor, the operating systems and the used
middleware, was identical to the configuration used in the TPC-W case
study.

Execution

We first created a PCM performance model of the RUBiS application by
measuring servlet and database requests in a scenario without resource con-
tention (i.e. using a single-user load scenario).

Figure 6.16 shows the results of an initial performance prediction with
the model for a single-user workload. The prediction yielded average re-
quest response times of 100.8 ms compared to a measured response time
average of 120 ms. This is a prediction error of approx. 16% for the initial
model which we considered low enough to continue the case study with
this model. Similar to the TPC-W case study, we increased the workload

222

6.4. Load-dependent Overhead

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (in ms)

P
ro

ba
bi

lit
y

Measured
Predicted

Figure 6.16.: Case study response times for single-user workload

(i.e. the number of parallel users) on the RUBiS system and compared the
predicted response times with the measured response times.

Results

In this case study, we increased the number of parallel users accessing the
RUBiS system up to 500. Note that the number of users is much higher than
in the TPC-W benchmark although the same execution environment is used.
For the case study, we used the standard workload configuration, which is
shipped with the RUBiS benchmark. This workload configuration contains
much larger user think times than workload model used for the TPC-W case
study. Hence, the RUBiS system can serve considerably more users than
the TPC-W system when running on the same execution environment.

Table 6.8.: Average response times for different numbers of parallel users (in brack-
ets: prediction error)

Contention Measured Predicted w/o Predicted with
(# users) overhead model overhead model
1 120 ms 100.76 ms (16%)
50 194.23 ms 184.47 ms (5.0%) 239.37 ms (23.2%)
100 1521.19 ms 447.63 ms (70.6%) 1218.33 ms (19.9%)
200 9590.35 ms 5277.35 ms (45.0%) 8291.42 ms (13.5%)
500 26630 ms 20506 ms (23.0%) 27692 ms (4.0%)

223

6. Deriving Virtualization Properties

Table 6.8 gives an overview on the measured and predicted results for
the RUBiS system with different user workloads. When using the overhead
model derived by the GINPEX experiment, the prediction error is reduced in
3 out of 4 cases. For 50 parallel users, the original model still yields better
predicted response times. If the number of parallel users is increased up
to 500, the overhead model yields better results and reduced the prediction
error from 23%–70% to 4%–20%.

0
50

00
15

00
0

25
00

0

Contention (no. of parallel users)

Av
er

ag
e

re
su

lts
 (i

n
m

s)

1 50 100 200 500

Measurements
Prediction w/o overhead model
Prediction with overhead model

(a) Average response times

0
20

40
60

80

Contention (no. of parallel users)

P
re

di
ct

io
n

er
ro

r (
in

 p
er

ce
nt

)

1 50 100 200 500

Prediction w/o overhead model
Prediction with overhead model

(b) Average prediction error

Figure 6.17.: Average case study prediction results and prediction error for different
user workloads

A graphical illustration of the average response times and the prediction
errors is given in Figure 6.17. The figures plot the results of both prediction
methods (with and without the overhead model). Although using the over-
head model does not yield such a strong prediction error reduction for the
RUBiS predictions as for the TPC-W predictions, the prediction accuracy
is still improved when using the load-dependent overhead model.

6.5. Discussion

In the previous sections, we presented two experiments which aim at de-
tecting resource demand overheads that are introduced on a virtualization

224

6.5. Discussion

platform. In this section, we shortly discuss how the GINPEX approach
can be applied to detect another factor influencing the performance in vir-
tualized environments, which is the slowdown that can be experienced due
to additional load present on the platform. In addition, we discuss several
limitations and assumptions of the presented experiments for detecting vir-
tualization properties.

6.5.1. Additional Load

Although additional load is not a direct property of the virtualization plat-
form, it may still be useful to detect such load using an experiment in a
similar way as the experiments presented so far. Often, the performance
analyst has only little information concerning the load that is present on
a platform, for example if he migrates a software to a server where other
software services are deployed as well. In the case of virtualized envi-
ronments, additional load might be present due to other virtual machines
issuing load on the same hypervisor. While the latter case can be especially
relevant in the context of cloud computing environments, it poses additional
challenges where no extensive solution is available yet. However, we will
discuss some of the challenges and possible solutions in this chapter.

6.5.1.1. Experiment Design

The idea of the experiment is as follows. For a specified duration (this is an
experiment configuration parameter), different system performance coun-
ters are measured on the involved virtual machines. Typical performance
counters could be CPU utilization, read and written disk load, or sent and
received network load. For each performance counter, a set of measure-
ments is obtained that is used to derive a probability density function which
reflects the distribution of load during the monitoring time.

As with the other experiments provided in this thesis, this experiment can
be implemented for automated execution by using the GINPEX experiment

225

6. Deriving Virtualization Properties

metamodel. The GINPEX experiment definition consists of WaitTasks
which are executed for the specified experiment duration. For each Wait-

Task, a set of sensors is specified for monitoring the relevant performance
counters. For monitoring the CPU utilization, the CpuUtilizationSensor
can be used (see Section 4.4.4). For additional performance counters, no
appropriate sensor is specified in the core metamodel. Hence, we apply the
mechanisms described in Section 4.7.3 to extend the metamodel with addi-
tional sensors and sensor logic. For providing sensor logic, we use the Sigar
library [VMw], a cross-platform Java API for monitoring various system
performance counters. We created additional sensor metamodel elements
for monitoring the number of bytes read and written to the disk as well
as elements for monitoring the number of bytes sent and received over the
network. For each sensor, the corresponding experiment code generation
templates were specified that provide the sensor logic (including access to
the Sigar library). The metamodel extension, together with the Sigar li-
brary and the sensor logic calling the Sigar API, can be made available as a
GINPEX addon that can be installed with GINPEX .

After executing the experiment, the experiment results (i.e. the derived
probability density functions) are used to derive a performance model that
features the load characteristics as observed on the target platform. In the
case of performance prediction, the performance analyst typically should
have a performance model of the software available for which he is inter-
ested in answering performance questions. Regarding our approach, the
detected model of additional platform load should be seamlessly integrated
into the performance analysis model. Hence, we adopted the experiment to
provide a model of additional load that directly plugs into a performance
prediction model of the Palladio Component Model (PCM): For each de-
rived probability density function, a corresponding PCM component and
PCM usage profile is created. The load distribution described by the func-
tion is converted into a PCM resource demand that is issued to the system
resources during performance analysis. The created PCM objects can be

226

6.5. Discussion

directly joined with the existing PCM model provided by the software ar-
chitect. He can then conduct a performance analysis, for example by using
the PCM simulation SimuCom, to predict the performance of the software
while reflecting the additional load existing on the target platform. To ob-
tain these predictions, he does not have to deploy the software on the plat-
form and execute it in parallel to the existing load.

6.5.1.2. Example

To illustrate how additional load can be detected experimentally and re-
flected in performance prediction, we conducted a small case study where
we used the TPC-W system from the case studies presented in Section 6.3.7
and Section 6.4.6.1. This case study demonstrates how the experiment cre-
ates a model of the system load and how this model can be used to increase
performance prediction accuracy. We deploy the TPC-W system on the
same environment used in Section 6.4.6.1: On a quad-core server (Intel
Core i7-860, 2.80 GHz, 8 GB RAM) running a virtualization hypervisor
(XenCenter 5.6), two virtual machines were deployed. The first VM run-
ning Fedora 12 Linux (kernel 2.6.31) hosted the TPC-W web server and
servlet components, the second VM running Windows 7 hosted the TPC-
W database server. In addition, we set up a third VM running Fedora 12
Linux (kernel 2.6.31) that shared the same hardware resources as the other
VMs. On this VM, we generated synthetic CPU and disk load. This load is
not related to the TPC-W application, but expected to have a performance
impact on the TPC-W response times. Figure 6.18 gives an overview on
the deployment scenario.

To generate synthetic load, two processes were running on the third VM.
The first process generated exponentially distributed CPU load every sec-
ond yielding an average CPU utilization of 25%. The second process gener-
ated exponentially distributed disk load every second. The process yielded
an average disk load of 5 MB read bytes/sec and 5 MB written bytes/sec.

227

6. Deriving Virtualization Properties

Virtual Machine 1
(Fedora 12 Linux)

Virtual Machine 2
(Windows 7)

Server

3 virtual CPUs
(pinned on
core 2-4)

3 virtual CPUs
(pinned on
core 2-4)

Hypervisor
(XenCenter 5.6)

(running on
core 1)

WebServer /
Tomcat servlets

Database
server

Virtual Machine 3
(Fedora 12 Linux)

3 virtual CPUs
(pinned on
core 2-4)

Synthetic
CPU / disk
load generator

Figure 6.18.: TPC-W case study deployment scenario

We then conducted the GINPEX experiment on the virtual machine, mon-
itoring the load situation for 15 minutes. Figure 6.19 shows the measured
results of the experiment. The results are displayed a probability density
functions. Based on these results, a performance model was generated that
extended the PCM model of the TPC-W application in order to reflect the
additional load.

We then executed the standard TPC-W WIPSo workload mix with 1 user
and measured the response times whilst the synthetic load was still issued
on the third VM. In addition, we conducted a PCM performance prediction
of the TPC-W application both with and without the derived additional load
model. The results are shown in Table 6.9. In the first prediction run, we
did not include the derived load model. The predictions yielded an aver-
age response time of 17.9 ms. Compared to a measured average response
time of 28.3 ms, the prediction error was higher than 36%. In the second
run, the derived load model was reflected in the prediction. In this case,
the prediction yielded an average response time of 25.5 ms, leading to a
prediction error of approx. 10%. Hence, including the derived model in
performance prediction led to a prediction error that was over three times
lower compared to the original prediction.

228

6.5. Discussion

0.
00

0
0.

01
5

0.
03

0

0 20 40 60 80

CPU utilization (in percent)

P
ro

ba
bi

lit
y

Measured CPU utilization

(a) Measured CPU utilization

0.
00

0.
06

0.
12

0 5 10 15 20 25 30

Bytes read (in Bytes/sec)

P
ro

ba
bi

lit
y

Measured Bytes read

(b) Measured Bytes read

0.
00

0.
06

0.
12

0 10 20 30 40

Bytes written (in Bytes/sec)

P
ro

ba
bi

lit
y

Measured Bytes written

(c) Measured Bytes written

Figure 6.19.: Results of the additional load experiment: derived probability density
functions

6.5.1.3. Open Issues

In the case study presented in the previous section, the additional load per-
formance model derived by the experiment led to a significant decrease in
the response time prediction error. While the derived performance model
is rather simple, it already shows how prediction accuracy can be increased
by using an automatically derived model of additional load. However, its
simplicity also introduces some shortcomings which we discuss in the fol-
lowing.

First, the approach to measure existing load for creating a model might
not be appropriate in all situations. Load might change in predictable or
unpredictable ways, and in most cases the software architect would then be
interested to predict the performance of a software while reflecting a fu-

229

6. Deriving Virtualization Properties

Table 6.9.: Average response times for the TPC-W case study (in brackets: predic-
tion error)

Type Avg. response time
Measured 28.3 ms
Predicted 17.9 ms (36.8%)
w/o additional load model
Predicted 25.5 ms (10%)
with additional load model

ture load situation. However, measuring existing load can give an initial
idea on how a software behaves on a virtualized environment where exist-
ing services are competing for the same resources. In addition, in some
cases services create a constant amount of load on the platform which is
not about to change in the future. In this case, the performance analysts can
confidently include such load in performance models.

In addition, the experiment could be extended in order to use a more
sophisticated approach for detecting additional load and deriving a corre-
sponding performance model. Such approaches have for example be pro-
posed in [ZJY+09] and [LFG+10]. These approaches aim at taking into ac-
count workload burstiness. Such burstiness could for example be detected
in a precedent experiment. After measuring the burstiness of existing sys-
tem load, this information could be used to automatically adapt the duration
of the experiment presented above.

Another major drawback of the experiment design is that it currently re-
quires access to the machine for taking measurements. This is the case for
all experiments presented in this thesis, however it poses additional chal-
lenges when this experiment is to be executed in different virtualized en-
vironments or cloud computing environments. In such environments, ad-
ditional load is often present which may compete for shared hardware re-
sources. In this case, including such load in performance prediction can
be especially valuable, but detecting the load is much harder than in a con-
trolled environment. For instance, access to the machine on which the load

230

6.5. Discussion

is issued is not possible in such environments. As an alternative, measure-
ments could be taken on the hypervisor level. This might be possible if
the model is to be derived by the infrastructure provider. In this case, the
focus would not be on software performance prediction, but on capacity
planning or infrastructure management. However, taking measurements on
the hypervisor level would require adapting the experiment sensor logic, as
access to performance counters inside a hypervisor strongly depends from
the used hypervisor technology.

In the example presented in the previous section, we executed an instance
of the TPC-W application with a single-user workload and predicted the ef-
fects of additional load. For multi-user workloads, the model of additional
load should be combined with an experimentally derived model of load-
dependent overhead (see Section 6.4). How both models can be combined
for performance prediction is subject to future work.

6.5.2. Limitations and Assumptions

In this chapter, we presented three experiments for detecting different
performance-relevant properties of the virtualization platform. This sec-
tion discusses some limitations and assumptions of the experiments.

Large number of involved machines. In some environments, the
number of involved virtual machines can become very large. For
example, in a large grid or cloud environment, the experiment for
detecting a load-dependent overhead model would require to run on
all available virtual machines. In this case, the overall experiment
runtime would increase strongly (see Section 6.4.2). To overcome
this issue, a subset of machines should be chosen for executing the
experiment. For the experiments, machines with different configu-
rations should be selected, e.g. machines with different operating
systems, different network connections, a different setup of vir-

231

6. Deriving Virtualization Properties

tual machines, or different virtualized operating systems. However,
when performing the experiment on one physical machine featuring
multiple virtualized machines, the experiment can be used to derive
an overhead model that takes into account both hypervisor over-
heads and guest OS overheads. In this case, the number of needed
experiment runs is acceptable.

Microbenchmark selection. The experiments for detecting the
simple virtualization overhead model and the load-dependent over-
head model use the microbenchmarks provided by the GINPEX

metamodel. These microbenchmarks cover different types of re-
source load, but might not be sufficient to detect all possible patterns
of overhead introduced by the virtualization platform. It is always a
challenge to select a suitable set of microbenchmarks. However, the
GINPEX approach allows for easily exchanging microbenchmarks,
if different microbenchmarks are available that appear more suited.
In the presented case studies, the chosen microbenchmarks for gen-
erating CPU, disk, and network load already yielded an overhead
model that improved prediction results significantly.

Controlled environment. The experiments for detecting the sim-
ple virtualization overhead model and the load-dependent overhead
model require to be executed in a controlled environment, i.e. access
to all involved virtual machines is possible. In the case studies, we
conducted these experiments with no additional load on the plat-
form that might disturb the measurements. The third experiment
presented in this chapter illustrates how the problem of additional
load can be tackled by deriving a model of the additional load for
performance prediction. However, this thesis does not investigate
how additional load affects the results of the overhead model exper-
iments. This is regarded as future work.

Additional virtualization properties. The experiment presented
in this chapter only cover a subset of performance-relevant virtu-

232

6.6. Summary

alization properties. Other performance-relevant properties are not
yet reflected by automated experiments. For example, hypervisor
scheduling properties or fine-grained resource allocation using caps,
shares or priorities might influence the software performance, and
should be included separately in the performance analysis in this
case.

6.6. Summary

In this chapter, we presented three experiments to detect various virtual-
ization properties. The first experiment detects overhead that is introduced
when a software is migrated to a virtualized environment. The detected
overhead model is quite simple: for each type of resource demand, a fixed
overhead factor is calculated. A case study with an implementation of the
TPC-W benchmark showed that the model can only reduce the performance
prediction error for predictions with a low number of concurrent users. To
improve the performance prediction for a larger number of parallel users,
we extended the overhead model in the second experiment. This experi-
ment detects a load-dependent overhead model which improved prediction
accuracy significantly in the TPC-W case study. To show that the overhead
model can be applied to the performance prediction of different software
applications, we reused the detected overhead model in another case study.
Here, we predicted the performance of a different software (an implemen-
tation of the RUBiS benchmark). In a third experiment, we illustrated how
the GINPEX approach can be used to detect additional load that is present
in virtualized environments, and how the derived performance model can
be used to increase prediction accuracy.

Compared to the experiments presented in Chapter 5, this chapter’s ex-
periments focus on a different experiment domain and show that the GIN-
PEX approach is not restricted to a certain part of the software execution

233

6. Deriving Virtualization Properties

environment. In Chapter 8, we will discuss possible extensions of the GIN-
PEX approach to different experiment domains.

234

7. Related Work

In this chapter, we discuss related work from different domains, i.e. per-
formance engineering approaches that support modeling the execution en-
vironment, approaches that aim at deriving performance models through
automated experiments, as well as work that deals with the performance
analysis of CPU, OS scheduling, and virtualization properties.

7.1. Modeling the Execution Environment for Performance
Prediction

In recent years, a number of software performance engineering approaches
have been developed. Surveys on performance evaluation approaches can
be found in [BDIS04] (model-based approaches) and [Koz10] (perfor-
mance evaluation of component-based systems).

The Unified Modeling Language (UML) [Obj11c] is a widespread mod-
eling language which is mostly used for modeling object-oriented software
systems. It includes basic concepts for modeling the execution environ-
ment. Using UML profiles, UML models can be extended with domain
specific models. For example, the UML Profile for Schedulability, Perfor-
mance and Time (UML-SPT) [Obj05] and the UML Profile for MARTE
(Modeling and Analysis of Real-time and Embedded Systems) [Obj11d]
extend the UML core model with concepts for modeling resource usage
and performance-relevant properties. Although the primary focus of these
profiles lies on embedded systems, they can also be used to model perfor-
mance aspects of business applications.

235

7. Related Work

Petriu and Woodside [PW04] introduced an intermediate model that
serves as a bridge between UML-SPT models and low-level models for
performance analysis, such as queueing networks or timed Petri nets. How-
ever, support of performance properties of the execution environment is
limited. For an active resource, only the attributes ‘time per operation’ and
‘scheduling policy’ can be specified. Detailed performance properties are
not reflected by the transformations.

Other approaches use proprietary metamodels for specifying software
systems and corresponding performance-relevant information for perfor-
mance analysis. ROBOCOP [BMdW+04] and CUTS [SBHS06] feature
component models that can be used for performance prediction of real-
time systems. However, as discussed in Section 3.1.3, the models do not
provide a separation of the execution environment model from the software
architecture model: In both models, component resource demands have to
be specified in milliseconds. Hence, adopting the software model for a dif-
ferent execution environment requires changing the resource demands in
the software model as well.

Grassi et al. [GMS07] provide a metamodel called KLAPER, which can
serve as an intermediate model for different component models and per-
formance analysis models. Due to its simplicity, it does not distinguish
between component services and resource services of the execution envi-
ronment. Hence, it provides only limited functionality for extending per-
formance analysis with execution environment properties.

Furthermore, the Palladio Component Model (PCM), which has been
employed in this thesis, falls into this category of metamodels for perfor-
mance analysis. The PCM has been described in Chapter 2. Since it pro-
vides various ways for extending the model with execution environment
properties [HKKR09, KDH+12], it is suited for extending software perfor-
mance predictions with execution environment properties.

236

7.2. Deriving Performance Models through Automated Measurements

7.2. Deriving Performance Models through Automated
Measurements

Related work w.r.t. deriving performance models through measurements
can be distinguished into the following areas: (i) approaches tightly con-
nected to software performance engineering with the focus of a measurement-
based derivation of performance models, (ii) frameworks for benchmarking
automation, and (iii) tools and approaches for workload generation and per-
formance measurements.

Software Performance Engineering Approaches

In [WFP07], Woodside argued that better software performance engineer-
ing methods are needed to converge measurement and modeling approaches.
This work is targeted in this direction, but it is by far not the only one.

Liu et al. [LFG05] developed a benchmark suite for measuring certain
performance-relevant parameters of the J2EE middleware platform. The
measurements are fed into a performance model of the middleware. This
model can then be integrated with a performance model of a software run-
ning on the J2EE platform, allowing the software architect to conduct per-
formance analyses at early stages of the software life-cycle. While this
work, like our approach, aims at decoupling the software performance
model from a performance model of the execution environment, it only
focuses on J2EE EJB measurements. Underlying effects stemming from
the hardware or the operating system are included in the measurements,
making it difficult to decouple the middleware model from the underlying
platform. The approach has been extended by Zhu et al. [ZLBG07] with a
tool that automatically generates a performance model based on UML dia-
grams and corresponding benchmarking code for benchmarking the J2EE
environment. Compared to our approach, the resulting measurements are
generated based on the software architecture description. We focus on the

237

7. Related Work

model-driven generation of execution environment experiments that are
agnostic to the software system under analysis.

Woodside et al. use so-called resource functions to derive a perfor-
mance model based on measured resource demands [WVCB01]. The re-
source functions are based on regression splines and describe a software re-
source demand as a function of execution environment and user workload
properties. In [ZWL08], Zheng et al. use Kalman filters to estimate hid-
den performance-relevant parameters through performance measurements.
Both approaches are based on measurements taken on the software architec-
ture level, and the resulting model cannot be reused for a different software
model.

In [KKR10], runtime measurements of Java bytecode instructions are
collected in order to extend a performance model with bytecode timings
that are specific to the execution environment. By mapping software re-
source demands to the bytecode timings, the software architecture model
can be kept independent from the platform-specific timings. The identifi-
cation of timing values and the subsequent configuration of the software
model occurs in an automated way. While this approach shares several
ideas with our approach (e.g. automatically deriving execution environment
properties or separating the execution environment model from the software
architecture model), it aims at a specific part of the execution environment
and cannot be applied to different execution environment properties.

Thakkar et al. [THHF08] present a framework for creating performance
models based on measurements. The framework encompasses the concep-
tual steps that are needed from taking the measurements to building the
performance model. While the framework has a similar workflow as our
approach (experiment preparation, execution, analysis, model building), it
does not include a formal model for specifying the structure of an exper-
iment. In addition, it is a conceptional framework only for which no im-
plementation is available. Hence, it is unclear how the approach can be
adapted for different kinds of experiments.

238

7.2. Deriving Performance Models through Automated Measurements

The Software Performance Cockpit (SoPeCo) [WHHH10] is a tool for
the systematic execution of performance experiments. It provides a meta-
model for specifying experiment designs. While the SoPeCo is more
generic than the GINPEX approach (it can be used to derive models for
any software component that can be measured using typical experiment
designs), it cannot be used to model fine-grained experiment execution
logic, like the experiment logic used in the OS scheduling experiments in
Chapter 5. On the other hand, GINPEX experiments might benefit from the
predefined logic for executing different experiment designs.

Other approaches aim at extending software architecture models using
the concept of performance-related completions proposed by Woodside
et al. [WPS02]. Happe et al. [HBR+10] present an approach for including
middleware performance completions into model-based performance pre-
diction. A performance model of middleware components is weaved into
a software architecture model using model-driven techniques. In [Kap11],
this approach is extended to general performance completions that support
modeling variability of completions. Higher-order transformations are used
to generate transformations for weaving the completions into the software
architecture model. These approaches provide a mechanism to include ex-
ecution environment properties on the model level. This means that exe-
cution environment properties are specified using elements provided by the
corresponding meta-model. The performance analysis (which is based on
the software architecture model) is typically left unchanged. On the other
hand, some properties of the execution environment require adapting the
performance analysis as well. In this case, a completion approach that is
located at the model level is not sufficient. For example, the OS schedul-
ing properties that are detected by the experiments presented in Chapter 5
require configuring the analysis part (in our case, performance simulation
tooling) as well. However, other parts of the execution environment proper-
ties might be configurable using model completions. In this case, GINPEX

experiments results can be used to configure a such a completion.

239

7. Related Work

Benchmarking Frameworks

Compared to the approaches for automatically deriving performance mod-
els presented in the last section, the following frameworks focus on the
aspect of automated benchmarking.

Courson et al. [CMMT00] define an automated benchmarking toolset
that is defined around a common data format for storing benchmarking con-
figurations and results. The toolset aims at automating the definition and
execution of benchmarks. In our approach, we propose a more fine-grained
model for specifying the execution logic of performance experiments. On
the other hand, our approach shares with the benchmarking toolset the abil-
ity to specify automated results analysis logic for executed benchmarks or
performance experiments. However, the toolset is not maintained anymore
and it is not publicly available.

A generic tool for the automation of benchmark execution is presented
by Kalibera et al. [KLM+06]. It consists of a benchmarking framework
for planning benchmark executions and storing the benchmark results, and
an execution framework that facilitates the automated execution of bench-
marks in a distributed environment. While the tool can be used to automate
the deployment and execution of benchmarks, it does not cover storing pre-
defined benchmark runs together with automated results evaluation.

The same holds for the GridBench tool presented by Tsouloupas and
Dikaiakos [TD06]. This tool aims at automating benchmarks that are to be
executed in large Grid environments. Various micro-benchmarks for mea-
suring CPU, cache, memory and I/O effects are supported, but the results
have to be analyzed through human reasoning. In contrast, in this thesis
we focus on the automated execution of experiments, which also includes
automated evaluation of results. In addition, our approach focuses on de-
riving properties that can directly be included in performance engineering
tools.

240

7.2. Deriving Performance Models through Automated Measurements

Weevil is a framework that supports the automated execution of exper-
iments in highly distributed systems [WRCW05]. It shares with our ap-
proach the idea of automating and encapsulating predefined experiments
and the model-based approach of specifying the experiment setup (which
consists of a system under test model and a testbed model in Weevil). The
authors also report various metrics to evaluate the benefits of the frame-
work’s automation features, which has not been done yet for the GINPEX

approach. However, the approach has not been applied to directly enhance
performance analysis methods, such as models for performance prediction.
In addition, the model has a different granularity than the GINPEX meta-
model: the details of the experiment logic (called workload in the Weevil
framework) have to be provided by writing code. We selected various mi-
crobenchmarks for experiment execution that can be easily assembled to
experiments without having to write code; we argue that using microbench-
marks in a model and extending the model with additional microbench-
marks facilitates the creation of experiments and is sufficient to provide a
powerful base for specifying experiment logic.

SKaMPI is a tool for executing MPI benchmarks [RSPM98]. It provides
various predefined functions for MPI measurements. Benchmarks have to
be specified programatically by writing C code. Hence, it provides a pow-
erful basis for specifying experiments, but it also requires low-level knowl-
edge on building and executing benchmark runs. In addition, the authors
note that they have no experience with running SKaMPI on machines with
many processors [AW08].

Workload Generation and Performance Measurements

In the following, we discuss related tools and approaches that focus on
workload generation and performance measurements.

Apache JMeter [Thea] is a tool for load-testing web applications. It can
be used for specifying load-test scripts which are then executed by JMe-

241

7. Related Work

ter to issue load on a web server or a network. It can be extended with
custom adapters for issuing load as well as custom analysis and results vi-
sualization logic. Our metamodel for specifying the execution logic of ex-
periments shares some similarities with the JMeter logic controllers when
it comes to specifying the order of requests. However, we focus on issu-
ing microbenchmarks for performing experiments to automatically detect
execution environment properties, whereas JMeter aims at load-testing ap-
plications. Hence, the tool does not provide predefined analysis logic of the
measurement results. Instead, the user has to evaluate the results manually
depending on the load-testing scenario for which he configured JMeter.

Faban is another framework for automated workload generation [Fab].
It supports the benchmark execution and workload generation in heteroge-
neous, distributed systems, including remote agent management, automated
distribution of benchmark code, and collection of result metrics. It shares
with GINPEX the focus on automating workload generation and collection
of measurements, as well as the idea of formally specifying the distributed
system setup. However, it does not support structuring experiments using
parametric dependencies.

Iometer is a tool for generating and measuring I/O workload [Iom].
Hence, the focus is on measuring the performance of special parts of the
execution environment that are related to I/O load, such as network and
disk resources. It consists of a controlling component for configuration
the workload and controlling its execution, and a workload generator com-
ponent for generating disk or network load. Workload configuration and
system setup can be configured using a graphical user interface. As it is
restricted to generating network and disk load, it cannot be used for experi-
ments that involve measuring CPU load. In addition, Iometer does not sup-
port the specification of predefined experiments which include automated
analysis logic.

A classification of tools and frameworks for conducting Internet and
TPC/IP measurements has been compiled at [Theb]. The taxonomy pro-

242

7.2. Deriving Performance Models through Automated Measurements

vides a fine-grained categorization and reports input and output parameters
as well as the functionality of each tool. The classification has not been
maintained in recent years. In addition, it is not connected to performance
engineering approaches, but it could serve a starting point for evaluating
tools that could be reused for GINPEX experiments detecting network prop-
erties.

The same holds for the Yahoo! Cloud Serving Benchmark
(YCSB) [CST+10], which aims at facilitating performance compar-
isons of cloud-based systems using mainly I/O workloads for reading from
and writing to cloud data stores. The workloads provide various properties
to specify the I/O behavior, such as the I/O operation, which record and
how many records to access, or which kind of data to write. GINPEX could
benefit from these workloads, if it was applied to specifying automated
experiments that focus on Cloud data serving systems.

Gropp and Lusk [GL99] describe various difficulties that can occur when
measuring MPI performance characteristics. The authors provide possible
solutions for some identified issues, but not for all of them. In addition, the
covered issues only partially apply to generic execution environment exper-
iments. Other parts of the execution environment properties might impose
different challenges. For example, fine-grained timing measurements might
not always work in virtual machines. For VMware virtualization products,
extensive documentation is available on how to obtain accurate timing mea-
surements [VMw11].

A generic approach to support the execution of performance experiments
in order to yield robust, reliable, and reproducible results is DataMill, pub-
lished by de Oliviera et al. [dOPRF13]. It aims at automatically quantify-
ing the effects of hidden factors in experiment results and shielding the
user from having to deal with the underlying mechanisms for detecting
such hidden factors. This is done by automatically executing user-specified
benchmarks while varying possible influencing factors, such as compiler
flags, the reboot behavior between benchmark runs, or mechanisms to avoid

243

7. Related Work

memory effects, such as warm caches. GINPEX uses different techniques to
support the specification of experiments yielding robust results, such as the
automated iteration of tasks until a stable stop condition criteria is reached.
However, GINPEX experiments might benefits from additional techniques
to detect hidden performance factors, such as the ones covered by DataMill.
In this case, it has to be investigated, how the highly platform-specific fac-
tors used in DataMill (for example, some of them are strongly related to
Linux kernel configuration options), can be included in a GINPEX setup
aiming at platform-independent execution of experiments (where the ac-
cess of low-level operating system calls are avoided). Including DataMill
techniques into GINPEX might be possible with less efforts if GINPEX ex-
periments were restricted to run on Linux platforms only.

7.3. Performance Analysis Reflecting CPU and OS Scheduling
Properties

The performance impact of processors and operating systems has been ex-
tensively evaluated. Especially for the domain of embedded systems, where
little abstraction from CPU and OS behavior exists, detailed knowledge of
the performance-relevant factors is necessary. A large body of research ex-
ists in this field. In [DB11], a survey is presented that compares and classi-
fies different real-time scheduling strategies and discusses the performance
implications of the strategies.

Brandenburg et al. [BCA08] compared different scheduling algorithms
by measuring their performance and assessing the performance overhead
the algorithms impose on the system. They come to the conclusion that
these overheads can be significant when it comes to scaling the algorithms
to higher numbers of processors. Although we focus on properties that
are relevant in the area of performance analysis of business applications,
this work shows that the used scheduling strategy can have a strong impact
on the performance especially in multi-core environments. Schroeder et al.

244

7.3. Performance Analysis Reflecting CPU and OS Scheduling Properties

[SWHB06] come to a similar conclusion. They analyzed different open and
closed workloads and discovered that the selected scheduling policy can
influence the performance of a software by several orders of magnitude.

On the other hand, many approaches for performance analysis only use
abstract scheduling policies such as processor sharing or one of its vari-
ants, or priority preemptive scheduling. The Layered Queueing Network
Solver (LQNS) provides various abstract scheduling policies, but leaves it
up to the user which one to specify for the modeled processors [FMW+12].
The same holds for QPME (Queueing Petri net Modeling Environment),
which provides a simulator for analyzing the performance of a software
system using a queueing Petri net model [KSM10]. Here, processor shar-
ing, first come, first served and infinite server are supported as queueing
disciplines (which conform to scheduling policies if the modeled queues
represent servers).

In recent years, performance models emerged which supported more
fine-grained, realistic scheduling strategies.

In [Hap08], an extensive performance model of various OS scheduling
properties is provided. The model covers properties which are also sup-
ported by the experiments presented in this thesis, such as the OS schedul-
ing timeslice length or load-balancing strategies. This thesis builds on this
work by extending an performance analysis approach with the automatic
detection of such properties.

Another performance model for operating system scheduling has been
presented by Kawasaki et al. [KGC+06]. The authors provide a Markov
model of the Linux O(1) scheduler that is used for simulating the perfor-
mance effects of different resource allocation policies. In [CCF+06], an
analytical model of the Linux O(1) scheduler is presented for analyzing the
scheduler’s load balancing performance on Non-Uniform Memory Access
(NUMA) systems. While both approaches also use a detailed scheduler
model for performance analysis, the models are tailored towards the Linux
O(1) scheduler and cannot be reused for different schedulers.

245

7. Related Work

All these approaches have in common that they provide fine-grained per-
formance models of the operating system scheduler, but they are either tai-
lored towards a specific scheduler, or manual efforts are necessary in order
to adapt the model parameters for different schedulers. Our approach uses
measurements to detect the scheduler behavior on the target platform and
thus facilitates the automated instantiation of scheduler models for perfor-
mance prediction.

Ahmad et al. [AMM+94] use neural networks to predict the performance
of different load-balancing strategies. The network is trained using simula-
tion data and then used to predict parameter data for a performance model
using a simple queueing network with first come, first served scheduling.
While this approach is applicable to a variety of load balancing policies
(depending on the parameters that are supported by the neural network and
the queueing network), it only supports analysis of mean response times,
and has only been validated using simulation data. The predicted results
have not been compared to measurements of a real system.

Peternier et al. [PBYC13] aim at predicting the response time of software
applications executed in parallel on multi-core platforms. They patched
the Linux kernel to record scheduler events in order to derive a prediction
model that captures performance effects of the operating system and the
software application. The approach requires adapting the Linux kernel and
thus only works on Linux machines. In addition, it derives a performance
model that is tightly coupled to the software application. It cannot be reused
for prediction the performance of a different application on the same ma-
chine. In contrast, the experiments presented in this thesis aim at separating
the infrastructure model from the application model.

246

7.4. Performance Analysis of Virtualized Environments

7.4. Performance Analysis of Virtualized Environments

In the following, approaches are discusses that are related to this thesis
w.r.t. performance analysis of virtualized environments and load-dependent
performance overhead.

Since the advent of virtualization products for widespread hardware plat-
forms, various publications have been published that deal with performance
modeling of virtualized environments. Menascé [Men05] modeled the per-
formance impact of server consolidation with virtual machines using ana-
lytical queueing network models. The models are used to predict software
response times, throughput, and resource utilization when multiple virtual
machines are executed on a single hypervisor. Following this approach, the
system is modeled at a very abstract level and, due to the use of the analyti-
cal models used for analysis, only yields rough performance estimates (i.e.
average times only). The approach also requires access to the virtualization
hypervisor for taking measurements in order to calculate the slowdown due
to virtualization. Other approaches provide virtualization models for differ-
ent performance analysis scenarios, such as predicting resource overheads
due to provisioning and instantiation of virtual machines [SKF06] or virtual
clusters [YMM07].

In [CG05], Cherkasova & Gardner measure the CPU overhead that oc-
curs during I/O processing for the Xen virtualization platform. They pro-
pose a measurement and monitoring framework, but the approach is only
applicable to the Xen hypervisor and is restricted to network I/O overhead
only.

Wood et al. [WCOS08] use microbenchmarks to estimate performance
overheads that occur when migrating a software to a virtualized environ-
ment. They focus on different kinds of virtualization overhead, but only
concentrate on analyzing resource requirements, not on changes in response
times. A similar approach is taken in [BFS+06], where virtualization over-
head is derived based on generated workload and integrated into a simple

247

7. Related Work

queueing model. Compared to our approach, this approach requires taking
measurements on the hypervisor level and thus is not applicable in scenar-
ios where hypervisor access is restricted. In addition, the overhead model
is constant and neglects load-dependent overheads.

Iosup et al. [IOY+11] aim at measuring performance properties of cloud
computing platforms. The authors focus on cloud computing services for
scientific computing. However, the measurement results are not used for in-
tegration into analysis tools, e.g. for performance prediction. In [LZJ+11],
an approach is presented to model the relationship of resources across vir-
tual and physical layers in order to perform a runtime calibration for es-
timating resource utilization. Again, this approach requires access to the
hypervisor for taking measurements.

Various approaches instrument the target software [TR12] or profile the
target software [CAS+12] to obtain a performance model for predicting the
performance impact on increased load. Tarvo and Reiss [TR12] simulate
the performance of multi-threaded software applications using a very fine-
grained application model that is derived using a combination of manual
program analysis and instrumentation of program code and the Linux ker-
nel. The model reflects the performance effects of multiple parallel requests
to the operating system and hardware resources. The Kismet tool [JGLT11]
uses code instrumentation to estimate the parallel speedup that can achieved
for unparallelized programs. This is done using an extension of the criti-
cal path analysis method. Chen et al. [CAS+12] create a load-dependent
queueing model based on the measured CPU utilization, the number of
held spin locks, and the disk throughput during program execution. The
model is then solved using an adapted mean value analysis algorithm to
predict the response times of concurrently executed applications. These
approaches are not restricted to virtualized environments, but they are re-
lated to the load-dependent overhead model presented in Chapter 6. How-
ever, our approach does not require instrumenting or measuring the target
software in order to gain a model that explains the effects on high concur-

248

7.5. Summary

rency levels. We include such effects in performance analysis by deriving
a load-dependent overhead model based on measuring microbenchmarks.

Mian et al. [MMVP13] generate a performance model of data-intensive
workloads running in Cloud environments through sampling and taking
measurements. A linear model is used as a performance model in the
first instance. If the measurements show a non-linear behavior, non-linear
modeling based on radial basis functions is used. The authors focus on
measuring effects on the software level that cannot be easily mapped to ef-
fects stemming from the execution environment. Also, no tool support is
available for adopting the technique. However, starting with linear models
first in order to reduce the overhead for deriving the model seems to be a
promising approach that could also be used for obtaining certain execution
environment properties experimentally.

7.5. Summary

In this chapter, we discussed related work for different areas. While the pre-
sented approaches cover a wide range of functionality necessary for auto-
matically deriving performance-relevant execution environment properties,
they also have certain limitations:

• Many approaches require manual analysis of experiment results and/or
manually including the results in performance prediction.

• Only a few approaches are applicable to a wide range of execution
environment properties; many approaches focus on a certain part or
property of the execution environment.

• Some approaches have not been implemented, but are only defined
on a conceptional level.

249

8. Conclusions

In this chapter, we first summarize the contributions of this thesis. Then,
we give an overview on the discussions on limitations and assumptions
provided in this thesis. We continue with presenting additional application
areas where the approach or parts of the approach can be or have been
applied. Finally, we present several directions for future research.

8.1. Summary

This thesis introduced GINPEX, a novel approach for deriving performance-
relevant execution environment properties through automated experiments.
The experiments can be executed by a performance analyst who is shielded
from having to deal with internal details of the execution environment or the
design of experiments. In the following, we summarize the contributions
of this thesis.

An approach for the automated derivation of execution environ-
ment properties. In this thesis, we introduced an approach
which aims at encapsulating domain knowledge that is needed for
retrieving execution environment properties into automated experi-
ments. Following the approach, an experiment designer can design
such experiments in advance which are then stored for later reuse by
performance analysts. For executing experiments, the performance
analyst has to deploy a small application called Load Driver on the
target platform(s) which is responsible for retrieving the experiment
specification and executing the experiment. Every experiment aims

251

8. Conclusions

at deriving the value of a certain execution environment property,
e.g. a CPU property (such as the number of CPU cores), a prop-
erty of the operating system (such as the timeslice length of the
scheduler), or a property of the virtualization environment. Dur-
ing an experiment, certain load patterns are issued on the target
platform and simple performance metrics, such as response times
or CPU utilization, are measured. The measured results reported
by the Load Driver are then used to execute predefined experiment
analysis. The analysis derives the execution environment property
value based on the measured results using predefined algorithms.
To fully automate the process of reflecting execution environment
properties in performance analysis, the experiment results can be
automatically integrated into a performance analysis approach. In
this thesis, we utilized the Palladio Component Model (PCM) for
performance prediction, which we adapted for supporting the spec-
ification of execution environment properties in a model that is in-
dependent from the software architecture model. This way, the
derived execution environment properties can be reused for the per-
formance analysis of a different software without the need to repeat
the executed experiments. The approach regards the execution en-
vironment as a black box, i.e. it does not require access to low-level
(technology-specific) resources. Instead, it aims at provoking an ex-
ecution environment behavior through specific load patterns using
microbenchmarks. From observing the influence of the execution
environment on measurements, conclusions about the property in
focus can be drawn. A black box approach supports the definition
of experiments that are platform-independent and thus widely ap-
plicable. Furthermore, this thesis introduced different concepts in
order to implement the approach:

• A workflow describes how to apply the approach for design-
ing and executing experiments;

252

8.1. Summary

• A metamodel for the specification of experiments (see be-
low);

• Concepts for structuring execution environment domains and
storing predefined experiments;

• A concept for coupling experiments through parametric ex-
periment dependencies.

A metamodel for the specification of execution environment ex-
periments. In order to facilitate the efficient specification of ex-
periments, this thesis introduces a metamodel for specifying experi-
ments and experiment logic. The former part of the metamodel pro-
vides constructs for grouping experiments in experiment domains
as well as specifying experiments, experiment dependencies, and
the involved machines of the execution environment. The latter part
focuses on specifying the experiment logic which includes the con-
trol flow of the experiment, tasks for generating load through mi-
crobenchmarks, as well as sensors indicating at which part of the
experiment certain measurements have to be taken. In addition, the
following contributions were made:

• An experiment template for describing and documenting ex-
periments in a non-formal way;

• A discussion of various possibilities for extending the ap-
proach with additional experiment domains, experiments, ex-
periment metamodel tasks and sensors, as well as experiment
analysis logic;

• A discussion on the performance overhead of executing ex-
periments.

Experiment designs for detecting CPU, OS scheduling, and virtu-
alization properties. In this thesis, we applied the GINPEX ap-

253

8. Conclusions

proach to various experiments that aim at detecting properties from
different parts of the execution environment. The execution envi-
ronment properties in focus comprise CPU, OS scheduling and vir-
tualization properties. These experiments show (i) that execution
environment properties can be detected automatically using pre-
defined experiments, and (ii) that the experiments can be run on
different platform technologies. For example, we applied the OS
scheduling experiment to different Windows and Linux schedulers
and showed that the experiment detects the correct property value
on all included platforms. In detail, the thesis contributes automated
experiments to detect the following properties:

• The CPU experiments detect simultaneous multithreading
(SMT) and the number of available physical and virtual CPU
cores;

• The OS scheduling experiments detect the OS scheduler times-
lice length as well as the OS load-balancing policy used for
initial and dynamic load-balancing;

• The virtualization experiments detect the response time over-
head on resource demands introduced by the virtualization
hypervisor; in addition the design of an experiment for de-
tecting additional load on the virtualization platform is briefly
discussed.

The detected properties differ w.r.t. their prominence in software
performance engineering (SPE): While the importance of CPU and
operating system scheduling policies for SPE is well known, this
thesis provides a novel model reflecting load-dependent virtualiza-
tion overhead that can be included in software performance analy-
sis. In all cases, the derived model of the execution environment
features properties that are independent from the software model.

254

8.1. Summary

Validation. We validated the contributions of this thesis in multiple
steps. First we evaluated the applicability of the general approach
by defining experiments that aim at detecting properties of different
parts of the execution environment. Although the properties in fo-
cus differed in their level of granularity (for example, the operating
system timeslice length is a very fine-grained property compared to
virtualization overhead), values of these properties can be detected
using the model-based approach presented in this thesis. In addi-
tion, the experiments have been validated as follows: For the CPU
and OS scheduling experiments, the experiments were executed on
different platforms and the detected properties were compared with
the CPU and OS specifications. Furthermore, we conducted a case
study to evaluate how the set of derived properties impacts the per-
formance prediction accuracy. In the case study, the prediction error
could be reduced from over 20% to below 5% in most cases. For
the virtualization experiments, different case studies have been per-
formed to evaluate the impact of the derived overhead model on
performance prediction. With the simple overhead model derived
by the first experiment, the prediction error can only be reduced
for a low number of parallel users accessing the software system.
With the enhanced overhead model derived by the second exper-
iment, the prediction error could be reduced in most cases from
60%–70% to below 15%. To validate the applicability of the de-
rived overhead model for multiple software applications, we con-
ducted another case study in which we predicted the performance
of a different software application. In this case study, the derived
overhead model yielded a reduced prediction error from 23–70% to
4%–20%.

255

8. Conclusions

8.2. Limitations and Assumptions

We discussed limitations and assumptions of the general approach and the
presented experiments in the corresponding chapters. Limitations and as-
sumptions of the general approach have been discussed in Section 3.5. For
the CPU and OS scheduling experiments, limitations and assumptions have
been covered in Section 5.9. Similarly, limitations and assumptions for
the virtualization experiments can be found in Section 6.5.2. Finally, more
fine-grained assumptions for each presented experiment can be found in
the “Assumptions” section of the corresponding experiment template. All
presented experiment templates are also compiled in Appendix B.

8.3. Further Application Areas

In this thesis, we used the GINPEX approach to support the performance
analyst in conducting performance analyses. However, the approach (or
parts of it) can be applied in different scenarios. In the following, we briefly
discuss three of them.

Supporting middleware developers. Automated experiments could
also be used to support middleware developers in testing middle-
ware implementations. As experiments detect the properties by ob-
serving the execution environment’s effects on issued load, they can
be applied to new implementations of the execution environment:
The developer can run an experiment and check if the derived prop-
erty value is consistent with the requirements. For instance, the pre-
sented experiments for detecting operating system scheduling prop-
erties could not only be used to derive such properties for software
performance prediction, but also for testing if a new implementation
of an operating system scheduler meets certain requirements.

256

8.4. Future Work

Measuring performance effects in scalable platforms. In an
evaluation of scalability effects of virtualization platforms [vK11,
KHvKR11], the GINPEX tooling has been used to generate work-
loads on an IBM z10 machine. The automated GINPEX experiment
was executed to measure the effects of elastic virtual CPU resources
on microbenchmark response times.

Evaluating approaches to resource demand estimation. In [Spi11],
different approaches to resource demand evaluation are discussed
and compared. For evaluating these approaches, artificial workloads
have been defined using GINPEX, as GINPEX provides the possibil-
ity to specify workloads with fixed, predefined resource demands
using the different microbenchmark tasks. The resource demands
were issued through automated GINPEX experiments and the result-
ing resource demands estimated by the different resource demand
estimation approaches were monitored and evaluated.

8.4. Future Work

In the following, we discuss several possibilities for future work. Future
work can be grouped into work regarding the approach in general, and work
that extends the presented experiments.

GINPEX Approach for Deriving Execution Environment
Properties

Model-based specification of analysis logic. In this thesis, we pro-
posed a metamodel for specifying the structure and logic of exper-
iments. The analysis logic has to be implemented in Java code.
Specifying the analysis logic using a metamodel could lead to a
more efficient development of experiments. In this case, it has to

257

8. Conclusions

be investigated which analysis tasks are typically recurring among
multiple experiments so that encapsulating these analysis tasks into
a metamodel makes sense. It also has to be investigated how a
meaningful structure of the analysis logic metamodel should look
like.

Mapping performance model constructs to experiments. With
an increased number of predefined experiments, an automated ap-
proach would be useful to select required experiments based on the
software performance model. Automating the selection of exper-
iments could shield the performance analyst from deciding which
experiments are needed. Furthermore, the expressiveness of the per-
formance model and the performance analysis approach could also
be taken into account when selecting experiments: some parts of the
infrastructure might not be relevant for performance analysis (e.g.
virtualization experiments can be neglected if the modeled software
system is not running in a virtualization environment), or might not
be supported by the performance analysis approach (e.g. if the anal-
ysis approach does not support the reflection of fine-grained execu-
tion environment properties). Automating the experiment selection
could for example be obtained by specifying OCL constraints for
performance model elements. Constraint checks are then automat-
ically executed for performance model instances and based on the
results of the constraint checks, the required experiments are se-
lected.

Additional validation. Additional validation of the approach in-
troduced in this thesis could for instance comprise an empirical
investigation of the possible speedup that can be obtained through
automated derivation of execution environment properties. This re-
quires a case study involving human participants where one group
conducts a performance prediction for a software system using
the approach to derive execution environment properties, and an-

258

8.4. Future Work

other group conducts the same prediction while identifying the
performance-relevant execution environment properties manually.
Another validation activity could be a level-III validation [BR08],
in which the approach is compared to other performance analysis
methods not following the approach w.r.t. the overall improvements
of the software development process. Such a validation involves a
lot effort, as it requires the execution of two identical projects in
an industrial setting, one project applying the approach, and one
project neglecting it. Such a validation is rarely performed in prac-
tice, but we argue that validating the different benefits of the ap-
proach separately (i.e. the importance of deriving execution envi-
ronment properties for performance prediction, and the speedup of
deriving such properties automatically) could also help in assessing
the advantages of the approach.

Extending GINPEX Experiments

Extending CPU experiments. The CPU and OS scheduling exper-
iments presented in this thesis only deal with a subset of the major
performance-relevant CPU and OS scheduling properties. To derive
additional properties, further experiments are needed. For exam-
ple, CPU power management properties such as dynamic frequency
scaling can have an impact on software performance, but it is hard
to quantify in performance models just by consulting CPU specifi-
cations. For the CPU simultaneous multithreading (SMT) property
value detected by an experiment presented in this thesis, additional
research efforts are necessary in order to establish an approach of
reflecting SMT in performance prediction properly.

Extending OS scheduling experiments. OS scheduling properties
that are candidates for further automated experiments are properties

259

8. Conclusions

related to priority handling: OS scheduler implementations strongly
differ in how they dynamically manage the scheduling priorities
of running tasks. Performance models such as the ones presented
by [Hap08] already support scheduling priorities, but no platform-
independent experiment is yet available to detect such properties
automatically.

Extending virtualization experiments. Regarding the experiments
to detect virtualization properties, extensions with regard to ad-
ditional hypervisor and virtual machine properties might be help-
ful. For example, experiments could be used to detect virtual CPU
configurations of virtual machines, such as CPU priorities or caps.
Properties regarding the hypervisor scheduling policy, i.e. how the
hypervisor manages the concurrent access to shared resources from
different virtual machines, might also lead to improved performance
prediction and thus can be a good candidate for additional experi-
ments. In addition, further research is necessary on how to au-
tomatically detect a reasonable model of additional load present
in virtualized environments. The experiment concept presented in
Section 6.5.1 can serve as a starting point here.

Designing experiments for different experiment domains. In ad-
dition to CPU, OS scheduling, and virtualization experiments, per-
formance prediction can also benefit from experiments detecting to-
tally different execution environment properties. Software perfor-
mance prediction approaches often use simple performance models
of disk or network resources. Typically, they only support the speci-
fication of a simple performance property, such as throughput or la-
tency. For both kinds of resources, additional performance-relevant
properties are present which are assumed to lead to better prediction
results if reflected in performance prediction.
In large software systems, caching effects are also an important
factor regarding software performance and should therefore be re-

260

8.4. Future Work

flected in performance prediction. Again, experiments to detect
hardware caching properties or middleware caching properties (for
instance, the speedup of an in-memory database compared to a tra-
ditional disk-based database) might be useful. In all those cases, it
has to be investigated how these properties can be detected automat-
ically using a predefined experiment, and how the detected property
values can be reflected in performance prediction.
As a last point, the approach can also be applied to the domain of
embedded systems. In this thesis, we focused on the domain of busi-
ness information systems and dealt with properties of the execution
environment used for such systems. For embedded systems, a dif-
ferent infrastructure is typically used, where for example real-time
properties are much more important. The approach can applied to
this domain as well, but it has to be explored to which degree exist-
ing experiments can be reused for embedded system and for which
properties new experiments are needed.

261

A. GINPEX Metamodel

In the following, we provide an overview on the GINPEX metamodel that
has been implemented in the GINPEX tooling1, and give additional details
on the metamodel part regarding the different experiment tasks and sensors.

1..*

1

1
*

+detectedParameter

+configurationParameter

*

*

1

1

1..*

1

Parameter

SingleMachineType UnboundedMachineType

MachineType

+ name : string
+ optional : boolean
+ description : string

ExperimentDomain

+ name : string
+ description : string

Experiment

+ id: string
+ name : string

ExperimentLogicDefinition

Figure A.1.: GINPEX experiments metamodel

The GINPEX experiment metamodel is shown in Figure A.1, the experi-
ment logic definition metamodel is shown in Figure A.2. The concepts of
these metamodel elements can be found in Section 4.4.1 and Section 4.4.2.

263

A. GINPEX Metamodel

11..* +rootTask

SensorRepository

1

AbstractTaskMachineReference

+sensorRepository+machineReferences

ExperimentLogicDefinition

+ name : string

Figure A.2.: GINPEX experiment logic definition metamodel

+machineUnderTest1

2..* 2..* 1 +nestedTask

+nestedTasks
+nestedTasks

1
+nestedTask

1

AbstractTask

MachineReference

SequenceTask

StopCondition

LoopTaskMachineTaskSet ParallelTask

+ stopAfterFirstTaskCompleted : boolean
+ useProcessInsteadOfThread : boolean

ControlFlowTask

Figure A.3.: GINPEX control flow tasks metamodel

A.1. Control Flow Tasks

Figure A.3 gives an overview on the control flow tasks of the GINPEX meta-
model. In the following, these metamodel elements are described in detail.

SequenceTask Executes multiple nested task in a sequence. Nested
tasks are ordered; a nested task is being executed once its predeces-
sor task has been completed.
Activity Diagram Syntax:

1see http://ginpex.ipd.kit.edu/

264

http://ginpex.ipd.kit.edu/

A.1. Control Flow Tasks

SequenceTask

Nested task 1 Nested task 2

Attributes:

• nestedTasks: An ordered list of nested tasks.

ParallelTask Executes multiple nested task in parallel.
Activity Diagram Syntax:

ParallelTask

Nested task 1

Nested task 2

···
Attributes:

• nestedTasks: A list of nested tasks.

• boolean stopAfterFirstTaskCompleted: Indicates whether the
ParallelTask should stop once the first nested task has

265

A. GINPEX Metamodel

completed. Otherwise, the ParallelTask waits until all
nested tasks have completed.

• boolean useProcessInsteadOfThread: Indicates whether the
task should execute the nested tasks in different OS processes.
If set to false (default), threads are used.

LoopTask Executes a nested task multiple times.
Activity Diagram Syntax:

LoopTask

Nested task

Stop condition
reached?

Yes
No

Attributes:

• nestedTask: The nested task which has to be executed in a
loop.

• stopCondition: The stop condition is specified by one of the
stop condition model elements (see below).

MachineTaskSet Executes a set of tasks on a specified machine.
Activity Diagram Syntax:

266

A.2. Stop Conditions

MachineTaskSet

Nested task
(on target machine)

Attributes:

• nestedTask: The root task to be executed on the machine.

• MachineReference targetMachine: The machine on which
the nested task is to be executed.

• MachineReference calibrationFilesFromDifferentMachine:
If specified, nested task uses calibration files from this ma-
chine, instead of the calibration files from the target machine.

A.2. Stop Conditions

The following metamodel elements inherit from StopCondition and can
be used to specify the condition for terminating a LoopTask.

FixedNumberOfIterationsReached Executes the loop for a spec-
ified number of iterations.
Attributes:

• numberOfIterations: The number of iterations.

• randomized: An optional distribution that specifies a random-
ization of the number of iterations (see Distribution ele-
ments below).

267

A. GINPEX Metamodel

InternalTimesStable Executes the loop until the response times
of a nested task are stable, i.e. if the average response time lies in a
specified confidence interval.
Attributes:

• taskForInternalTimes: The nested task whose response times
are used for determining the stop condition.

• confidence: The statistical confidence.

• halfWidth: The half width of the confidence interval.

• minimumNumberOfIterations: A minimum number of loop
iterations that is to be executed independent from the stop
criteria.

• maximumNumberOfIterations: A maximum number of loop
iterations that is to be executed, even if the stop criteria is not
met.

InternalTimesChanged InternalTimesChangedSymbol.gif Exe-
cutes the loop until there is a significant change in the measured
response times of the nested task.
Attributes:

• numberOfLastTimesRegarded: A number indicating the num-
ber of previous iterations that should be taken into account
when determining a difference in response times. A higher
number means that the condition is more robust to outliers.

• finalNumberOfIterationsToDo: Number of loop iterations to
perform after detecting an internal times change before com-
pleting the loop.

• boolean finalNumberOfIterationsToDoRandomized: Indicates
whether the actual number of loop iterations to perform after

268

A.3. Machine Tasks

detecting an internal times change before completing the loop
is random. If set, this number is greater than 0 and lower than
finalNumberOfIterationsToDo.

• boolean resetFinalNumberOfIterationsIfInternalTimesChangedA-

gain: Indicates whether the final number of iterations to be
executed is to be reset if the internal times change again a sec-
ond time during the final number of iterations are executed.

• maximumNumberOfIterations: A maximum number of loop
iterations that is to be executed, even if the stop criteria is not
met.

UserAbort Executes the loop until the user manually aborts execu-
tion

EndlessLoop Executes the loop without a specific stop condition.
Instead, the loop has to be aborted from outside. Endless loops can
for example be used in a ParallelTask that aborts the loop after
another nested task has been completed.

A.3. Machine Tasks

Figure A.4 gives an overview on the machine tasks of the GINPEX meta-
model. In the following, these metamodel elements are described in detail.

CpuLoadTask Executes CPU-bound load on the machine.
Attributes:

• duration: The amount of load that is to be executed is speci-
fied in duration in milliseconds. This attribute corresponds to
the duration the load execution would take if executed with-
out contention on the platform.

269

A. GINPEX Metamodel

+receivingMachine1

AbstractTask

DiskReadTaskDiskWriteTask
...

MachineTask

MachineReference

CpuLoadTask

+ duration : long
+ demand : CpuLoadDemand

NetworkLoadTask

+ load : long

ExecuteLibraryTask

+ pathToLibrary : string

«enumeration»
CpuLoadDemand

+ MandelbrotDemand
+ FibonacciDemand
+ SortArrayDemand
+ WaitDemand

DiskTask

+ amount : long

Figure A.4.: GINPEX machine tasks metamodel

• demand: The type of CPU load to be executed. The user
can choose between FibonacciDemand, MandelbrotDe-

mand (both CPU-related), SortArrayDemand (CPU/RAM-
related), and WaitDemand (sleep).

• randomized: An optional distribution that specifies a random-
ization of the amount of load (see Distribution elements
below).

DiskReadTask Issues disk read load. Data is read from a large
number of 10 MB large disk files, all containing random data.
Attributes:

• amount: Inherited from abstract DiskTask: The amount of
bytes to read. .

DiskWriteTask Issues disk write load. Random data is written to
a large number of 10 MB large disk files.
Attributes:

• amount: Inherited from abstract DiskTask: The amount of
bytes to write.

270

A.4. Distributions

NetworkLoadTask Issues network load by sending raw random
data to another machine.
Attributes:

• MachineReference targetMachine: The target machine to
which load is to be sent to.

• load: The amount of load to be sent in bytes.

ExecuteLibraryTask Execute task logic that is provided by a Java
JAR library. This allows for executing task logic without extending
the metamodel or code-generation templates.
Attributes:

• libraryPath Absolute path to the JAR file on the controller
machine. The JAR file will be transferred to the Load Driver
for execution.

• className The fully qualified class name which provides the
task logic implementation.

A.4. Distributions

The following metamodel elements inherit from the abstract Distribu-
tion element which is currently used in the LoopTask and the CpuLoad-
Task element for specifying randomized behavior. The value which is to
be randomized is available in the metamodel element for which the distri-
bution is specified.

UniformDistribution Use randomized values based on a uni-
form distribution. The minimum value is 0 and the maximum value
is the vlaue to be randomized.

271

A. GINPEX Metamodel

NormalDistribution Use randomized values based on a normal
distribution (Gaussian distribution). For both distribution parame-
ters µ (mean) and σ (standard deviation), the value to be random-
ized is used.

ExponentialDistribution Use randomized values based on an
exponential distribution. For the distribution parameter λ (rate), the
value to be randomized is used.

A.5. Sensors

The sensors which can be specified for GINPEX tasks are shown in Fig-
ure A.5.

+measuredTask
1

SensorRepository

AbstractTask

CpuUtilizationSensorResponseTimeSensor

Sensor

1

*

ParallelSensorRunnable

+ waitTimeBetweenMeasurements : int

DemandedTimeSensor

ParallelRunningExternalLibrarySensor

UsedMemorySensor

ExternalLibrarySensor

Figure A.5.: GINPEX sensors metamodel

272

A.5. Sensors

ResponseTimeSensor Measures the response time of a task exe-
cution by taking system time stamps before and after the task.
Attributes:

• measuredTask: Inherited from abstract Sensor: The task to
be measured.

DemandedTimeSensor For a task using random times, for example
a random duration of a CpuLoadTask, this sensor monitors the de-
manded (random) times.
Attributes:

• measuredTask: Inherited from abstract Sensor: The task to
be measured.

CpuUtilizationSensor Measures CPU utilization during a task
in a parallel thread. 100% means all cores have been utilized. On
a quad-core machine, 25% means that only one core has been fully
utilized during the last measurement period, or multiple cores have
been partly utilized, yielding an overall 25% utilization.
Attributes:

• measuredTask: Inherited from abstract Sensor: The task to
be measured.

• waitTimeBetweenMeasurements: Inherited from abstract Par-
allelSensorRunnable: Indicates the wait time in millisec-
onds between taking sensor measurements.

UsedMemorySensor Measures the used physical memory in per-
cent during a task in a parallel thread. 100% means no free memory
is available at the time of the measurement. Attributes:

• measuredTask: Inherited from abstract Sensor: The task to
be measured.

273

A. GINPEX Metamodel

• waitTimeBetweenMeasurements: Inherited from abstract Par-
allelSensorRunnable: Indicates the wait time in millisec-
onds between taking sensor measurements.

ExternalLibrarySensor Executes sensor logic that is provided
by a Java JAR library. This allows to execute sensor logic without
extending the metamodel or code-generation templates. The sensor
library has to provide logic that is called before the measured task is
executed, and logic that is called after the measured task is executed.
Attributes:

• measuredTask: Inherited from abstract Sensor: The task to
be measured.

ParallelRunningExternalLibrarySensor Executes sensor logic
that is provided by a Java JAR library. The sensor logic is executed
in a parallel thread while the measured task is executed.
Attributes:

• measuredTask: Inherited from abstract Sensor: The task to
be measured.

• waitTimeBetweenMeasurements: Inherited from abstract Par-
allelSensorRunnable: Indicates the wait time in millisec-
onds between taking sensor measurements.

274

B. Presented Experiments

In the following, all experiment templates that have been presented through-
out this thesis are listed. For an explanation on the experiment template
structure, see Section 4.6.

B.1. CPU Simultaneous Multithreading

Experiment ID: CPU.01
Experiment name: Detect simultaneous multithreading (SMT)
Experiment domain: CPU
Detected experiment parameter: SMT available (true/false); de-

fault: false
Importance for performance analysis: A performance speedup

for parallel CPU-bound workloads possible due to virtual CPU
cores. However, the performance gain of x virtual cores is typi-
cally lower than x physical cores. If SMT is available, the observed
CPU utilization of an application is based on the available virtual
cores.

Configuration parameters: None.
Experiment execution logic: Iteratively increase the number of

parallel executed CPU-bound tasks and measure its response times
and the CPU utilization. If response time increases, stop. If the
measured CPU utilization has not reached 100% once increased re-
sponse times have been measured, we assume that SMT is available.

275

B. Presented Experiments

For details, see Section 5.3.2 or the graphical description shown in
Figure 5.3.

Assumptions:

• The machine is idle.

• The operating system reports CPU utilization based on the
number of available virtual cores.

• Required sensors: Response time sensor, CPU utilization sen-
sor.

Experiment robustness: The experiment is being executed twice
with different types of CPU demands, one focusing on integer op-
erations, one focusing on floating-point operations. If at least one
of the demands yields measurements that indicate SMT availability,
the experiment result is set to true (SMT available).

Experiment performance: O(n) where n is the number of avail-
able CPU cores. If the number of cores is larger than 8, the num-
ber of parallel tasks is doubled instead of linearly increased, which
leads to a duration that lies in O(log(n)).

B.2. Detect Number of Available CPU Cores

Experiment ID: CPU.02
Experiment name: Detect number of available CPU cores
Experiment domain: CPU
Detected experiment parameter: Number of available physical

CPU cores (integer); if SMT is available, the number of available
virtual CPU cores (integer) is also detected

Importance for performance analysis: The number of available
CPU cores heavily influences the slowdown that can be observed for

276

B.2. Detect Number of Available CPU Cores

CPU requests due to parallel CPU requests. The number of cores
for a CPU resource is a basic parameter this is typically reflected in
performance analysis tools such as the PCM.

Configuration parameters: smt: SMT available (true/false); de-
tected by Experiment CPU.01

Experiment execution logic: Iteratively increase the number of
parallel executed CPU-bound tasks and measure its response time
and (if smt is true) the CPU utilization. If response time increases
and smt is false, stop. If smt is true, continue until the CPU utiliza-
tion reaches 100%. The number of physical cores equals the num-
ber of parallel executed tasks in the last iteration before increased
response times were measured. If smt is true, the number of virtual
cores equals the number of parallel executed tasks in the last execu-
tion, where a CPU utilization of 100% was measured. For details,
see Section 5.4.2 or the graphical description shown in Figure 5.8.

Assumptions:

• The machine is idle.

• If the CPU is a multi-core CPU, it features symmetric multi-
processing (SMP). This is the case for current server CPUs.

• The OS scheduler spreads CPU load of parallel threads equally
across all available CPU cores.

• If smt is true, the operating system reports CPU utilization
based on the number of available virtual cores.

• Required sensors: Response time sensor, CPU utilization sen-
sor (only if smt is true).

Experiment robustness: The experiment is being executed twice
with different types of CPU demands, one focusing on integer oper-
ations, one focusing on floating-point operations. If the executions

277

B. Presented Experiments

lead to the same experiment result, results can be considered robust.
Otherwise, results should be checked manually. Further checks to
assess robustness:

• If smt is true, the detected number of virtual cores should be
higher than the detected number of physical cores

• If smt is true, the detected number of virtual cores should be
a multiple of the detected number of physical cores

Experiment performance:
If smt is false: O(n) where n is the number of available physical
CPU cores.
If smt is true: O(n) where n is the number of available virtual CPU
cores.
If the number of cores is larger than 8, the number of parallel tasks
is doubled instead of linearly increased, which leads to a duration
that lies in O(log(n)).

B.3. Detect OS Scheduler Timeslice Length

Experiment ID: OSSCHEDULER.01
Experiment name: Detect OS scheduler timeslice length
Experiment domain: OS Scheduler
Detected experiment parameter: Operating system scheduler times-

lice length (integer)
Importance for performance analysis: General-purpose operat-

ing system (GPOS) schedulers split work of parallel running tasks
by issuing timeslices to the tasks. Depending on the timeslice
length, processing the amount of work of a task is being interrupted
if it does not fit in a timeslice. On the other hand, a small amount

278

B.3. Detect OS Scheduler Timeslice Length

of work may be completed within one timeslice and thus may not
suffer further delays.

Configuration parameters: number of cores: Number of available
physical CPU cores; detected by Experiment CPU.02

Experiment execution logic: Issue a small amount (20 ms) of CPU
load (called TaskMeas) on a core and measure its response time,
while additional CPU load is issued to the core by one another pro-
cess. In some cases, the measured response time is then signifi-
cantly larger than 20 ms, indicating that the operating system issues
the CPU load of the other process in between for a timeslice. The
difference to the original 20 ms is then the timeslice length used be
the OS scheduler. For details, see Section 5.5.2 or the graphical
description shown in Figure 5.12.

Assumptions:

• The machine is idle.

• All tasks are running with the same priority. As there is no
task interactivity (e.g. I/O access), it can be assumed that all
tasks are running with the same priority, and that TaskMeas

has been interrupted for exactly one timeslice.

• The actual timeslice length is larger than 20 ms. A timeslice
larger than 20 ms has to be assumed in order to yield mea-
surements that can be used for analysis. However, given the
fact that all common operating systems use average times-
lice lengths between 30 ms and 200 ms (cf. [RS05, Aas05,
Mol07]), this is a valid assumption.

• All CPU-bound tasks have to be equally distributed to the
available cores. As GPOS schedulers aim at fully utilize the
available resources, we believe this is also a valid assumption.

279

B. Presented Experiments

• The experiment is not able to detect a timeslice length that is
being adjusted dynamically depending on the priority of pro-
cesses. In this case, the priority management of OS processes
would have to be reflected in further experiments which are
subject to future work.

• Assumption for performance analysis: The performance anal-
ysis approach has to support OS timeslices during analysis.

• Required sensors: Response time sensor for TaskMeas.

Experiment robustness: Repeat the experiment with two parallel
processes issuing CPU load instead of one parallel process. The
process where response times are measured should then be inter-
rupted for two timeslices, hence an increase of the response time
should be observed that is twice as high compared to the first run.

Experiment performance:
The experiment runtime only depends on the number of iterations
for TaskMeas.

B.4. Detect OS Scheduler Initial Load-balancing Strategy

Experiment ID: OSSCHEDULER.02
Experiment name: Detect OS scheduler initial load-balancing

strategy
Experiment domain: OS Scheduler
Detected experiment parameter: Operating system scheduler ini-

tial load-balancing strategy (CyclicSplitting, SameAsParent,
Random)

Importance for performance analysis: The initial load-balancing
strategy is used by the operating system to decide on which CPU

280

B.4. Detect OS Scheduler Initial Load-balancing Strategy

core newly created tasks are placed. Depending on the used strat-
egy, this can lead to balanced or unbalanced cores and should thus
be reflected in performance analysis.

Configuration parameters: number of cores: Number of available
physical CPU cores; detected by Experiment CPU.02

Experiment execution logic: Issue and measure CPU load in N

processes where N is the number of CPU cores. Repeatedly issue
a larger CPU load in a separate process add. Observing bursts in
the measured response times of the N processes indicates which
process has shared a core with the newly created process. Based on
the sequence of process bursts, an initial load-balancing strategy is
derived. For details, see Section 5.6.2.1 or the graphical description
shown in Figure 5.16.

Assumptions:

• The machine is idle.

• The system features SMP processors where the load is equally
distributed to the available cores.

• The experiment aims at detecting typical load-balancing strate-
gies for GPOS schedulers. Real-time system schedulers might
use different strategies for which the experiment would have
to be adapted.

• Assumption for performance analysis: The performance anal-
ysis has to feature a notion of processes and provide support
for the load-balancing strategies detected by the experiment.

• Required sensors: Response time sensors for the N tasks.

Experiment robustness: Experiment robustness can be assessed
by analyzing the quality of the detected response time bursts. If
the number of the detected bursts does not match the number of

281

B. Presented Experiments

expected bursts, or if the measured response times are spread across
a very wide range, the experiments should be repeated or it should
be checked whether all experiment assumptions hold on the target
platform.

Experiment performance: The experiment performance only de-
pends on the iterations of the add process.

B.5. Detect OS Scheduler Dynamic Load-balancing Strategy

Experiment ID: OSSCHEDULER.03
Experiment name: Detect OS scheduler dynamic load-balancing

strategy
Experiment domain: OS Scheduler
Detected experiment parameter: Operating system scheduler dy-

namic load-balancing strategy (Lazy, Active, Immediate)
Importance for performance analysis: The dynamic load-balancing

strategy is used by the operating system to decide when load-balancing
is performed to avoid imbalanced CPU cores. Depending on the
used strategy, this can be done at a different frequency. If a load-
balancing strategy tolerates imbalanced cores for some time, this
can affect the response times of tasks that are running on the corre-
sponding CPU cores. Hence, the load-balancing strategy should be
reflected in performance analysis.

Configuration parameters: number of cores: Number of available
physical CPU cores; detected by Experiment CPU.02

Experiment execution logic: Issue and measure CPU load in 3 ·N
processes where N is the number of CPU cores. Iteratively termi-
nate the running processes and observe the performance of the CPU
load in the remaining processes. Depending on the pattern of de-
creased response times due to termination of processes, the used

282

B.6. Detect Virtualization Overhead

dynamic load-balancing strategy can be inferred. For details, see
Section 5.6.3.1 or the graphical description shown in Figure 5.22.

Assumptions:

• The machine is idle.

• The system features SMP processors where the load is equally
distributed to the available cores.

• The experiment aims at detecting typical load-balancing strate-
gies for GPOS schedulers. Real-time system schedulers might
use different strategies for which the experiment would have
to be adapted.

• Assumption for performance analysis: The performance anal-
ysis has to feature a notion of processes and provide support
for the load-balancing strategies detected by the experiment.

• Required sensors: Response time sensors for the 3 ·N tasks.

Experiment robustness: Experiment robustness is assessed by
checking the spread of measured response times between the termi-
nation of processes. If the range of measurements is too large, the
response times are too noisy in order to detect the load-balancing
strategy.

Experiment performance: O(n) where n is the number of avail-
able CPU cores.

B.6. Detect Virtualization Overhead

Experiment ID: VIRTUALIZATION.01
Experiment name: Detect virtualization overhead
Experiment domain: Virtualization

283

B. Presented Experiments

Detected experiment parameter: Virtualization overhead for each
resource demand type in focus (double)

Importance for performance analysis: When an application is
migrated from a non-virtualized to a virtualized environment, the
virtualization layer can induce a performance overhead on issued
resource demands that should be reflected in performance analysis.

Configuration parameters: number of cores: Number of available
physical CPU cores for detecting CPU resource overhead; detected
by Experiment CPU.02

Experiment execution logic: Issue and measure identical resource
load on the non-virtualized machine and on the virtualized ma-
chine. Compare the measurement results to calculate the virtual-
ization overhead. For details, see Section 6.3.2 or the graphical
description shown in Figure 6.3.

Assumptions:

• Both machines are idle.

• Both machines are equipped with the same hardware. Oth-
erwise, differences in the measured resource demands cannot
be attributed to the virtualization layer.

• Assumption for performance analysis: The performance anal-
ysis has to provide means for including the detected overhead
model in analysis. For example, the analysis could adapt is-
sued resource demands by adding the virtualization overhead
to it. Such an approach would facilitate the reuse of existing
software models for predicting its performance in virtualized
environments.

• Required sensors: Response time sensors for the tasks issuing
resource demands on the non-virtualized and the virtualized
machine.

284

B.7. Detect Load-dependent Virtualization Overhead

Experiment robustness: Experiment robustness can be assessed
by analyzing the dispersion of the measurement results, i.e. by cal-
culating the interquartile range (IQR) for the measurements. If the
IQR exceeds a certain threshold, the experiments should be repeated
or it should be checked whether all experiment assumptions hold on
the target platform.

Experiment performance: The experiment performance mainly
depends on the number of resource demand types involved and the
number of performed iterations for each measurement. Additional
influences can stem from the performance of the accessed resource
and the overhead induced by the virtualization platform.

B.7. Detect Load-dependent Virtualization Overhead

Experiment ID: VIRTUALIZATION.02
Experiment name: Detect load-dependent virtualization overhead
Experiment domain: Virtualization
Detected experiment parameter: Load-dependent virtualization

overhead for each resource demand type in focus (double)
Importance for performance analysis: The overhead induced by

the virtualization layer depends on both the resource type and the
load currently present on the platform. This load has to be reflected
in an overhead model for performance analysis to reduce the pre-
diction error.

Configuration parameters: number of cores: Number of available
physical CPU cores for detecting CPU resource overhead; detected
by Experiment CPU.02

Experiment execution logic: In multiple experiment runs, issue
different amounts of resource load in the different virtual machines
using parallel processes. Measure the response time of the resource

285

B. Presented Experiments

load and compare the overhead to a reference time (the response
time of the resource request when executed without parallel load).
To avoid a full parameter exploitation (number of VMs × number
of resource types × number of load levels), use a set of heuristics
which minimize the number of experiments without degrading pre-
diction accuracy. For details, see Section 6.4.2.

Assumptions:

• The involved virtual machines are idle.

• The virtual machines share the involved resources, i.e. the
virtual CPU cores, disk and network devices are mapped to
the same physical devices.

• Assumption for performance analysis: The performance anal-
ysis has to provide means for including the detected overhead
model in analysis. Similar to the overhead model detected by
experiment VIRTUALIZATION.01, the analysis could adapt
issued resource demands by adding the virtualization over-
head to it. Such an approach would facilitate the reuse of
existing software models for predicting its performance in
virtualized environments.

• Required sensors: Response time sensors for the tasks issuing
resource demands on the different virtual machines.

Experiment robustness: Experiment robustness can be assessed
by analyzing the dispersion of the measurement results, i.e. by cal-
culating the interquartile range (IQR) for the measurements. If the
IQR exceeds a certain threshold, the experiments should be repeated
or it should be checked whether all experiment assumptions hold on
the target platform.

Experiment performance: The experiment performance depends
on the number of experiment runs and the duration of each experi-

286

B.7. Detect Load-dependent Virtualization Overhead

ment run. The number of experiment runs depends on the number of
involved virtual machines, resource demand types, and load levels.
To avoid a full parameter exploitation of these factors, we reduced
the number of experiment runs as described in Section 6.4.2.

287

List of Figures

2.1. Influence factors on the performance of component-based
software systems (from [Bec08]) 19

2.2. PCM performance prediction process (from [BKR09]) . . 23
2.3. The four-level metamodel hierarchy of the OMG (based

on [SV06]) . 28
2.4. Excerpt from the Ecore metamodel (based on [Gro09]) . . 29
2.5. System virtualization . 35
2.6. Type-1 and type-2 virtualization 36

3.1. Exemplary three-tier architecture 43
3.2. Reflecting performance-relevant properties in

model-based software performance prediction 47
3.3. Experiment design workflow of the approach 53
3.4. Experiment execution workflow of the approach 55

4.1. Exemplary experiment setup 71
4.2. Manual and automated experiment selection from the

experiment library . 74
4.3. Joined execution of parametric experiments 77
4.4. GINPEX experiments metamodel 82
4.5. GINPEX experiment logic definition metamodel 83
4.6. GINPEX control flow tasks metamodel 84
4.7. GINPEX machine tasks metamodel 86
4.8. GINPEX sensors metamodel 89

289

List of Figures

4.9. Object diagram for an excerpt of a GINPEX metamodel
instance . 90

4.10. Executing experiments through code generation 92
4.11. Object diagram for an excerpt of a GINPEX experiment

instance (tasks and sensors) 98
4.12. UML activity diagram for the task logic shown in

Figure 4.11 . 99

5.1. Overview on the experiments presented in this chapter . . 111
5.2. SMT effects on CPU-bound tasks 114
5.3. Simultaneous multithreading experiment logic 115
5.4. Exemplary experiment results for experiment CPU.01

(SMT): run A, run B . 121
5.5. Exemplary experiment results for experiment CPU.01

(SMT): run C1, run C2 122
5.6. Exemplary experiment results for experiment CPU.01

(SMT): run D1, run D2 122
5.7. Exemplary experiment results for experiment CPU.01

(SMT): run E . 123
5.8. Number of CPU cores experiment logic 127
5.9. Exemplary experiment results for experiment CPU.02

(Number of cores): run A, run B 133
5.10. Exemplary experiment results for experiment CPU.02

(Number of cores): run C1, run C2 133
5.11. Exemplary experiment results for experiment CPU.02

(Number of cores): run D1, run D2 134
5.12. Timeslice length experiment logic 136
5.13. Exemplary experiment results for experiment

OSSCHEDULER.01 (Timeslice length): run A 141
5.14. Exemplary experiment results for experiment

OSSCHEDULER.01 (Timeslice length): run B 142

290

List of Figures

5.15. Exemplary experiment results for experiment
OSSCHEDULER.01 (Timeslice length): run C, run D, run E143

5.16. Initial load-balancing experiment logic 145
5.17. Expected results for initial load-balancing experiment . . 146
5.18. Ideal experiment results for different initial

load-balancing strategies on a dual-core machine 147
5.19. Exemplary experiment results for experiment

OSSCHEDULER.02 (Initial load-balancing strategy): run A 150
5.20. Exemplary experiment results for experiment

OSSCHEDULER.02 (Initial load-balancing strategy): run B 151
5.21. Exemplary experiment results for experiment

OSSCHEDULER.02 (Initial load-balancing strategy): run C 152
5.22. Dynamic load-balancing experiment logic 154
5.23. Expected results for dynamic load-balancing experiment . 157
5.24. Exemplary experiment results for experiment

OSSCHEDULER.03 (Dynamic load-balancing strategy):
run A . 161

5.25. Exemplary experiment results for experiment
OSSCHEDULER.03 (Dynamic load-balancing strategy):
run B . 162

5.26. Exemplary experiment results for experiment
OSSCHEDULER.03 (Dynamic load-balancing strategy):
run C . 163

5.27. Overall on the POV-Ray case study setup 167
5.28. Example of images for each of the three POV-Ray

workload classes . 168
5.29. Comparison of prediction and measurements for the

POV-Ray services running on Windows 7, Linux 2.6.22,
and Linux 2.6.31 . 170

6.1. Overview on the experiments presented in this chapter . . 179

291

List of Figures

6.2. Migration scenario introducing virtualization overhead . . 181
6.3. Virtualization overhead experiment logic 182
6.4. Including virtualization overhead in PCM performance

prediction . 188
6.5. Integration of virtualization overhead in PCM SimuCom . 188
6.6. TPC-W case study deployment scenario 190
6.7. Virtualization overhead experiment results 192
6.8. Comparison of prediction and measurements for TPC-W

response times of a 3-user workload running on a
non-virtualized and a virtualized Windows 7 193

6.9. TPC-W response times on a non-virtualised and a
virtualised Windows 7 198

6.10. Exemplary experiment run setup on virtual machines . . . 200
6.11. Integration of load-dependent virtualization overhead in

PCM SimuCom . 213
6.12. TPC-W case study deployment scenarios 216
6.13. Case study response times for single-user workload 217
6.14. Average case study prediction results for different user

workloads . 220
6.15. Overhead breakdown analysis: average prediction results

with complete and partial overhead model 221
6.16. Case study response times for single-user workload 223
6.17. Average case study prediction results and prediction error

for different user workloads 224
6.18. TPC-W case study deployment scenario 228
6.19. Results of the additional load experiment: derived

probability density functions 229

A.1. GINPEX experiments metamodel 263
A.2. GINPEX experiment logic definition metamodel 264
A.3. GINPEX control flow tasks metamodel 264

292

List of Figures

A.4. GINPEX machine tasks metamodel 270
A.5. GINPEX sensors metamodel 272

293

Bibliography

[Aas05] J. Aas, “Understanding the Linux 2.6.8.1 CPU Sched-
uler,” 2005. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.59.6385, last retrieved: 2013-06-05.

[AMM+94] I. Ahmad, K. Mehrotra, C. K. Mohan, S. Ranka, and
A. Ghafoor, “Performance Modeling of Load-balancing
Algorithms using Neural Networks,” Concurrency: Practice

and Experience, vol. 6, no. 5, pp. 393–409, 1994.

[AW08] W. Augustin and T. Worsch, “The SKaMPI 5 Manual,”
2008. http://liinwww.ira.uka.de/~skampi/download/skampi.
pdf, last retrieved: 2013-06-12.

[BBB96] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer, “AT-
LAS : An Infrastructure for Global Computing,” in Proceed-

ings of the 7th ACM SIGOPS European Workshop: Systems

Support for Worldwide Applications, 1996, pp. 165–172.

[BCA08] B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson,
“On the Scalability of Real-Time Scheduling Algorithms on
Multicore Platforms: A Case Study,” in Proceedings of the

2008 Real-Time Systems Symposium (RTSS 2008). IEEE
Computer Society, 2008, pp. 157–169.

[BDH08] S. Becker, T. Dencker, and J. Happe, “Model-driven
Generation of Performance Prototypes,” in Proceedings

of the SPEC International Workshop on Performance

295

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.6385
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.6385
http://liinwww.ira.uka.de/~skampi/download/skampi.pdf
http://liinwww.ira.uka.de/~skampi/download/skampi.pdf

Bibliography

Evaluation: Metrics, Models and Benchmarks (SIPEW

2008). Springer-Verlag, 2008, pp. 79–98.

[BDIS04] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni,
“Model-based Performance Prediction in Software Develop-
ment: A Survey,” IEEE Transactions on Software Engineer-

ing, vol. 30, no. 5, pp. 295–310, 2004.

[Bec08] S. Becker, “Coupled Model Transformations for QoS En-
abled Component-based Software Design,” PhD Thesis,
University of Oldenburg, Germany, 2008.

[BFS+06] F. Benevenuto, C. Fernandes, M. Santos, V. Almeida,
J. Almeida, G. J. Janakiraman, and J. R. Santos, “Perfor-
mance Models for Virtualized Applications,” in Frontiers of

High Performance Computing and Networking - ISPA 2006

Workshops. Springer-Verlag, 2006, pp. 427–439.

[BHK06] S. Becker, J. Happe, and H. Koziolek, “Putting Components
into Context: Supporting QoS-Predictions with an explicit
Context Model,” in Proceedings of the 11th International

Workshop on Component-Oriented Programming (WCOP

2006), 2006.

[BKNT11] C. Baun, M. Kunze, J. Nimis, and S. Tai, Cloud Computing:

Web-based Dynamic IT Services. Springer-Verlag, 2011.

[BKR09] S. Becker, H. Koziolek, and R. Reussner, “The Palladio
Component Model for Model-driven Performance Predic-
tion,” Journal of Systems and Software, vol. 82, pp. 3–22,
2009.

[BMdW+04] E. Bondarev, J. Muskens, P. de With, M. Chaudron,
and J. Lukkien, “Predicting Real-Time Properties of

296

Bibliography

Component Assemblies: a Scenario-Simulation Approach,”
in Proceedings of the 30th EUROMICRO Conference

(EUROMICRO 2004). IEEE, 2004, pp. 40–47.

[BR08] R. Böhme and R. Reussner, “Validation of Predictions with
Measurements,” in Dependability Metrics. Springer-Verlag,
2008, pp. 14–18.

[BW01] A. Burns and A. Wellings, Real-Time Systems and Program-

ming Languages, 3rd ed. Addison-Wesley, 2001.

[CAS+12] L. Y. Chen, D. Ansaloni, E. Smirni, A. Yokokawa, and
W. Binder, “Achieving Application-centric Performance Tar-
gets via Consolidation on Multicores: Myth or Reality?” in
Proceedings of the 21st International Symposium on High-

Performance Parallel and Distributed Computing (HPDC

2012), 2012, pp. 37–48.

[CCF+06] R. Chanin, M. Corrêa, P. Fernandes, A. Sales, R. Scheer,
and A. F. Zorzo, “Analytical Modeling for Operating
System Schedulers on NUMA Systems,” Electronic Notes in

Theoretical Computer Science, vol. 151, no. 3, pp. 131–149,
Jun. 2006.

[CDI01] V. Cortellessa, A. D’Ambrogio, and G. Iazeolla, “Automatic
Derivation of Software Performance Models from CASE
Documents,” Performance Evaluation, vol. 45, pp. 81–105,
2001.

[CG05] L. Cherkasova and R. Gardner, “Measuring CPU Overhead
for I/O Processing in the Xen Virtual Machine Monitor,” in
Proceedings of the USENIX Annual Technical Conference

(ATEC 2005). USENIX Association, 2005, pp. 387–390.

297

Bibliography

[CMMT00] M. Courson, A. Mink, G. Marçais, and B. Traverse, “An Au-
tomated Benchmarking Toolset,” in Proceedings of the 8th

International Conference on High Performance Computing

and Networking (HPCN 2000). Springer-Verlag, 2000, pp.
497–506.

[CPU] CPUID, “CPU-Z.” http://www.cpuid.com/softwares/cpu-z.
html, last retrieved: 2013-06-08.

[CS01] V. Claus and A. Schwill, Eds., Duden Informatik: Ein Fach-

lexikon für Studium und Praxis, 3rd ed. Dudenverlag, 2001.

[CST+10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking Cloud Serving Systems with
YCSB,” in Proceedings of the 1st ACM Symposium on

Cloud computing (SoCC 2010). ACM, 2010, pp. 143–154.

[DB11] R. I. Davis and A. Burns, “A survey of hard real-time
scheduling for multiprocessor systems,” ACM Computing

Surveys, vol. 43, no. 4, pp. 1–44, Oct. 2011.

[DES] DESMO-J Development Team, “DESMO-J.” http://desmoj.
sourceforge.net, last retrieved: 2013-06-14.

[DG08] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Communications of the

ACM, vol. 51, no. 1, pp. 107–113, 2008.

[dOPRF13] A. B. de Oliveira, J.-C. Petkovich, T. Reidemeister, and
S. Fischmeister, “DataMill : Rigorous Performance Evalu-
ation Made Easy,” in Proceedings of the 4th ACM/SPEC In-

ternational Conference on Performance Engineering (ICPE

2013). ACM, 2013, pp. 137–148.

298

http://www.cpuid.com/softwares/cpu-z.html
http://www.cpuid.com/softwares/cpu-z.html
http://desmoj.sourceforge.net
http://desmoj.sourceforge.net

Bibliography

[EHK+02] F. N. Eskesen, M. Hack, T. Kimbrel, M. S. Squillante, R. J.
Eickemeyer, and S. R. Kunkel, “Performance Analysis of Si-
multaneous Multithreading in a PowerPC-based Processor,”
in Proceedings of the 1st Annual Workshop on Duplicating,

Deconstructing, and Debunking (WDDD 2002), 2002.

[ENC+12] V. C. Emeakaroha, M. A. S. Netto, R. N. Calheiros,
I. Brandic, R. Buyya, and C. A. F. De Rose, “Towards
Autonomic Detection of SLA Violations in Cloud Infras-
tructures,” Future Generation Computer Systems, vol. 28,
no. 7, pp. 1017–1029, Jul. 2012.

[Ern] J. Ernst, “What is metamodeling, and what is
it good for?” http://infogrid.org/trac/wiki/Reference/
WhatIsMetaModeling, last retrieved: 2013-06-16.

[Fab] Faban Development Team, “Faban.” http://www.faban.org/,
last retrieved: 2013-06-05.

[Fer78] D. Ferrari, Computer Systems Performance Evaluation.
Prentice Hall International, 1978.

[FMW+12] G. Franks, P. Maly, C. M. Woodside, D. C. Petriu,
A. Hubbard, and M. Mroz, “Layered Queueing Network
Solver and Simulator User Manual,” Department of Systems
and Computer Engineering, Carleton University, Tech. Rep.,
2012. http://www.sce.carleton.ca/rads/lqns/LQNSUserMan.
pdf

[Gar] Gartner, Inc., “Gartner IT Glossary – Virtualization.” http:
//www.gartner.com/it-glossary/virtualization/, last retrieved:
2013-06-17.

[GL99] W. Gropp and E. Lusk, “Reproducible Measurements of MPI
Performance Characteristics,” in Proceedings of the 6th Eu-

299

http://infogrid.org/trac/wiki/Reference/WhatIsMetaModeling
http://infogrid.org/trac/wiki/Reference/WhatIsMetaModeling
http://www.faban.org/
http://www.sce.carleton.ca/rads/lqns/LQNSUserMan.pdf
http://www.sce.carleton.ca/rads/lqns/LQNSUserMan.pdf
http://www.gartner.com/it-glossary/virtualization/
http://www.gartner.com/it-glossary/virtualization/

Bibliography

ropean PVM/MPI Users’ Group Meeting (PVM/MPI 1999).
Springer-Verlag, 1999, pp. 11–18.

[GM00] H. Gomaa and D. A. Menascé, “Design and Performance
Modeling of Component Interconnection Patterns for
Distributed Software Architectures,” in Proceedings of the

2nd International Workshop on Software and Performance

(WOSP 2000). ACM, 2000, pp. 117–126.

[GMS07] V. Grassi, R. Mirandola, and A. Sabetta, “Filling the
Gap between Design and Performance/Reliability Models
of Component-based Systems: A Model-driven Approach,”
Journal of Systems and Software, vol. 80, no. 4, pp.
528–558, Apr. 2007.

[Gol74] R. P. Goldberg, “Survey of Virtual Machine Research,”
IEEE Computer, vol. 7, no. 6, pp. 34–45, 1974.

[Gra93] J. Gray, Ed., The Benchmark Handbook for Database and

Transaction Processing Systems, 2nd ed. Morgan Kauf-
mann, 1993.

[Gro09] R. C. Gronback, Eclipse Modeling Project: A Domain-

specific Language (DSL) Toolkit. Addison-Wesley, 2009.

[Hap08] J. Happe, “Predicting Software Performance in Symmetric
Multi-core and Multiprocessor Environments,” PhD Thesis,
University of Oldenburg, Germany, 2008.

[HBR+10] J. Happe, S. Becker, C. Rathfelder, H. Friedrich, and
R. Reussner, “Parametric Performance Completions for
Model-Driven Performance Prediction,” Performance Eval-

uation, vol. 67, no. 8, pp. 694–716, 2010.

300

Bibliography

[HGHR10] J. Happe, H. Groenda, M. Hauck, and R. H. Reussner, “A
Prediction Model for Software Performance in Symmetric
Multiprocessing Environments,” in Proceedings of the 7th

International Conference on the Quantitative Evaluation of

Systems (QEST 2010). IEEE Computer Society, 2010, pp.
59–68.

[HHR10] M. Hauck, J. Happe, and R. H. Reussner, “Automatic Deriva-
tion of Performance Prediction Models for Load-balancing
Properties Based on Goal-oriented Measurements,” in Pro-

ceedings of the 18th IEEE International Symposium on Mod-

eling, Analysis and Simulation of Computer and Telecommu-

nication Systems (MASCOTS 2010). IEEE Computer Soci-
ety, 2010, pp. 361–369.

[HHR11] M. Hauck, J. Happe, and R. H. Reussner, “Towards
Performance Prediction For Cloud Computing Environments
Based on Goal-oriented Measurements,” in Proceedings of

the 1st International Conference on Cloud Computing and

Services Science (CLOSER 2011). SciTePress, 2011, pp.
616–622.

[HKHR11] M. Hauck, M. Kuperberg, N. Huber, and R. Reuss-
ner, “Ginpex: Deriving Performance-relevant Infrastructure
Properties Through Goal-oriented Experiments,” in Pro-

ceedings of the 7th International Conference on the Quality

of Software Architectures (QoSA 2011). ACM, 2011, pp.
53–62.

[HKHR13] M. Hauck, M. Kuperberg, N. Huber, and R. Reussner,
“Deriving Performance-relevant Infrastructure Properties
Through Model-based Experiments with Ginpex,” Software

& Systems Modeling, 2013.

301

Bibliography

[HKKR09] M. Hauck, M. Kuperberg, K. Krogmann, and R. Reussner,
“Modelling Layered Component Execution Environments
for Performance Prediction,” in Proceedings of the 12th

International Symposium on Component Based Software

Engineering (CBSE 2009). Springer-Verlag, 2009, pp.
191–208.

[HKY99] L. J. Heyer, S. Kruglyak, and S. Yooseph, “Exploring Ex-
pression Data: Identification and Analysis of Coexpressed
Genes,” Genome Research, vol. 1999.9, pp. 1106–1115,
1999.

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of

Statistical Learning: Data Mining, Inference, and Predic-

tion, 2nd ed., ser. Springer Series in Statistics. Springer-
Verlag, 2009.

[Inta] Intel Corporation, “Intel Hyper-Threading Tech-
nology.” https://www-ssl.intel.com/content/www/
us/en/architecture-and-technology/hyper-threading/
hyper-threading-technology.html, last retrieved: 2013-06-
05.

[Intb] Intel Corporation, “Intel Processor Frequency ID
Utility.” http://www.intel.com/p/en_US/support/highlights/
processors/frequencyid, last retrieved: 2013-06-08.

[Intc] Intel Corporation, “Intel Processor Identification
Utility.” http://www.intel.com/p/en_US/support/highlights/
processors/toolspiu, last retrieved: 2013-06-08.

[Iom] Iometer Development Team, “Iometer.” http://www.iometer.
org/, last retrieved: 2013-06-05.

302

https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/p/en_US/support/highlights/processors/frequencyid
http://www.intel.com/p/en_US/support/highlights/processors/frequencyid
http://www.intel.com/p/en_US/support/highlights/processors/toolspiu
http://www.intel.com/p/en_US/support/highlights/processors/toolspiu
http://www.iometer.org/
http://www.iometer.org/

Bibliography

[IOY+11] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan,
T. Fahringer, and D. Epema, “Performance Analysis
of Cloud Computing Services for Many-Tasks Scientific
Computing,” IEEE Transactions on Parallel and Distributed

Systems (to appear), vol. 22, no. 6, pp. 931–945, 2011.

[Jai91] R. Jain, The Art of Computer Systems Performance Analysis.
Wiley, 1991.

[JGLT11] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor, “Kismet:
Parallel Speedup Estimates for Serial Programs,” in Pro-

ceedings of the 2011 ACM International Conference on Ob-

ject Oriented Programming Systems Languages and Appli-

cations (OOPSLA 2011). ACM, 2011, pp. 519–536.

[JMOa] JMOB Project, “RUBiS: Rice University Bidding System
Implementation.” http://rubis.ow2.org/, last retrieved: 2013-
06-05.

[JMOb] JMOB Project, “TPC-W Benchmark Implementation.”
http://jmob.ow2.org/tpcw.html, last retrieved: 2013-06-05.

[Jon] M. T. Jones, “Inside the Linux 2.6 Completely
Fair Scheduler.” http://www.ibm.com/developerworks/
library/l-completely-fair-scheduler/, last retrieved: 2013-
08-06.

[Kal05] D. Kalinsky, “Who’s Afraid of Asymmetric Multiprocess-
ing?” 2005. http://rtcmagazine.com/articles/view/100404/,
last retrieved: 2013-06-05.

[Kap11] L. Kapová, “Configurable Software Performance Comple-
tions through Higher-Order Model Transformations,” Ph.D.
dissertation, Karlsruhe Institute of Technology, 2011.

303

http://rubis.ow2.org/
http://jmob.ow2.org/tpcw.html
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/
http://rtcmagazine.com/articles/view/100404/

Bibliography

[KB03] S. Kounev and A. Buchmann, “Performance Modeling and
Evaluation of Large-Scale J2EE Applications,” in Proceed-

ings of the CMG 2003 International Conference, 2003, pp.
273–283.

[KDH+12] M. Kramer, Z. Durdik, M. Hauck, J. Henß, M. Küster,
P. Merkle, and A. Rentschler, “Extending the Palladio Com-
ponent Model using Profiles and Stereotypes,” in Proceed-

ings of the Palladio Days 2012, 2012.

[KGC+06] R. Y. Kawasaki, L. A. Guedes, D. L. Cardoso, C. R. L.
Francês, G. H. S. Carvalho, S. V. Carvalho, J. C. W. A. Costa,
and M. S. Silva, “A Markovian Sensibility Analysis for Par-
allel Processing Scheduling on GNU / Linux,” in Frontiers of

High Performance Computing and Networking - ISPA 2006

Workshops. Springer-Verlag, 2006, pp. 269–278.

[KH06] H. Koziolek and J. Happe, “A QoS Driven Development
Process Model for Component-Based Software Systems,”
in Proceedings of the 9th International Symposium on

Component Based Software Engineering (CBSE 2006).
Springer-Verlag, 2006, pp. 336–343.

[KHvKR11] M. Kuperberg, N. R. Herbst, J. G. von Kistowski,
and R. Reussner, “Defining and Quantifying Elasticity
of Resources in Cloud Computing and Scalable Plat-
forms,” Tech. Rep., 2011. http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000023476

[KKR10] K. Krogmann, M. Kuperberg, and R. Reussner, “Using Ge-
netic Search for Reverse Engineering of Parametric Be-
haviour Models for Performance Prediction,” IEEE Transac-

tions on Software Engineering, vol. 36, no. 6, pp. 865–877,
2010.

304

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023476
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023476

Bibliography

[KLM+06] T. Kalibera, J. Lehotsky, D. Majda, B. Repcek, M. Tomcanyi,
A. Tomecek, P. Tůma, and J. Urban, “Automated
Benchmarking and Analysis Tool,” in Proceedings of the

1st International Conference on Performance Evaluation

Methodolgies and Tools (VALUETOOLS 2006), vol. 180.
ACM, 2006.

[Kop11] H. Kopetz, Real-Time Systems: Design Principles for Dis-

tributed Embedded Applications. Springer, 2011.

[Koz10] H. Koziolek, “Performance Evaluation of Component-based
Software Systems: A Survey,” in Performance Evaluation,
vol. 67, no. 8. Elsevier Science Inc., 2010, pp. 634–658.

[KSM10] S. Kounev, S. Spinner, and P. Meier, “QPME 2.0 - A Tool
for Stochastic Modeling and Analysis using Queueing Petri
Nets,” in From Active Data Management to Event-Based

Systems and More. Springer-Verlag, 2010, pp. 293–311.

[Lee12] T. Leemhuis, “What’s new in Linux
3.2,” 2012. http://www.h-online.com/open/features/
What-s-new-in-Linux-3-2-1400680.html, last retrieved:
2013-06-24.

[LFG05] Y. Liu, A. Fekete, and I. Gorton, “Design-Level Performance
Prediction of Component-Based Applications,” IEEE Trans-

actions on Software Engineering, vol. 31, no. 11, pp. 928–
941, 2005.

[LFG+10] M. Lassnig, T. Fahringer, V. Garonne, A. Molfetas, and
M. Branco, “Identification, Modelling and Prediction of
Non-periodic Bursts in Workloads,” in Proceedings of the

10th IEEE/ACM International Conference on Cluster, Cloud

305

http://www.h-online.com/open/features/What-s-new-in-Linux-3-2-1400680.html
http://www.h-online.com/open/features/What-s-new-in-Linux-3-2-1400680.html

Bibliography

and Grid Computing (CCGRID 2010). IEEE Computer So-
ciety, 2010, pp. 485–494.

[LZJ+11] L. Lu, H. Zhang, G. Jiang, H. Chen, K. Yoshihira, and
E. Smirni, “Untangling Mixed Information to Calibrate
Resource Utilization in Virtual Machines,” in Proceedings

of the 8th ACM International Conference on Autonomic

Computing (ICAC 2011), ser. ICAC ’11. ACM, 2011, pp.
151–160.

[MAD04] D. A. Menascé, V. A. Almeida, and L. W. Dowdy, Perfor-

mance by Design : Computer Capacity Planning by Exam-

ple. Prentice Hall International, 2004.

[Mal12] M. Malohlava, “Variability of Execution Environments for
Component-based Systems,” PhD Thesis, Charles Univer-
sity in Prague, 2012.

[Mar05] V. Maraia, The Build Master: Microsoft’s Software Configu-

ration Management Best Practices. Addison-Wesley, 2005.

[Men05] D. A. Menascé, “Virtualization: Concepts, Applications, and
Performance Modeling,” in Proceedings of the CMG 2005

International Conference, 2005.

[MM07] M. Marzolla and R. Mirandola, “Performance Prediction
of Web Service,” in Proceedings of the 3rd International

Conference on the Quality of Software Architectures (QoSA

2007). Springer-Verlag, 2007, pp. 127–144.

[MMM+05] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eicke-
meyer, and S. R. Kunkel, “Characterization of Simultaneous
Multithreading (SMT) Efficiency in POWER5,” IBM Jour-

nal of Research and Development, vol. 49, no. 4/5, pp. 555–
564, 2005.

306

Bibliography

[MMVP13] R. Mian, P. Martin, and J. L. Vazquez-Poletti, “Towards
Building Performance Models for Data-intensive Workloads
in Public Clouds,” in Proceedings of the 4th ACM/SPEC In-

ternational Conference on Performance Engineering (ICPE

2013). ACM, 2013, pp. 259–270.

[Mol07] I. Molnar, “Modular Scheduler Core and Completely Fair
Scheduler (CFS),” 2007. http://lwn.net/Articles/230501/,
last retrieved: 2013-06-05.

[Obj05] Object Management Group (OMG), “UML Profile for
Schedulability, Performance and Time, Version 1.1,” 2005.
http://www.omg.org/spec/SPTP/1.1/, last retrieved: 2013-
06-10.

[Obj11a] Object Management Group (OMG), “OMG Meta Object
Facility (MOF) Core Specification, Version 2.4.1,” 2011.
http://www.omg.org/spec/MOF/2.4.1/PDF, last retrieved:
2013-06-10.

[Obj11b] Object Management Group (OMG), “OMG Unified
Modeling Language (OMG UML), Infrastructure, Ver-
sion 2.4.1,” 2011. http://www.omg.org/spec/UML/2.4.1/
Infrastructure/PDF/, last retrieved: 2013-06-10.

[Obj11c] Object Management Group (OMG), “OMG Unified Model-
ing Language (OMG UML), Superstructure, Version 2.4.1,”
2011. http://www.omg.org/spec/UML/2.4.1/Superstructure/
PDF/, last retrieved: 2013-06-10.

[Obj11d] Object Management Group (OMG), “UML Profile for
Modeling and Analysis of Real-Time and Embedded
systems (MARTE), Version 1.1,” 2011. http://www.omg.
org/spec/MARTE/1.1/, last retrieved: 2013-06-10.

307

http://lwn.net/Articles/230501/
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/MOF/2.4.1/PDF
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/

Bibliography

[Obj12] Object Management Group (OMG), “OMG Object
Constraint Language (OCL), Version 2.3.1,” 2012.
http://www.omg.org/spec/OCL/2.3.1/PDF/

[Os] Operating-system.org, “IBM Company His-
tory.” http://www.operating-system.org/betriebssystem/
_english/fa-ibm.htm, last retrieved: 2013-06-24.

[PBYC13] A. Peternier, W. Binder, A. Yokokawa, and L. Chen, “Paral-
lelism Profiling and Wall-time Prediction for Multi-threaded
Applications,” in Proceedings of the 4th ACM/SPEC In-

ternational Conference on Performance Engineering (ICPE

2013). ACM, 2013, pp. 211–216.

[Per] Persistence of Vision Pty. Ltd., “Persistence of Vision
(TM) Raytracer.” http://www.povray.org/, last retrieved:
2013-06-05.

[PSG08] M. Polte, J. Simsa, and G. Gibson, “Comparing Perfor-
mance of Solid State Devices and Mechanical Disks,” in
Proceedings of the 3rd Petascale Data Storage Workshop

(PDSW 2008). IEEE, 2008.

[PW04] D. B. Petriu and M. Woodside, “A Metamodel for
Generating Performance Models from UML Designs,” in
Proceeedings of the 7th International Conference on the

Unified Modeling Language (UML 2004). Springer-Verlag,
2004, pp. 41–53.

[R F] R Foundation for Statistical Computing, “R: A Language
and Environment for Statistical Computing.” http://www.
r-project.org, last retrieved: 2013-06-05.

[RBB+11] R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck,
A. Koziolek, H. Koziolek, K. Krogmann, and M. Kuperberg,

308

http://www.omg.org/spec/OCL/2.3.1/PDF/
http://www.operating-system.org/betriebssystem/_english/fa-ibm.htm
http://www.operating-system.org/betriebssystem/_english/fa-ibm.htm
http://www.povray.org/
http://www.r-project.org
http://www.r-project.org

Bibliography

“The Palladio Component Model,” Karlsruhe Institute of
Technology, Department of Informatics, Tech. Rep., 2011.
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503

[RS05] M. E. Russinovich and D. A. Solomon, Microsoft Windows

Internals: Microsoft Windows Server 2003, Windows XP,

and Windows 2000, 4th ed. Microsoft Press, 2005.

[RSPM98] R. Reussner, P. Sanders, L. Prechelt, and M. Müller,
“SKaMPI: A Detailed, Accurate MPI Benchmark,” in Recent

Advances in Parallel Virtual Machine and Message Passing

Interface. Springer-Verlag, 1998, pp. 52–59.

[SAF05] M. Shao, A. Ailamaki, and B. Falsafi, “DBmbench: Fast and
Accurate Database Workload Representation on Modern Mi-
croarchitecture,” in Proceedings of the 2005 Conference of

the Centre for Advanced Studies on Collaborative Research

(CASCON 2005). IBM Press, 2005, pp. 254–267.

[SBHS06] J. Slaby, S. Baker, J. Hill, and D. Schmidt, “Applying
System Execution Modeling Tools to Evaluate Enterprise
Distributed Real-time and Embedded System QoS,” in
Proceedings of the 12th IEEE International Conference

on Embedded an Real-Time Computing Systems and

Applications (RTCSA 2006). IEEE Computer Society,
2006, pp. 350–362.

[SJT05] V. S. Sharma, P. Jalote, and K. S. Trivedi, “Evaluating
Performance Attributes of Layered Software Architecture,”
in Proceedings of the 8th International Symposium on

Component Based Software Engineering (CBSE 2005).
Springer-Verlag, 2005, pp. 66–81.

309

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503

Bibliography

[SKF06] B. Sotomayor, K. Keahey, and I. Foster, “Overhead Matters:
A Model for Virtual Resource Management,” in Proceedings

of the 2nd International Workshop on Virtualization Technol-

ogy in Distributed Computing (VTDC 2006). IEEE Com-
puter Society, 2006.

[SL04] C. Smith and C. Llado, “Performance model interchange
format (PMIF 2.0): XML definition and implementation,”
in Proceedings of the 1st International Conference on the

Quantitative Evaluation of Systems (QEST 2004). IEEE
Computer Society, 2004, pp. 38–47.

[Smi90] C. U. Smith, Performance Engineering of Software Systems.
Addison-Wesley, 1990.

[SN05] J. E. Smith and R. Nair, Virtual Machines: Versatile Plat-

forms for Systems and Processes. Morgan Kaufmann, 2005.

[Spi11] S. Spinner, “Evaluating Approaches to Resource Demand
Estimation,” Master Thesis, Karlsruhe Institute of Technol-
ogy, 2011.

[SQ] P. Shirley-Quirk, “The Windows Sched-
uler.” http://www.slideshare.net/PeterSQ/
the-windows-scheduler-presentation, last retrieved:
2013-06-08.

[Sta73] H. Stachowiak, Allgemeine Modelltheorie. Springer-Verlag,
1973.

[SV06] T. Stahl and M. Völter, Model-driven Software Develop-

ment: Technology, Engineering, Management. Wiley, 2006.

[SW02] C. U. Smith and L. G. Williams, Performance Solutions: A

Practical Guide to Creating Responsive, Scalable Software,
1st ed. Addison-Wesley, 2002.

310

http://www.slideshare.net/PeterSQ/the-windows-scheduler-presentation
http://www.slideshare.net/PeterSQ/the-windows-scheduler-presentation

Bibliography

[SWHB06] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open
Versus Closed: A Cautionary Tale,” in Proceedings of

the 3rd Conference on Networked Systems Design &

Implementation (NSDI 2006). USENIX Association, 2006,
pp. 239–252.

[TA13] T. M. Therneau and E. J. Atkinson, “An Introduction to
Recursive Partitioning Using the RPART Routines,” Mayo
Foundation, Tech. Rep., 2013. http://cran.r-project.org/web/
packages/rpart/vignettes/longintro.pdf

[Tan01] A. S. Tanenbaum, Modern Operating Systems, 2nd ed.
Prentice Hall International, 2001.

[TAR] T. M. Therneau, E. J. Atkinson, and B. Ripley, “R Package
RPART.” http://cran.r-project.org/web/packages/rpart/, last
retrieved: 2013-06-05.

[TD06] G. Tsouloupas and M. D. Dikaiakos, “Characterization of
Computational Grid Resources Using Low-Level Bench-
marks,” in Proceedings of the 2nd IEEE International

Conference on e-Science and Grid Computing (E-SCIENCE

2006). IEEE Computer Society, 2006.

[TEL95] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultane-
ous Multithreading: Maximizing On-Chip Parallelism,” in
Proceedings of the 22nd Annual International Symposium on

Computer Architecture (ISCA 1995). ACM, 1995, pp. 392–
403.

[Thea] The Apache Foundation, “Apache JMeter.” http://jmeter.
apache.org/, last retrieved: 2013-06-05.

311

http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
http://cran.r-project.org/web/packages/rpart/
http://jmeter.apache.org/
http://jmeter.apache.org/

Bibliography

[Theb] The Cooperative Association for Internet Data Analysis,
“Internet Tools Taxonomy.” http://www.caida.org/tools/
taxonomy/, last retrieved: 2013-06-05.

[Thec] The Eclipse Foundation, “Eclipse EMF Ecore Meta-
model API.” http://download.eclipse.org/modeling/emf/
emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-summary.
html, last retrieved: 2013-06-05.

[Thed] The Eclipse Foundation, “Eclipse Equinox OSGi.” http:
//www.eclipse.org/equinox/, last retrieved: 2013-06-05.

[Thee] The Eclipse Foundation, “Eclipse Model To Text (M2T)
Framework.” http://www.eclipse.org/modeling/m2t/, last re-
trieved: 2013-06-05.

[Thef] The Eclipse Foundation, “Eclipse Modeling Project.”
http://www.eclipse.org/modeling/, last retrieved: 2013-06-
16.

[THHF08] D. Thakkar, A. E. Hassan, G. Hamann, and P. Flora, “A
Framework for Measurement Based Performance Model-
ing,” in Proceedings of the 7th International Workshop on

Software and Performance (WOSP 2008), 2008, pp. 55–66.

[TR12] A. Tarvo and S. P. Reiss, “Using Computer Simulation to
Predict the Performance of Multithreaded Programs,” in Pro-

ceedings of the 3rd ACM/SPEC International Conference on

Performance Engineering (ICPE 2012). ACM, 2012, pp.
217–228.

[Tra] Transaction Processing Performance Council (TPC), “TPC-
W: Benchmarking An Ecommerce Solution.” http://www.
tpc.org/tpcw/TPC-W_wh.pdf, last retrieved: 2013-06-05.

312

http://www.caida.org/tools/taxonomy/
http://www.caida.org/tools/taxonomy/
http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclipse/emf/ecore/package-summary.html
http://www.eclipse.org/equinox/
http://www.eclipse.org/equinox/
http://www.eclipse.org/modeling/m2t/
http://www.eclipse.org/modeling/
http://www.tpc.org/tpcw/TPC-W_wh.pdf
http://www.tpc.org/tpcw/TPC-W_wh.pdf

Bibliography

[TZN10] E. Thereska, A. X. Zheng, and P. Nobel, “Practical Perfor-
mance Models for Complex, Popular Applications,” in Pro-

ceedings of the ACM SIGMETRICS International Confer-

ence on Measurement and Modeling of Computer Systems

(SIGMETRICS 2010). ACM, 2010.

[vK11] J. G. von Kistowski, “Defining and Measuring Workloads for
Elasticity Benchmarking,” Bachelor Thesis, Karlsruhe Insti-
tute of Technology, 2011.

[VMw] VMware Inc., “Hyperic SIGAR API.” http://www.hyperic.
com/products/sigar, last retrieved: 2013-06-05.

[VMw11] VMware Inc., “Timekeeping in VMware Virtual Ma-
chines,” Tech. Rep., 2011. http://www.vmware.com/
resources/techresources/238

[WAA+04] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos,
and G. R. Ganger, “Storage Device Performance Prediction
with CART Models,” in Proceedings of the 12th IEEE

International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems

(MASCOTS 2004). IEEE Computer Society, 2004, pp.
588–595.

[Wal03] K. C. Wallnau, “Volume III: A Technology for Pre-
dictable Assembly from Certifiable Components,” Soft-
ware Engineering Institute, Carnegie Mellon University,
Tech. Rep., 2003. http://www.sei.cmu.edu/library/abstracts/
reports/03tr009.cfm

[WCOS08] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy,
“Profiling and Modeling Resource Usage of Virtualized
Applications,” in Proceedings of the 9th ACM/IFIP/USENIX

313

http://www.hyperic.com/products/sigar
http://www.hyperic.com/products/sigar
http://www.vmware.com/resources/techresources/238
http://www.vmware.com/resources/techresources/238
http://www.sei.cmu.edu/library/abstracts/reports/03tr009.cfm
http://www.sei.cmu.edu/library/abstracts/reports/03tr009.cfm

Bibliography

International Conference on Middleware (Middleware

2008). Springer-Verlag, 2008, pp. 366–387.

[WFP07] C. M. Woodside, G. Franks, and D. C. Petriu, “The Future of
Software Performance Engineering,” in Future of Software

Engineering (FOSE 2007), 2007, pp. 171–187.

[WHHH10] D. Westermann, J. Happe, M. Hauck, and C. Heupel, “The
Performance Cockpit Approach: A Framework for System-
atic Performance Evaluations,” in Proceedings of the 36th

EUROMICRO Conference on Software Engineering and Ad-

vanced Applications (SEAA 2010). IEEE Computer Society,
2010, pp. 31–38.

[Wik] Wikipedia, Die freie Enzyklopädie, “Hyper-
Threading.” http://de.wikipedia.org/w/index.php?title=
Hyper-Threading&oldid=116699596, last retrieved: 2013-
06-05.

[WPS02] C. M. Woodside, D. Petriu, and K. Siddiqui, “Performance-
related Completions for Software Specifications,” in Pro-

ceedings of the 24th International Conference on Software

Engineering (ICSE 2002), 2002, pp. 22–32.

[WRCW05] Y. Wang, M. J. Rutherford, A. Carzaniga, and A. L. Wolf,
“Automating Experimentation on Distributed Testbeds,” in
Proceedings of the 20th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE 2005).
ACM, 2005, pp. 164–173.

[WVCB01] C. M. Woodside, V. Vetland, M. Courtois, and S. Bayarov,
“Resource Function Capture for Performance Aspects of
Software Components and Sub-systems,” in Performance

314

http://de.wikipedia.org/w/index.php?title=Hyper-Threading&oldid=116699596
http://de.wikipedia.org/w/index.php?title=Hyper-Threading&oldid=116699596

Bibliography

Engineering: State of the Art and Current Trends. Springer-
Verlag, 2001, pp. 239–256.

[WW04] X. Wu and C. M. Woodside, “Performance Modeling from
Software Components,” in Proceedings of the 4th Inter-

national Workshop on Software and Performance (WOSP

2004). ACM, 2004, pp. 290–301.

[YMM07] S. Yamasaki, N. Maruyama, and S. Matsuoka, “Model-
based Resource Selection for Efficient Virtual Cluster
Deployment,” in Proceedings of the 3rd International

Workshop on Virtualization Technology in Distributed

Computing (VTDC 2007). ACM, 2007.

[ZJY+09] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena,
“Resilient Workload Manager: Taming Bursty Workload of
Scaling Internet Applications,” in Proceedings of the 6th In-

ternational Conference Industry Session on Autonomic Com-

puting and Communications (ICAC-INDST 2009). ACM,
2009.

[ZLBG07] L. Zhu, Y. Liu, N. B. Bui, and I. Gorton, “Revel8or: Model
Driven Capacity Planning Tool Suite,” in Proceedings of

the 29th International Conference on Software Engineering

(ICSE 2007). IEEE Computer Society, 2007, pp. 797–800.

[ZWL08] T. Zheng, C. M. Woodside, and M. Litoiu, “Performance
Model Estimation and Tracking Using Optimal Filters,”
IEEE Transactions on Software Engineering, vol. 34, no. 3,
pp. 391–406, 2008.

315

Band 1 Steffen Becker
 Coupled Model Transformations for QoS Enabled

Component-Based Software Design. 2008
 ISBN 978-3-86644-271-9

Band 2 Heiko Koziolek
 Parameter Dependencies for Reusable Performance

Specifications of Software Components. 2008
 ISBN 978-3-86644-272-6

Band 3 Jens Happe
 Predicting Software Performance in Symmetric

Multi-core and Multiprocessor Environments. 2009
 ISBN 978-3-86644-381-5

Band 4 Klaus Krogmann
 Reconstruction of Software Component Architectures and

Behaviour Models using Static and Dynamic Analysis. 2012
 ISBN 978-3-86644-804-9

Band 5 Michael Kuperberg
 Quantifying and Predicting the Influence of Execution

Platform on Software Component Performance. 2010
 ISBN 978-3-86644-741-7

Band 6 Thomas Goldschmidt
 View-Based Textual Modelling. 2011
 ISBN 978-3-86644-642-7

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 7 Anne Koziolek
 Automated Improvement of Software Architecture Models

for Performance and Other Quality Attributes. 2013
 ISBN 978-3-86644-973-2

Band 8 Lucia Happe
 Configurable Software Performance Completions through

Higher-Order Model Transformations. 2013
 ISBN 978-3-86644-990-9

Band 9 Franz Brosch
 Integrated Software Architecture-Based Reliability

Prediction for IT Systems. 2012
 ISBN 978-3-86644-859-9

Band 10 Christoph Rathfelder
 Modelling Event-Based Interactions in Component-Based

Architectures for Quantitative System Evaluation. 2013
 ISBN 978-3-86644-969-5

Band 11 Henning Groenda
 Certifying Software Component

Performance Specifications. 2013
 ISBN 978-3-7315-0080-3

Band 12 Dennis Westermann
 Deriving Goal-oriented Performance Models

by Systematic Experimentation. 2014
 ISBN 978-3-7315-0165-7

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 13 Michael Hauck
 Automated Experiments for Deriving Performance-relevant

Properties of Software Execution Environments. 2014
 ISBN 978-3-7315-0138-1

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

M
ic

h
ae

l H
au

ck

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

The software execution environment can play a crucial role when analyzing
the performance of a software system. However, detecting execution environ-
ment properties and integrating such properties into performance analyses is
a manual, error-prone task that requires expert knowledge on the execution
environment.

In this book, a novel approach for detecting performance-relevant properties
of the software execution environment is presented. These properties are au-
tomatically detected using predefined experiments and integrated into perfor-
mance prediction tools. Based on a metamodel for experiment specification,
the approach is used to design experiments for detecting different CPU, OS
scheduling, and virtualization properties. This book also includes different case
studies which demonstrate the applicability of the approach.

ISSN 1867-0067
ISBN 978-3-7315-0138-1 9 783731 501381

ISBN 978-3-7315-0138-1

A
u

to
m

at
ed

 E
xp

er
im

en
ts

 f
o

r
D

er
iv

in
g

 P
er

fo
rm

an
ce

-r
el

ev
an

t
Pr

o
p

er
ti

es
 o

f
So

ft
w

ar
e

Ex
ec

u
ti

o
n

 E
n

vi
ro

n
m

en
ts

	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Shortcomings of Existing Solutions
	1.4 Contributions
	1.5 Validation
	1.6 Outline

	2 Foundations
	2.1 Software Performance Analysis
	2.1.1 Software Performance
	2.1.2 Software Performance Engineering
	2.1.3 Performance Experiments and Benchmarking
	2.1.4 The Palladio Component Model

	2.2 Model-driven Software Development
	2.2.1 Models and Metamodels
	2.2.2 The Eclipse Modeling Project

	2.3 Operating System Scheduling and Virtualization
	2.3.1 Operating System Scheduling
	2.3.2 Detecting CPU and OS Scheduling Properties
	2.3.3 Virtualization

	3 An Approach For Deriving Execution Environment Properties
	3.1 Research Context
	3.1.1 A Definition of the Execution Environment
	3.1.2 Performance-relevant Properties of the Execution Environment
	3.1.3 Separating the Execution Environment Model from the Software Architecture Model

	3.2 Scientific Challenges
	3.3 A Method for Automated Derivation of Execution Environment Properties
	3.3.1 Experiment Design
	3.3.2 Experiment Execution

	3.4 Scenarios
	3.5 Limitations and Assumptions
	3.6 Summary

	4 Model-based Definition and Execution of Execution Environment Experiments
	4.1 Automated Execution Environment Experiments
	4.1.1 Requirements
	4.1.2 Experiment Structure

	4.2 Experiment Library and Experiment Domains
	4.3 Parametric Experiments
	4.4 A Metamodel for Specifying Experiments
	4.4.1 Experiments
	4.4.2 Experiment Logic Definition
	4.4.3 Experiment Tasks
	4.4.4 Experiment Sensors
	4.4.5 Example

	4.5 Experiment Execution and Results Analysis
	4.5.1 Experiment Execution
	4.5.2 Results Analysis

	4.6 A Template for Experiment Description
	4.6.1 Sections of the Experiment Template
	4.6.2 Describing the Experiment Logic

	4.7 Extensibility of the Approach
	4.7.1 Experiments
	4.7.2 Experiment domains
	4.7.3 Experiment tasks and sensors
	4.7.4 Analysis logic

	4.8 Experiment Performance Overhead
	4.9 Summary

	5 Deriving CPU and OS Scheduling Properties
	5.1 Experiments Overview
	5.2 Scientific Challenges
	5.3 CPU Simultaneous Multithreading
	5.3.1 Motivation
	5.3.2 Experiment Design
	5.3.3 Experiment Template
	5.3.4 Experiment Robustness and Performance
	5.3.5 Example

	5.4 Number of CPU Cores
	5.4.1 Motivation
	5.4.2 Experiment Design
	5.4.3 Experiment Template
	5.4.4 Experiment Robustness and Performance
	5.4.5 Example

	5.5 Operating System Scheduler Timeslice Length
	5.5.1 Motivation
	5.5.2 Experiment Design
	5.5.3 Experiment Template
	5.5.4 Experiment Robustness
	5.5.5 Experiment Performance
	5.5.6 Example

	5.6 Operating System Scheduler Load-balancing Properties
	5.6.1 Motivation
	5.6.2 Initial Load-balancing Strategy
	5.6.3 Dynamic Load-balancing Strategy

	5.7 Including Experiment Results in Performance Prediction
	5.8 Validation
	5.8.1 Validation Scenario
	5.8.2 Execution
	5.8.3 Results
	5.8.4 Discussion

	5.9 Limitations and Assumptions
	5.10 Summary

	6 Deriving Virtualization Properties
	6.1 Experiments Overview
	6.2 Scientific Challenges
	6.3 Virtualization Overhead
	6.3.1 Motivation
	6.3.2 Experiment Design
	6.3.3 Experiment Template
	6.3.4 Experiment Robustness
	6.3.5 Experiment Performance
	6.3.6 Including Experiment Results in Performance Prediction
	6.3.7 Validation

	6.4 Load-dependent Overhead
	6.4.1 Motivation
	6.4.2 Experiment Design
	6.4.3 Experiment Template
	6.4.4 Experiment Robustness and Performance
	6.4.5 Including Experiment Results in Performance Prediction
	6.4.6 Validation

	6.5 Discussion
	6.5.1 Additional Load
	6.5.2 Limitations and Assumptions

	6.6 Summary

	7 Related Work
	7.1 Modeling the Execution Environment for Performance Prediction
	7.2 Deriving Performance Models through Automated Measurements
	7.3 Performance Analysis Reflecting CPU and OS Scheduling Properties
	7.4 Performance Analysis of Virtualized Environments
	7.5 Summary

	8 Conclusions
	8.1 Summary
	8.2 Limitations and Assumptions
	8.3 Further Application Areas
	8.4 Future Work

	A Ginpex Metamodel
	A.1 Control Flow Tasks
	A.2 Stop Conditions
	A.3 Machine Tasks
	A.4 Distributions
	A.5 Sensors

	B Presented Experiments
	B.1 CPU Simultaneous Multithreading
	B.2 Detect Number of Available CPU Cores
	B.3 Detect OS Scheduler Timeslice Length
	B.4 Detect OS Scheduler Initial Load-balancing Strategy
	B.5 Detect OS Scheduler Dynamic Load-balancing Strategy
	B.6 Detect Virtualization Overhead
	B.7 Detect Load-dependent Virtualization Overhead

	List of Figures

