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Preface to ”Integral Transforms and 
Operational Calculus”

This volume contains a total of 36 accepted submissions (including several invited feature 
articles) to the Special Issue of the MDPI’s journal, Symmetry on the general subject-area of “Integral 
Transforms and Operational Calculus” from all over the world.

Investigations involving the theory and applications of integral transforms and operational 
calculus are remarkably wide-spread in many diverse areas of the mathematical, physical, chemical, 
engineering and statistical sciences. In this Special Issue, we invited and welcome review, expository 
and original research articles dealing with the recent advances on the topics of integral transforms 
and operational calculus as well as their multidisciplinary applications.

The suggested topics of interest for the call of papers for this Special Issue included, but were 
not limited to, the following keywords:

•Integral Transforms and Integral as well as Other Related Operators

•Applications Involving Mathematical (or Higher Transcendental) Functions

•Applications Involving Fractional-Order Differential and Differintegral Equations

•Applications Involving q-Series and q-Polynomials

•Applications Involving Analytic Number Theory

•Applications Involving Special Functions of Mathematical Physics and Applied Mathematics

•Applications Involving Geometric Function Theory of Complex Analysis

Several well-established scientific research journals, which are published by such publishers as

(for example) Elsevier Science Publishers, John Wiley and Sons, Hindawi Publishing Corporation,

Springer, De Gruyter, MDPI, and other publishing houses, have published and continue to publish

a number of infoTitleSpecial Issues of many of their journals on recent advances on different

aspects, especially of the subject of one of the above-mentioned keywords, “Applications Involving

Fractional-Order Differential and Differintegral Equations.” Many widely-attended international

conferences, too, continue to be successfully organized and held world-wide ever since the very first

one on this particular subject-area in U.S.A. in the year 1974.

Finally, it gives me enormous pleasure in thanking all of the participants in this Special Issue

as well as the editorial personnel in the MDPI Editorial Office for Symmetry for their contributions

toward the success of this Special Issue. The wholehearted support and dedication of one and all are

indeed greatly appreciated.

H. M. Srivastava

Special Issue Editor
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Some Symmetric Identities for the Multiple
(p, q)-Hurwitz-Euler eta Function
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Abstract: The main purpose of this paper is to find some interesting symmetric identities
for the (p, q)-Hurwitz-Euler eta function in a complex field. Firstly, we define the multiple
(p, q)-Hurwitz-Euler eta function by generalizing the Carlitz’s form (p, q)-Euler numbers and
polynomials. We find some formulas and properties involved in Carlitz’s form (p, q)-Euler
numbers and polynomials with higher order. We find new symmetric identities for multiple
(p, q)-Hurwitz-Euler eta functions. We also obtain symmetric identities for Carlitz’s form (p, q)-Euler
numbers and polynomials with higher order by using symmetry about multiple (p, q)-Hurwitz-Euler
eta functions. Finally, we study the distribution and symmetric properties of the zero of Carlitz’s
form (p, q)-Euler numbers and polynomials with higher order.

Keywords: Euler numbers and polynomials; q-Euler numbers and polynomials; Hurwitz-Euler
eta function; multiple Hurwitz-Euler eta function; higher order q-Euler numbers and polynomials;
(p, q)-Euler numbers and polynomials of higher order; symmetric identities; symmetry of the zero

MSC: 11B68; 11S40; 11S80

1. Introduction

The area of the specific functions like the gamma and beta functions, the hypergeometric
functions, special polynomials, the zeta functions and the area of series such as q-series, and series
representations are a rapidly developing area in advanced mathematics (see [1–15]). Many q-extensions
of specific functions and polynomials have been studied (see [1,3,6–10,13,16]). Srivastava [15] discussed
some properties and q-extensions of the Bernoulli polynomials, Euler polynomials, and Genocchi
polynomials. Choi, Anderson and Srivastava have developed the q-extension of the Riemann zeta
function and functions related to the Riemann zeta function (see [5]). Choi and Srivastava presented
a generalized Hurwitz formula and Hurwitz-Euler eta function (see [4]). Recently, many authors
have developed (p, q)-extensions of the special functions, Riemann zeta function and related functions
(see [1,13,17–19]). The symmetry of special polynomials is also actively studied (see [8,9,19]).

We use this
n

∑
m1=0

· · ·
n

∑
mr=0

=
n

∑
m1,··· ,mr=0

.

We know the binomial formula as

(1 − a)n =
n

∑
i=0

(
n
i

)
(−a)i, where

(
n
i

)
=

n(n − 1) . . . (n − i + 1)
i!

,

and
1

(1 − a)n = (1 − a)−n =
∞

∑
i=0

(−n
i

)
(−a)i =

∞

∑
i=0

(
n + i − 1

i

)
ai.
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Choi and Srivastava [4] constructed and made formulas about the multiple Hurwitz-Euler eta
function ηr(s, a) defined by following r-ple series:

ηr(s, a) =
∞

∑
k1,··· ,kr=0

(−1)k1+···+kr

(k1 + · · ·+ kr + a)s , (Re(s) > 0; a > 0; r ∈ N),

where N is the set of natural numbers. It is known that ηr(s, a) can be analytically continued to be all
complex s-plane (see [4]). The (p, q)-number was defined as

[n]p,q =
pn − qn

p − q
= pn−1 + pn−2q + pn−3q2 + · · ·+ p2qn−3 + pqn−2 + qn−1.

It can be seen that the (p, q)-number contains a symmetric property, and this number is q-number
when p = 1. In particular, we can see limq→1[n]p,q = n with p = 1. Since [n]p,q = pn−1[n] q

p
, we

observe that p-numbers and (p, q)-numbers are different. In other words, by substituting q by q
p in the

q-number, we could not obtain a (p, q)-number. Therefore, much research has been conducted in the
area of special functions by using (p, q)-number (see [1,13,18,19]). In this article, the (p, q)-extension of
the multiple form of Hurwitz-Euler eta function can be defined as follows: For s, x ∈ C with Re(x) > 0,
the multiple (p, q)-Hurwitz-Euler eta function η

(r)
p,q(s, x) is defined by

η
(r)
p,q(s, x) = [2]rq

∞

∑
m1,...,mr=0

(−1)m1+···+mr qm1+···+mr

[m1 + · · ·+ mr + x]sp,q
.

The aim of this paper is to introduce and study a new some generalizations of the Carlitz’s
form higher order q-Euler numbers and polynomials, the multiple q-Euler zeta function, and the
multiple Hurwitz q-Euler zeta function. We call them Carlitz’s type higher-order (p, q)-Euler numbers
and polynomials, the multiple (p, q)-Euler zeta function, and the multiple (p, q)-Hurwitz-Euler eta
function. The paper is structured as follows. In Section 2 we define Carlitz’s type higher-order
(p, q)-Euler numbers and (p, q)-Euler polynomials and induce some of their properties involving
elementary properties, distribution relation, property of complement, and so on. In Section 3, by
using the Carlitz’s type higher-order (p, q)-Euler numbers and polynomials, the multiple (p, q)-Euler
zeta function and the multiple (p, q)-Hurwitz-Euler eta function are defined. We also present some
connection formulae between the Carlitz’s type higher-order (p, q)-Euler numbers and polynomials,
the multiple (p, q)-Euler zeta function, and the multiple (p, q)-Hurwitz-Euler eta function. In Section 4
we give several symmetric identities about the multiple (p, q)-Hurwitz-Euler eta function and Carlitz’s
type higher-order (p, q)-Euler numbers and polynomials. In Section 5, we investigate the distribution
and symmetry of the zero of Carlitz’s type higher-order (p, q)-Euler polynomials using a computer.
Our paper ends with Section 6, where the conclusions and future developments of this work
are presented.

Definition 1. The classical higher-order Euler numbers denoted by E(r)
n and Euler polynomials denoted by

E(r)
n (x) are defined as the below generating functions(

2
et + 1

)r
=

∞

∑
n=0

E(r)
n

tn

n!
, (|t| < π),

and (
2

et + 1

)r
ext =

∞

∑
n=0

E(r)
n (x)

tn

n!
, (|t| < π),

respectively (see [15]).

2
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Definition 2. For 0 < q < p ≤ 1, the Carlitz’s type (p, q)-Euler polynomials denoted by En,p,q(x) are defined
as the below generating function (see [13])

∞

∑
n=0

En,p,q(x)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[m+x]p,qt.

2. Carlitz’s Form Higher-Order (p, q)-Euler Numbers and Polynomials

First, we think the Carlitz’s form with high-order (p, q)-Euler numbers and polynomials as
follows:

Definition 3. For r ∈ N, the high-order (p, q)-Euler polynomials denoted by E(r)
n,p,q(x) are defined like the

generating function:

∞

∑
n=0

E(r)
n,p,q(x)

tn

n!
= [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr e[m1+···+mr+x]p,qt. (1)

If x = 0, E(r)
n,p,q = E(r)

n,p,q(0) are called the higher-order (p, q)-Euler numbers E(r)
n,p,q. Note that if r = 1,

then E(r)
n,p,q = En,p,q and E(r)

n,p,q(x) = En,p,q(x). Observe that if p = 1, q → 1, then E(r)
n,p,q → E(r)

n and

E(r)
n,p,q(x) → E(r)

n (x).

Definition 4. For r ∈ N, the (h, p, q)-Euler polynomials with high-order denoted by E(r,h)
n,p,q(x) are defined as

the below generating function:

∞

∑
n=0

E(r,h)
n,p,q(x)

tn

n!
= [2]rq

∞

∑
m1,··· ,mr=0

(−q)m1+···+mr ph(m1+···+mr)e[m1+···+mr+x]p,qt. (2)

If x = 0, E(r,h)
n,p,q = E(r,h)

n,p,q(0) is called (h, p, q)-Euler numbers with higher-order denoted by E(r)
n,p,q. Remark

that if h = 0, then E(r,h)
n,p,q = E(r)

n,p,q and E(r,h)
n,p,q(x) = E(r)

n,p,q(x). We see that if r = 1, then E(r,h)
n,p,q = E(h)

n,p,q and

E(r,h)
n,p,q(x) = E(h)

n,p,q(x) (see [13]). Observe that if p = 1, q → 1, then E(r,h)
n,p,q → E(r)

n and E(r,h)
n,p,q(x) → E(r)

n (x).
By (1) and (2), we know that

E(r)
n,p,q(x + y) =

n

∑
i=0

(
n
i

)
p(n−i)xqyiE(r,n−i)

i,p,q (x)[y]n−i
p,q ,

E(r)
n,p,q(x) =

n

∑
i=0

(
n
i

)
qxi[x]n−i

p,q E(r,n−i)
i,p,q .

(3)

Theorem 1. For r ∈ N, we have

E(r)
n,p,q(x) = [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr [m1 + · · ·+ mr + x]np,q

=
[2]rq

(p − q)n

n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x

(
1

1 + ql+1 pn−l

)r
.

Proof. When we use the Taylor series expansion of e[x]p,qt, we can get

3
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∞

∑
l=0

E(r)
l,p,q(x)

tl

l!
= [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr e[m1+···+mr+x]p,qt

=
∞

∑
l=0

(
[2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr [m1 + · · ·+ mr + x]lp,q

)
tl

l!
.

The first part of the theorem follows when we compare the coefficients of tl

l! in the above equation.
By (p, q)-numbers and binomial expansion, we also note that

E(r)
n,p,q(x) = [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr [m1 + · · ·+ mr + x]np,q

= [2]rq
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr

(
pm1+···+mr+x − qm1+···+mr+x

p − q

)n

=
[2]rq

(p − q)n

n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x

×
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr q(l+1)(m1+···+mr)p(n−l)(m1+···+mr)

=
[2]rq

(p − q)n

n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x

(
1

1 + ql+1 pn−l

)r
.

We finish the proof of Theorem 1.

Theorem 2. For r ∈ N, we get

E(r)
n,p,q(x) = [2]rq

∞

∑
m=0

(
r + m − 1

m

)
(−1)mqm[m + x]np,q. (4)

Proof. By Taylor-Maclaurin series expansion of (1 − a)−n, we have(
1

1 + ql+1 pn−l

)r
=

∞

∑
m=0

(
m + r − 1

m

)
(−1)m(ql+1 pn−l)m.

Also, by Theorem 1 and binomial expansion, one can obtain the desired result immediately.

For d ∈ N with d ≡ 1( mod 2), by Theorem 1 we can show

E(r)
n,p,q(x) =

[2]rq
(p − q)n

n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x

d−1

∑
a1,··· ,ar=0

∞

∑
m1,··· ,mr=0

(−1)a1+···+ar

× (−1)m1+···+mr q(l+1)(a1+dm1+···+ar+dmr)p(n−l)(a1+dm1+···+ar+dmr).

Theorem 3. (Distribution relation of (p, q)-Euler polynomials with higher-order). For d ∈ N with d ≡
1( mod 2), we have

E(r)
n,p,q(x) =

[2]rq
[2]rqd

[d]np,q

d−1

∑
a1,··· ,ar=0

(−q)a1+···+ar E(r)
n,pd ,qd

(
a1 + · · ·+ ar + x

d

)
.

4
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Proof. Since

E(r)
n,pd ,qd

(
a1 + · · ·+ ar + x

d

)
=

[2]rqd

(pd − qd)n

n

∑
l=0

(
n
l

)
(−1)lql(a1+···+ar+x)p(n−l)(a1+···+ar+x)

(
1

1 + qd(l+1)pd(n−l)

)r
,

we have

d−1

∑
a1,··· ,ar=0

(−q)a1+···+ar E(r)
n,pd ,qd

(
a1 + · · ·+ ar + x

d

)

=
[2]rqd

(pd − qd)n

n

∑
l=0

(
n
l

)
(−1)lqlx p(n−l)x

×
d−1

∑
a1,··· ,ar=0

(−1)a1+···+ar qa1+···+ar ql(a1+···+ar)p(n−l)(a1+···+ar)

(
1

1 + qd(l+1)pd(n−l)

)r
.

Hence, we derive

[2]rq
[2]rqd

[d]np,q

d−1

∑
a1,··· ,ar=0

(−q)a1+···+ar E(r)
n,pd ,qd

(
a1 + · · ·+ ar + x

d

)

=
[2]rq

(p − q)n

n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x

(
1

1 + ql+1 pn−l

)r
.

We prove Theorem 3.

3. Multiple (p, q)-Hurwitz-Euler eta Function

We define multiple (p, q)-Hurwitz-Euler eta function. This function makes (p, q)-Euler
polynomials at negative integers with higher-order. Choi and Srivastava [4] defined ηr(s, a) by
means of

ηr(s, a) =
∞

∑
k1,··· ,kr=0

(−1)k1+···+kr

(k1 + · · ·+ kr + a)s , (Re(s) > 0; a > 0; r ∈ N).

It is known that ηr(s, a) can be continued analytically to be all complex s-plane (see [4]).
The (p, q)-extension of ηr(s, a) can be defined as follows:

Definition 5. For s, x ∈ C with Re(x) > 0, the multiple (p, q)-Hurwitz-Euler eta function η
(r)
p,q(s, x) is

defined as

η
(r)
p,q(s, x) = [2]rq

∞

∑
m1,...,mr=0

(−1)m1+···+mr qm1+···+mr

[m1 + · · ·+ mr + x]sp,q
.

Observe that when p = 1, q → 1, then 2rη
(r)
p,q(s, a) = ηr(s, a).

Let

F(r)
p,q (t, x) =

∞

∑
n=0

E(r)
n,p,q(x)

tn

n!

= [2]rq
∞

∑
m1,...,mr=0

(−1)m1+···+mr qm1+···+mr e[m1+···+mr+x]p,qt.
(5)

Theorem 4. For r ∈ N, we get

η
(r)
p,q(s, x) =

1
Γ(s)

∫ ∞

0
F(r)

p,q (x, −t)ts−1dt, (6)

5
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where Γ(s) =
∫ ∞

0 zs−1e−zdz.

Proof. From (5) and Definition 5, we get

η
(r)
p,q(s, x) = [2]rq

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr

[m1 + · · ·+ mr + x]sp,q

= [2]rq
1

Γ(s)

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr

[m1 + · · ·+ mr + x]sp,q

∫ ∞

0
zs−1e−zdz

=
[2]rq
Γ(s)

∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qm1+···+mr

∫ ∞

0
e[m1+···+mr+x]p,qtts−1dt

=
1

Γ(s)

∫ ∞

0
F(r)

p,q (x, −t)ts−1dt.

We are finished Theorem 4.

The value of multiple (p, q)-Hurwitz-Euler eta function η
(r)
p,q(s, x) at negative integers is given

explicitly by the following theorem:

Theorem 5. Let n ∈ N . Then we obtain

η
(r)
p,q(−n, x) = E(r)

n,p,q(x).

Proof. Again, by (5) and (6), we have

η
(r)
p,q(s, x) =

1
Γ(s)

∫ ∞

0
F(r)

p,q (x, −t)ts−1dt =
1

Γ(s)

∞

∑
m=0

E(r)
m,p,q(x)

(−1)m

m!

∫ ∞

0
tm+s−1dt. (7)

We note that

Γ(−n) =
∫ ∞

0
e−zz−n−1dz = lim

z→0
2πi

1
n!

(
d
dz

)n
(zn+1e−zz−n−1) = 2πi

(−1)n

n!
. (8)

For n ∈ N, let us take s = −n in (7). Then, by (7), (8), and Cauchy residue theorem, we have

η
(r)
p,q(−n, x) = lim

s→−n

1
Γ(s)

∞

∑
m=0

E(r)
m,p,q(x)

(−1)m

m!

∫ ∞

0
tm−n−1dt

= 2πi
(

lim
s→−n

1
Γ(s)

)(
E(r)

n,p,q(x)
(−1)n

n!

)
= 2πi

(
1

2πi (−1)n

n!

)(
E(r)

n,p,q(x)
(−1)n

n!

)
= E(r)

n,p,q(x).

The proof of Theorem 5 is finished.

By (4), we have
∞

∑
n=0

E(r)
n,p,q

tn

n!
= [2]rq

∞

∑
m=0

(
m + r − 1

m

)
(−1)mqme[m]p,qt.

From Taylor series of e[m]p,qt in the above formula, we can get

∞

∑
n=0

E(r)
n,p,q

tn

n!
=

∞

∑
n=0

(
[2]rq

∞

∑
m=0

(
m + r − 1

m

)
(−1)mqm[m]np,q

)
tn

n!
.

6
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If we compare coefficients tn

n! , then we know

E(r)
n,p,q = [2]rq

∞

∑
m=0

(
m + k − 1

m

)
(−1)mqm[m]np,q. (9)

By using (9), we define multiple (p, q)-Euler zeta function like below formula:

Definition 6. For s ∈ C, we define

ζ
(r)
p,q(s) = [2]rq

∞

∑
m=1

(
m + r − 1

m

)
(−1)mqm

[m]sp,q
. (10)

The function ζ
(r)
p,q(s) makes the number E(r)

n,p,q in negative integers. Instead of s, s = −n for n ∈ N

into (10), and using (9), we can obtain the below theorem:

Theorem 6. Let n ∈ N, We have
ζ
(r)
p,q(−n) = E(r)

n,p,q.

4. Symmetric Identities for the Multiple (p, q)-Hurwitz-Euler eta Function

Let w1, w2 ∈ N where, w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For r ∈ N and n ∈ Z+, we get
symmetry identities about the multiple (p, q)-Hurwitz-Euler eta function.

Theorem 7. Let w1, w2 be natural numbers, where w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). Then we obtain

[w2]
s
p,q[2]

r
qw2

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× η
(r)
pw1 qw1 (s, w2x +

w2

w1
(j1 + · · ·+ jr))

= [w1]
s
p,q[2]

r
qw1

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1 ∑r

l=1 jl

× η
(r)
pw2 ,qw2 (s, w1x +

w1

w2
(j1 + · · ·+ jr)).

(11)

Proof. We know that [xy]q = [x]qy [y]q for any x, y ∈ C. Hence, using w2x +
w2

w1
(j1 + · · ·+ jr) instead

of x and replacing by qw1 and pw1 instead of q and p in (11), respectively, we induce the next result

1
[2]rqw1

η
(r)
pw1 qw1 (s, w2x +

w2

w1
(j1 + · · ·+ jr))

=
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qw1m1+···+w1mr

[m1 + · · ·+ mr + w2x +
w2

w1
(j1 + · · ·+ jr)]spw1 ,qw1

=
∞

∑
m1,··· ,mk=0

(−1)m1+···+mr qw1m1+···+w1mr[
w1(m1 + · · ·+ mr) + w1w2x + w2(j1 + · · ·+ jr)

w1

]s

pw1 ,qw1

=
∞

∑
m1,··· ,mr=0

(−1)m1+···+mr qw1m1+···+w1mr

[w1(m1 + · · ·+ mk) + w1w2x + w2(j1 + · · ·+ jk)]sp,q

[w1]sp,q

= [w1]
s
p,q

∞

∑
m1,··· ,mk=0

(−1)m1+···+mr qw1m1+···+w1mr

[w1(m1 + · · ·+ mr) + w1w2x + w2(j1 + · · ·+ jr)]sp,q

7
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= [w1]
s
p,q

∞

∑
m1,··· ,mk=0

w2−1

∑
i1,··· ,ik=0

(−1)m1+···+mr qw1m1+···+w1mr

[w1(m1 + · · ·+ mr) + w1w2x + w2(j1 + · · ·+ jr)]sp,q

= [w1]
s
p,q

∞

∑
m1,··· ,mr=0

w2−1

∑
i1,··· ,ir=0

(−1)∑r
j=1(w2mj+ij)qw1 ∑r

j=1(w2mj+ij)

×
(
[w1(w2m1 + i1) + · · ·+ w1(w2mr + ir) + w1w2x + w2(j1 + · · ·+ jr)]sp,q

)−1

= [w1]
s
p,q

∞

∑
m1,··· ,mr=0

w2−1

∑
i1,··· ,ir=0

(−1)∑r
j=1 mj(−1)∑r

j=1 ij qw1w2 ∑r
j=1 mj qw1 ∑r

j=1 ij

×
(
[w1w2(x + m1 + · · ·+ mr) + w1(i1 + · · ·+ ir) + w2(j1 + · · ·+ jr)]sp,q

)−1
.

(12)

Thus, from (12), we see the following equation.

[w2]
s
p,q

[2]rqw1

w1−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qw2(j1+···+jr)η
(r)
pw1 ,qw1 (s, w2x +

w2

w1
(j1 + · · ·+ jr))

= [w1]
s
p,q[w2]

s
p,q

∞

∑
m1,··· ,mr=0

w2−1

∑
i1,··· ,ir=0

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1(jl+il+ml)qw1w2 ∑r

l=1 ml

× qw1 ∑r
l=1 il qw2 ∑r

l=1 jl

×
(
[w1w2(x + m1 + · · ·+ mr) + w1(i1 + · · ·+ ir) + w2(j1 + · · ·+ jr)]sp,q

)−1

(13)

By using the same method as (13), we have

[w1]
s
p,q

[2]rqw2

w2−1

∑
j1,··· ,jr=0

(−1)j1+···+jr qw1(j1+···+jr)η
(r)
pw2 ,qw2 (s, w1x +

w1

w2
(j1 + · · ·+ jr))

= [w1]
s
p,q[w2]

s
p,q

∞

∑
m1,··· ,mk=0

w2−1

∑
j1,··· ,jr=0

w1−1

∑
i1,··· ,ir=0

(−1)∑r
l=1(jl+il+ml)

× qw1w2 ∑r
l=1 ml qw2 ∑r

l=1 il qw1 ∑r
l=1 jl

×
(
[w1w2(x + m1 + · · ·+ mr) + w1(j1 + · · ·+ jr) + w2(i1 + · · ·+ ir)]sp,q

)−1

(14)

Therefore, by (13) and (14), we complete the proof Theorem 7.

Taking w2 = 1 in Theorem 7, we obtain the below corollary.

Corollary 1. Let w1 be natural numbers, where w1 ≡ 1 (mod 2). For r ∈ N and n ∈ Z+, we obtain

η
(r)
n,p,q (s, w1x) =

[2]rq
[2]rqw1 [w1]sp,q

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× η
(r)
n,pw1 ,qw1

(
s, x +

j1 + · · ·+ jr
w1

)
.

(15)

If p = 1, q → 1 in above Corollary 1, then we can see the below corollary.

Corollary 2. Let m ∈ N. m ≡ 1 (mod 2). For r ∈ N and n ∈ Z+, we obtain

ηr (s, x) =
1

ms

m−1

∑
j1,··· ,jr=0

(−1)j1+···+jr ηr

(
s,

x + j1 + · · ·+ jr
m

)
. (16)

8
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For r ∈ N and n ∈ Z+, we see symmetry identities about higher-order (p, q)-Euler polynomials.

Theorem 8. Let w1, w2 be natural numbers with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For r ∈ N and
n ∈ Z+, we obtain

[w1]
n
p,q[2]

r
qw2

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× E(r)
n,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jr)

)
= [w2]

n
p,q[2]

r
qw1

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1 ∑r

l=1 jl

× E(r)
n,pw2 ,qw2

(
w1x +

w1

w2
(j1 + · · ·+ jr)

)
.

(17)

Proof. Using Theorems 5 and 7, we see easily the Theorem 8.

Taking w2 = 1 in Theorem 8, we have the below corollary.

Corollary 3. Let w1 be the natural number with w1 ≡ 1 (mod 2). For r ∈ N and n ∈ Z+, we obtain

E(r)
n,pw1 ,qw1 (w1x) =

[2]rq
[2]rqw1

[w1]
n
p,q

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× E(r)
n,pw1 ,qw1

(
s, x +

j1 + · · ·+ jr
w1

)
.

(18)

If p = 1, q → 1 in the above Corollary, then we get the another Corollary.

Corollary 4. Let m be the natural number, where m ≡ 1 (mod 2). Let r ∈ N and n ∈ Z+, we see

E(r)
n (x) = mn

m−1

∑
j1,··· ,jr=0

(−1)j1+···+jr E(r)
n

(
x + j1 + · · ·+ jr

m

)
. (19)

By (3), we have

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× E(r)
n,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jk)

)
=

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

×
n

∑
i=0

(
n
i

)
qw2(n−i)(j1+···+jr)pw1w2xiE(r,i)

n−i,pw1 ,qw1 (w2x)
[

w2

w1
(j1 + · · ·+ jr)

]i

pw1 ,qw1

=
w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl pw2 ∑r

l=1 jl

×
n

∑
i=0

(
n
i

)
qw2(n−i)∑r

l=1 jl pw1w2xiE(r,i)
n−i,pw1 ,qw1 (w2x)

(
[w2]p,q

[w1]p,q

)i

[j1 + · · ·+ jr]
i
pw1 ,qw1

(20)

therefore, we can see the below theorem.

9
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Theorem 9. Let w1, w2 ∈ N. Let w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). Let r ∈ N and n ∈ Z+, we get

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× E(r)
n,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jr)

)
=

n

∑
i=0

(
n
i

)
[w2]

i
p,q[w1]

−i
p,q pw1w2xiE(r,i)

n−i,pw1 ,qw1 (w2x)

×
w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2(n−i+1)∑r

l=1 jl [j1 · · ·+ jr]ipw2 ,qw2 .

For all different integers n ≥ 0, let

S (r)
n,i,p,q(w) =

w−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl q(n−i+1)∑r

l=1 jl [j1 · · ·+ jk]ip,q.

This sum S (k)
n,i,p,q(w) is called the alternating (p, q)-power sums.

By above Theorem 9, we get the result

[2]rqw2 [w1]
n
p,q

w1−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw2 ∑r

l=1 jl

× E(r)
n,pw1 ,qw1

(
w2x +

w2

w1
(j1 + · · ·+ jr)

)
= [2]rqw2

n

∑
i=0

(
n
i

)
[w2]

i
p,q[w1]

n−i
p,q pw1w2xiE(r,i)

n−i,pw1 ,qw1 (w2x)S (r)
n,i,pw2 ,qw2 (w1).

(21)

By using the same method as in (21), we have

[2]rqw1 [w2]
n
p,q

w2−1

∑
j1,··· ,jr=0

(−1)∑r
l=1 jl qw1 ∑k

l=1 jl

× E(r)
n,pw2 ,qw2

(
w1x +

w1

w2
(j1 + · · ·+ jr)

)
= [2]rqw1

n

∑
i=0

(
n
i

)
[w1]

i
p,q[w2]

n−i
p,q pw1w2xiE(r,i)

n−i,pw2 ,qw2 (w1x)S (r)
n,i,pw1 ,qw1 (w2).

(22)

So we see the following result using (21) and (22) and Theorem 3.

Theorem 10. Let w1, w2 be the natural numbers, where w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). Let r ∈ N and
n ∈ Z+, we can see

[2]rqw1

n

∑
i=0

(
n
i

)
[w1]

i
p,q[w2]

n−i
p,q pw1w2xiE(r,i)

n−i,pw2 ,qw2 (w1x)S (r)
n,i,pw1 ,qw1 (w2)

= [2]rqw2

n

∑
i=0

(
n
i

)
[w2]

i
p,q[w1]

n−i
p,q pw1w2xiE(r,i)

n−i,pw1 ,qw1 (w2x)S (r)
n,i,pw2 ,qw2 (w1).

Using Theorem 10, we induce the symmetric identity (p, q)-Euler numbers E(r)
n,p,q for the

higher-order in complex field.

10
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Corollary 5. Let w1, w2 be the natural numbers which have w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2). For k ∈ N

and n ∈ Z+, we get

[2]rqw1

n

∑
i=0

(
n
i

)
[w1]

i
p,q[w2]

n−i
p,q pw1w2xiS (r)

n,i,pw1 ,qw1 (w2)E(r,i)
n−i,pw2 ,qw2

= [2]rqw2

n

∑
i=0

(
n
i

)
[w2]

i
p,q[w1]

n−i
p,q pw1w2xiS (r)

n,i,pw2 ,qw2 (w1)E(r,i)
n−i,pw1 ,qw1 .

5. Zeros of the Higher-Order (p, q)-Euler Polynomials E(r)
n,p,q(x) = 0

If it is difficult to find solutions of equations, visualizing distributions of solutions using a
computer can help to find regular patterns of solutions. These are particularly interesting because it
is hard to approach theoretically. Therefore, the work of the last section is of interest to us. Based on
these results, we suggest a few unsolved problems.

The values of the E(r)
n,p,q(x) are given by

E(r)
0,p,q(x) = 1,

E(r)
1,p,q(x) =

[2]rq
(

px
(

1
1+pq

)r
− qx

(
1

1+q2

)r)
p − q

,

E(r)
2,p,q(x) =

[2]rq

(
p2x

(
1

1+p2q

)r
− 2pxqx

(
1

1 + pq2

)r
+ q2x

(
1

1+q3

)r
)

(p − q)2 ,

E(r)
3,p,q(x) =

[2]rq
(

p3x
(

1
1+p3q

)r
− 3p2xqx

(
1

1+p2q2

)r
+ 3pxq2x

(
1

1+pq3

)r
− q3x

(
1

1+q4

)r)
(p − q)3 .

We see that the numerical results about approximate solutions of zeros of E(r)
n,p,q(x) = 0 are in

Tables 1 and 2. In Table 1, the numbers of zeros of E(r)
n,p,q(x) = 0 are listed about a fixed p = 1

2 and
q = 1

10 .

Table 1. Numbers of real and complex zeros of E(r)
n,p,q(x).

r = 1, p = 1
2 , q = 1

10 r = 3, p = 1
2 , q = 1

10

Degree n Real Zeros Complex Zeros Real Zeros Complex Zeros

1 1 0 0 1
2 2 0 ∗ ∗
3 1 2 1 2
4 2 2 ∗ ∗
5 1 4 1 4
6 2 4 2 4
7 1 6 1 6
8 ∗ ∗ ∗ ∗
9 1 8 1 8

10 2 8 2 8
11 1 10 1 10
12 2 10 2 10
13 1 12 1 12
14 ∗ ∗ 2 12
15 1 14 1 14
16 ∗ ∗ ∗ ∗
17 1 16 1 16

11
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The ∗ mark in inside of Table 1 means that there is no solution of E(r)
n,p,q(x) = 0. It is possible to

visualize the zeros of E(r)
n,p,q(x) = 0 using computer graphics. The zeros of E(r)

n,p,q(x) = 0, where x ∈ C

are visualized in Figure 1.

Figure 1. Zeros of E(r)
n,p,q(x) = 0.

In Figure 1 (top-left), we chose r = 7, n = 10, p = 1/2 and q = 1/10. In Figure 1 (top-right), we
chose r = 7, n = 20, p = 1/2 and q = 1/10. In Figure 1 (bottom-left), we chose r = 7, n = 30, p = 1/2
and q = 1/10. In Figure 1 (bottom-right), we chose r = 7, n = 40, p = 1/2 and q = 1/10. We can
see that distribution of zeroes of E(r)

n,p,q(x) = 0 is very regular. Therefore, the theoretical prediction of

the regularity of distributions of the zeros of E(r)
n,p,q(x) = 0 will remain as future research problems

(Table 1).
Now, we have the numerical solution satisfying higher-order Euler polynomials E(r)

n,p,q(x) = 0

for x ∈ R. The numerical solutions of the higher-order Euler polynomials E(r)
n,p,q(x) = 0 are listed in

Table 2 about a fixed r = 3, p = 1
2 , and q = 1

10 and different value of n.

12
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Table 2. Numerical solutions of E(3)
n,p,q(x) = 0, p = 1

2 , q = 1
10 .

Degree n x

1 0.0723976

2 ∗
3 0.206956

4 ∗
5 0.258552

6 −0.163912, 0.273465

The ∗ mark in Table 2 means that there is no solution of E(r)
n,p,q(x) = 0.

6. Conclusions and Future Developments

This paper introduced the Carlitz’s form higher-order Euler numbers and polynomials. We have
induced some formulas about the Carlitz’s form Euler numbers and polynomials with high-order.
Symmetric identities about Carlitz’s form Euler numbers and polynomials with high-order are also
gained. In addition, the result of [19] is a special case of r = 1, which can be induced from our paper.
We make the following conjectures by numerical experiments:

Conjecture 1. Prove or disprove that E(r)
n,p,q(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic complex

functions. Furthermore, E(r)
n,p,q(x) has Re(x) = a reflection symmetry for a ∈ R.

It have been checked about many values of n. It is still unknown when the conjecture 1 is true or
false about each value n (see Figure 1).

In Table 1, there is no solution of that the Carlitz’s form (p, q)-Euler polynomials with higher-order
is 0. Find such n so that there is no solution. If the Carlitz’s form (p, q)-Euler polynomials with
higher-order has solutions, it is doubtful whether it has distinct solutions.

Conjecture 2. Prove or disprove that E(r)
n,p,q(x) = 0 has n distinct solutions.

We use the following symbols. R
E(r)

n,p,q(x)
denotes the number of real zeros of E(r)

n,p,q(x) = 0 on the

real plane Im(x) = 0 and C
E(r)

n,p,q(x)
denotes the number of complex zeros of E(r)

n,p,q(x) = 0. We can check

R
E(r)

n,p,q(x)
= n − C

E(r)
n,p,q(x)

(see Tables 1 and 2) because n is the degree of the polynomial E(r)
n,p,q(x).

Also, when the Carlitz’s form higher-order (p, q)-Euler polynomials is 0, if the equation has
solutions, we have the following question:

Conjecture 3. Prove or disprove that

R
E(r)

n,p,q(x)
=

{
1, if n = odd,
2, if n = even.

We expect that the research in this direction will be a new approach using numerical methods for
the study of Carlitz’s form Euler polynomials E(r)

n,p,q(x) = 0 (See [13,17,19,20]).
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Abstract: In this paper, we propose to investigate the truncated-exponential-based Apostol-type
polynomials and derive their various properties. In particular, we establish the operational
correspondence between this new family of polynomials and the familiar Apostol-type polynomials.
We also obtain some implicit summation formulas and symmetric identities by using their generating
functions. The results, which we have derived here, provide generalizations of the corresponding
known formulas including identities involving generalized Hermite-Bernoulli polynomials.
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1. Introduction

Operational techniques involving differential operators, which is a consequence of the
monomiality principle, provide efficient tools in the theory of conventional polynomial systems
and their various generalizations. Steffensen [1] suggested the concept of poweroid, which happens
to be behind the idea of monomiality. The principle of monomiality was subsequently reformulated
and developed by Dattoli [2]. The strategy underlining this viewpoint is apparently simple, but the
outcomes are remarkably deep.

In the theory of the monomiality principle, a polynomial set pn(x) (n ∈ N; x ∈ C) is
quasi-monomial if there exist two operators M̂ and P̂, which are named the multiplicative and the
derivative operators, respectively, are defined as follows:

M̂{pn(x)} = pn+1(x) and P̂{pn(x)} = npn−1(x),

together with the initial condition given by

p0(x) = 1. (1)

Symmetry 2019, 11, 538; doi:10.3390/sym11040538 www.mdpi.com/journal/symmetry15
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The operators M̂ and P̂ satisfy the following commutation relation:

[M̂, P̂] = 1̂. (2)

Thus, clearly, these operators display a Weyl group structure.
The properties of the polynomials pn(x) can be deduced from those of the operators M̂ and

P̂. If M̂ and P̂ possess a differential character, then the polynomials pn(x) satisfy the following
differential equation:

M̂P̂{pn(x)} = npn(x). (3)

The polynomial family pn(x) can be explicitly constructed through the action of M̂n on p0(x)
as follows:

pn(x) = M̂n{p0(x)}. (4)

Just as in (1), we shall always assume that p0(x) = 1. In view of the above identity (4), the exponential
generating function of pn(x) can be written in the form:

exp(tM̂){1} =
∞

∑
n=0

pn(x)
tn

n!
(|t| < ∞) . (5)

We now introduce the truncated-exponential polynomials en(x) (see [3]) defined by the
following series:

en(x) =
n

∑
k=0

xk

k!
, (6)

that is, by the first n + 1 terms of the Taylor-Maclaurin series for the exponential function ex.
These truncated-exponential polynomials play an important rôle in many problems in optics and
quantum mechanics. However, their properties are apparently as widespread as they should be.
The truncated-exponential polynomials en(x) have been used to evaluate several overlapping integrals
associated with the optical mode evolution or for characterizing the structure of the flattened beams.
Their usefulness has led to the possibility of appropriately extending their definition. Actually,
Dattoli et al. [4] systematically studied the properties of these polynomials.

The definition (6) does lead us to most (if not all) of the properties of the polynomials en(x). We
note the following representation:

en(x) =
1
n!

∫ ∞

0
e−ξ (x + ξ)n dξ, (7)

which follows readily from the classical gamma-function representation (see, for details, [3]).
Consequently, we have the following generating function for the truncated-exponential polynomials
en(x) (see [4]):

ext

1 − t
=

∞

∑
n=0

en(x) tn. (8)

The definition (6) of en(x) can thus be extended to a family of potentially useful
truncated-exponential polynomials as follows (see [4]):

[2]en(x) =
[ n

2 ]

∑
k=0

xn−2k

(n − 2k)!
, (9)

which obviously possesses a generating function in the form (see [4]):

ext

1 − t2 =
∞

∑
n=0

[2]en(x)tn. (10)

16
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We also recall the higher-order truncated-exponential polynomials [r]en(x), which are defined by
the following series (see [4]):

[r]en(x) =
[ n

2 ]

∑
k=0

xn−rk

(n − rk)!
(11)

and specified by the following generating function (see [4]):

ext

1 − tr =
∞

∑
n=0

[r]en(x)tn. (12)

The special two-variable case of the polynomials in (11) (that is, the case when r = 2) are important
for applications. Moreover, these polynomials help us derive several potentially useful identities in a
simple way and in investigating other novel families of polynomial systems. Actually, Equation (12)
enables us to give a new family of polynomials as has been given in Theorem 1.

A 2-variable extension of the truncated-exponential polynomials is given by (see [4])

[2]en(x, y) =
[ n

2 ]

∑
k=0

ykxn−2k

(n − 2k)!
(13)

and possesses the following generating function (see [4]):

ext

1 − yt2 =
∞

∑
n=0

[2]en(x, y)tn. (14)

With a view to introducing a mixed family of polynomials related to the familiar Sheffer sequence,
we first consider the 2-variable truncated-exponential polynomials (2VTEP) e(r)n (x, y) of order r, which
are expressed explicitly by (see [5])

e(r)n (x, y) =
[ n

2 ]

∑
k=0

ykxn−rk

(n − rk)!
(15)

and which are generated by
ext

1 − ytr =
∞

∑
n=0

e(r)n (x, y)
tn

n!
. (16)

From (8), (10), (12), (14) and (16), we can deduce several special cases of the 2VTEP e(r)n (x, y), For
example, we have

e(2)n (x, y) = [2]en(x, y) e(1)n (x, 1) = [r]en(x) e(2)n (x, 1) = [2]en(x) and e(1)n (x, 1) = en(x). (17)

As it is shown in [6,7], the 2VTEP e(r)n (x, y) are quasi-monomial (see also [1,2]) with respect to
multiplicative and derivative operators given by

M̂e(r) = (x + ry∂yy∂r−1
x ) (18)

and
P̂e(r) = ∂x, (19)

where
∂x =

∂

∂x
and ∂y =

∂

∂y
.

17
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Thus, if we apply the monomiality principle as well as the Equations (18) and (19), we have

M̂e(r){e(r)n (x, y)} = e(r)n+1(x, y) (20)

and
P̂e(r){e(r)n (x, y)} = ne(r)n−1(x, y), (21)

respectively.
The 2VTEP e(r)n (x, y) are quasi-monomial, so their properties can be derived from those of the

multiplicative and derivative operators M̂e(r) and P̂e(r) , respectively. We thus find that

M̂e(r) P̂e(r){e(r)n (x, y)} = ne(r)n (x, y), (22)

which satisfies a differential equation for e(r)n (x, y) as follows:

(r∂x + ry∂yy∂r
x − n)e(r)n (x, y) = 0. (23)

Again, since e(r)0 (x, y) = 1, the 2VTEP e(r)n (x, y) can be explicitly constructed as follows:

e(r)n (x, y) = M̂n
e(r){e(r)0 (x, y)} = M̂n

e(r){1}. (24)

Equation (24) yields the following generating function of the 2VTEP e(r)n (x, y):

exp(M̂e(r) t){1} =
∞

∑
n=0

e(r)n (x, y)
tn

n!
(|t| < ∞) . (25)

We can easily verify the following relation between M̂e(r) and P̂e(r) :

[P̂e(r) , M̂e(r) ] = 1̂. (26)

Denoting the classical Bernoulli, Euler and Genocchi polynomials by Bn(x), En(x) and Gn(x),
respectively, we now recall their familiar generalizations B(α)

n (x), E(α)
n (x) and G(α)

n (x) of order α, which
are generated by (see, for details, [8–14]; see also [15] as well as the references cited therein):(

t
et − 1

)α

ext =
∞

∑
n=0

B(α)
n (x)

tn

n!
(|t| < 2π; 1α := 1), (27)

(
2

et + 1

)α

ext =
∞

∑
n=0

E(α)
n (x)

tn

n!
(|t| < π; 1α := 1) (28)

and (
2t

et + 1

)α

ext =
∞

∑
n=0

G(α)
n (x)

tn

n!
(|t| < π; α ∈ N0). (29)

Obviously, we have

B(1)
n (x) =: Bn (x) , E(1)

n (x) =: En(x) and G(1)
n (x) =: Gn(x). (30)

It is also known that

B(1)
n (0) =: Bn, E(1)

n (0) =: En and G(1)
n (0) =: Gn (31)

for the Bernoulli, Euler, and Genocchi numbers Bn, En and Gn, respectively.

18
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The Apostol-Bernoulli polynomials B(α)
n (x; λ) of order α was introduced by Luo and Srivastava

(see [16,17]). Subsequently, the Apostol-Euler polynomials E(α)
n (x; λ) and the Apostol-Genocchi

polynomials G(α)
n (x; λ) of order α were analogously studied by Luo (see [18–20]; see also [21–27]).

Definition 1. The Apostol-Bernoulli polynomials B(α)
n (x) of order α are defined by(

t
λet − 1

)α

=
∞

∑
n=0

B(α)
n (x; λ)

tn

n!
(32)

( |t|< 2π when λ = 1; |t|< |log λ| when λ 	= 1; 1α := 1)

with
B(α)

n (x) = B(α)
n (x; 1) and B(α)

n (λ) = B(α)
n (0; λ), (33)

where B(α)
n (λ) denotes the Apostol-Bernoulli numbers of order α.

Definition 2. The Apostol-Euler polynomials E(α)
n (x) of order α are defined by(

2
λet + 1

)α

=
∞

∑
n=0

E(α)
n (x; λ)

tn

n!
(34)

(|t|< π when λ = 1; |t| < |log(−λ)| < π when λ 	= 1; 1α := 1)

with
E(α)

n (x) = E(α)
n (x; 1) and E(α)

n (λ) = E(α)
n (0; λ), (35)

where E(α)
n (λ) denotes the Apostol-Euler numbers of order α.

Definition 3. The Apostol-Genocchi polynomials G(α)
n (x) of order α are defined by(

2t
λet + 1

)α

=
∞

∑
n=0

G(α)
n (x; λ)

tn

n!
(36)

(|t|< π when λ = 1; |t| < |log(−λ)| when λ 	= 1; 1α := 1) (37)

with
G(α)

n (x) = G(α)
n (x; 1) and G(α)

n (λ) = G(α)
n (0; λ), (38)

where G(α)
n (λ) denotes the Apostol-Genocchi numbers of order α.

Remark 1. Whenever λ = 1 in (32) and λ = −1 in (36), the order α of the Apostol-Bernoulli polynomials
B(α)

n (x; λ) and the order α of the Apostol-Genocchi polynomials G(α)
n (x; λ) should obviously be constrained to

take on nonnegative integer values (see, for details, [14]). A similar remark would apply also to the order α in all
other analogous situations considered in this paper.

Among other authors, Özden (see [28,29]), Özden et al. ([30]) and Özarslan (see [31,32]) introduced
and studied the unification of the above-defined Apostol-type polynomials. In particular, Özden ([29])
defined the unified polynomials Y(α)

n,β (x; k, a, b) of higher order by
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(
21−ktk

βbet − ab

)α

ext =
∞

∑
n=0

Y(α)
n,β (x; k, a, b)

tn

n!
(39)(

|t| < 2π when β = a; |t| <
∣∣∣∣b log

(
β

a

)∣∣∣∣ when β 	= a; 1α := 1; k ∈ N0; a, b ∈ R \ {0}; α, β ∈ C

)
.

By putting x = 0 in (39), we can readily obtain the corresponding unification Y(α)
n,β (k, a, b) of the

Apostol-type polynomials, which is generated by(
21−ktk

βbet − ab

)α

=
∞

∑
n=0

Y(α)
n,β (k, a, b)

tn

n!
. (40)

In fact, from Equations (32), (34), (36) and (39), we have

Y(α)
n,λ (x; 1, 1, 1) = B(α)

n (x; λ), (41)

Y(α)
n,λ (x; 0, −1, 1) = E(α)

n (x; λ) (42)

and

Y(α)
n,λ

(
x; 1, −1

2
, 1
)
= G(α)

n (x; λ). (43)

Definition 4. For an arbitrary real or complex parameter λ, the number Sk(n, λ) is given by Zhang and Yang
(see [19])

∞

∑
k=0

Sk(n, λ)
tk

k!
=

λe(n+1)t − 1
λet − 1

, (44)

which, for λ = 1, yields
Sk(n, 1) =: Sk(n).

Our main objective in this article is to first appropriately combine the 2-variable
truncated-exponential polynomials and the Apostol-type polynomials by means of operational
techniques. This leads us to the truncated-exponential-based Apostol-type polynomials. By framing
these polynomials within the context of the monomiality principle, we then establish their potentially
useful properties. We also derive some other properties and investigate several implicit summation
formulas for this general family of polynomials by making use of several different analytical techniques
on their generating functions. We choose to point out some relevant connections between the
truncated-exponential polynomials and the Apostol-type polynomials and thereby derive extensions
of several symmetric identities.

2. Two-Variable Truncated-Exponential-Based Apostol-Type Polynomials

We now start with the following theorem arising from the generating functions for
the truncated-exponential-based Apostol-type polynomials (TEATP), which are denoted by

e(r)Y
(α)
n,β (x, y; k, a, b).

Theorem 1. The generating function for the 2-variable truncated-exponential-based Apostol-type polynomials

e(r)Y
(α)
n,β (x, y; k, a, b) is given by

∞

∑
n=0

(
e(r)Y

(α)
n,β (x, y; k, a, b)

) tn

n!
=

(
21−ktk

βbet − ab

)α

ext
(

1
1 − ytr

)
. (45)
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Proof. Replacing x in the left-hand side and the right-hand side of (39) by the multiplicative operator
M̂(r)

e of the 2VTEATP e(r)Y
(α)
n,β (x, y; k, a, b), we have

(
21−ktk

βbet − ab

)α

exp(M̂(r)
e t){1} =

∞

∑
n=0

Y(α)
n,β (M̂(r)

e ; k, a, b)
tn

n!

(
|t| <

∣∣∣∣b log
(

β

a

)∣∣∣∣ ). (46)

Using Equation (25) in the left-hand side and Equation (18) in the right-hand side of Equation (46), we
see that (

21−ktk

βbet − ab

)α ∞

∑
n=0

e(r)n (x, y)
tn

n!
=

∞

∑
n=0

Y(α)
n,β

(
x +

φ
′
(y, ∂x)

φ(y, ∂x)
; k, a, b

)
tn

n!
. (47)

Now, using Equation (16) in the left-hand side and denoting the resulting 2-variable
truncated-exponential-based Apostol-type polynomials (2VTEATP) in the right-hand side by

e(r)Y
(α)
n,β (x, y; k, a, b), we have

e(r)Y
(α)
n,β (x, y; k, a, b) = Y(α)

n,β (M̂(r)
e ; k, a, b) = Y(α)

n,β

(
x +

φ
′
(y, ∂x)

φ(y, ∂x)
; k, a, b

)
, (48)

which yields the assertion (45) of Theorem 1.

Remark 2. Equation (48) gives the operational representation involving the unified Apostol-type polynomials
Y(α)

n,β (x, y; k, a, b) and 2VTEATP e(r)Y
(α)
n,β (x, y; k, a, b).

To frame the 2VTEATP e(r)Y
(α)
n,β (x, y; k, a, b) within the context of monomiality principle, we state

the following result.

Theorem 2. The 2VTEATP e(r)Y
(α)
n,β (x, y; k, a, b) are quasi-monomial with respect to the following multiplicative

and derivative operators:

M̂e(r)Y = x + ry∂yy∂r−1
x +

αk(βbet − ab)− αβb∂xe∂x

∂x(βbet − ab)
(49)

and
P̂e(r)Y = ∂x. (50)

Proof. Let us consider the following expression:

∂x

{
ext 1

1 − ytr } = t{ext 1
1 − ytr

}
. (51)

Differentiating both sides of Equation (45) partially with respect to t, we see that(
x + ry∂yy∂r−1

x +
αk(βbet − ab)− αβbtet

t(βbet − ab)

)(
21−ktk

βbet − ab

)α
ext

1 − ytr

=
∞

∑
n=0

e(r)Y
(α)
n+1,β(x, y; k, a, b)

tn

n!
. (52)

Since
φ(y, t) =

1
1 − ytr
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is an invertible series of t, therefore,
φ

′
(y, ∂x)

φ(y, ∂x)

possesses a power-series expansion in t. Thus, using (51), Equation (52) becomes(
x + ry∂yy∂r−1

x +
αk(βbe∂x − ab)− αβb∂xe∂x

∂x(βbet − ab)

)(
21−ktk

βbet − ab

)α
ext

1 − ytr

=
∞

∑
n=0

e(r)Y
(α)
n+1,β(x, y; k, a, b)

tn

n!
. (53)

Again, by using the generating function (45) in left-hand side of Equation (53) and rearranging the
resulting summation, we have

∞

∑
n=0

(
x + ry∂yy∂r−1

x +
αk(βbe∂x − ab)− αβb∂xe∂x

∂x(βbet − ab)

){
e(r)Y

(α)
n,β (x, y; k, a, b)

} tn

n!

=
∞

∑
n=0

e(r)Y
(α)
n+1,β(x, y; k, a, b)

tn

n!
. (54)

Comparing the coefficients of tn

n! in the Equation (54), we get(
x + ry∂yy∂r−1

x +
αk(βbe∂x − ab)− αβb∂xe∂x

∂x(βbet − ab)

){
e(r)Y

(α)
n,β (x, y; k, a, b)

}
= e(r)Y

(α)
n+1,β(x, y; k, a, b), (55)

which, in view of the monomiality principle exhibited in Equation (20) for e(r)Y
(α)
n,β (x, y; k, a, b), yields

the assertion (49) of Theorem 2.
We now prove the assertion (50) of Theorem 2. For this purpose, we start with the following

identity arising from Equations (45) and (51):

∂x

{
∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!

}
=

∞

∑
n=1

e(r)Y
(α)
n−1,β(x, y; k, a, b)

tn

(n − 1)!
. (56)

Rearranging the summation in the left-hand side of Equation (56), and then equating the coefficients of
the same powers of t in both sides of the resulting equation, we find that

∂x

{
e(r)Y

(α)
n,β (x, y; k, a, b)

}
= e(r)Y

(α)
n−1,β(x, y; k, a, b) (n ∈ N) , (57)

which, in view of the monomiality principle exhibited in Equation (21) for e(r)Y
(α)
n,β (x, y; k, a, b)), yields

the assertion (50) of Theorem 2. Our demonstration of Theorem 2 is thus completed.

We note that the properties of quasi-monomials can be derived by means of the actions of
the multiplicative and derivative operators. We derive the differential equation for the 2VTEATP

e(r)Y
(α)
n,β (x, y; k, a, b) in the following theorem.

Theorem 3. The 2VTEATP e(r)Y
(α)
n,β (x, y; k, a, b) satisfies the following differential equation:(

x∂x + ry∂yy∂r
x +

αk(βbet − ab)− αβb∂xe∂x

(βbet − ab)
− n

){
e(r)Y

(α)
n,β (x, y; k, a, b)

}
= 0, (58)
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Proof. Theorem 3 can be easily proved by combining (49) and (50) with the monomiality principle
exhibited in (22).

Remark 3. When r = 2, the 2VTEP e(r)(x, y) of order r reduces to the 2VTEP [2]en(x, y). Therefore, if we
set r = 2 in Equation (45), we get the following generating function for the 2-variable truncated-exponential
Apostol-type polynomials (2VTEATP) [2]e(r)Y

(α)
n,β (x, y; k, a, b) :

(
21−ktk

βbet − ab

)α

ext
(

1
1 − yt2

)
=

∞

∑
n=0

[2]e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!
. (59)

The series definition and other results for the 2VTEATP [2]e(r)Y
(α)
n,β (x, y; k, a, b) can be obtained by taking r = 2

in Theorems 1 and 2. Table 1 shown the special cases of the 2VTEATP .e(r)Yn(x, y; k, a, b).

Remark 4. For the case y = 1, the polynomials [2]en(x, 1) reduce to the truncated-exponential polynomials

[2]en(x). Therefore, by taking y = 1 in Equation (59), we get the following generating function for the

truncated-exponential Apostol-type polynomials (TEATP) [2]e(r)Y
(α)
n,β (x; k, a, b) :

(
21−ktk

βbet − ab

)α

ext
(

1
1 − t2

)
=

∞

∑
n=0

[2]e(r)Y
(α)
n,β (x; k, a, b)

tn

n!
. (60)

Table 1. Some special cases of the 2VTEATP .e(r)Yn(x, y; k, a, b).

S. No. Values of the Parameter Relation between the Name of the Resultant Generating Functions
2VTEATP e(r)Yn(x, y; k, a, b) Special Polynomials and the Resultant of

and Its Special Case Special Polynomials

I. k = a = b = 1, β = λ e(r)Yn(x, y; 1, 1, λ)=e(r) B
(α)
n (x, y; λ) 2-variable truncated-exponential-based

(
t

λet−1

)α
ext

(
1

1−ytr

)
Apostol-Bernoulli polynomial =

∞
∑

n=0
e(r) B

(α)
n (x, y; λ) tn

n!

II. k + 1 = −a = b = 1, β = λ e(r)Yn(x, y; 0, −1, 1, λ) =e(r) E
(α)
n (x, y; λ) 2-variable truncated-exponential-based

(
2

λet+1

)α
ext

(
1

1−ytr

)
Apostol-Euler polynomial =

∞
∑

n=0
e(r) E

(α)
n (x, y; λ) tn

n!

III. k = −2a = b = 1, 2β = λ e(r)Yn(x, y; 1, − 1
2 , 1, λ)=e(r) G

(α)
n (x, y; λ) 2-variable truncated-exponential-based

(
2t

λet+1

)α
ext

(
1

1−ytr

)
Apostol-Genocchi polynomial =

∞
∑

n=0
e(r) G

(α)
n (x, y; λ) tn

n!

In the case when λ = 1, the results obtained above for the 2VTEABP e(r)B
(α)
n (x, y; λ),

2VTEAEP e(r)E
(α)
n (x, y; λ) and 2VTEAGP e(r)G

(α)
n (x, y; λ) give the corresponding results for the

2-variable truncated-exponential Bernoulli polynomials (2VTEBP) (of order α) e(r)B
(α)
n (x, y), 2-variable

truncated-exponential Euler polynomials (2VTEBP) (of order α) e(r)E
(α)
n (x, y) and 2-variable

truncated-exponential Genocchi polynomials (2VTGBP) (of order α) e(r)G
(α)
n (x, y) [6]. Again for α = 1,

we get the corresponding results for the 2-variable truncated-exponential Bernoulli polynomials
(2VTEBP) e(r)Bn(x, y), 2-variable truncated-exponential Euler polynomials (2VTEEP) e(r)En(x, y) and
2-variable truncated-exponential Genocchi polynomials (2VTEGP) e(r)Gn(x, y).

3. Implicit Formulas Involving the 2-Variable Truncated-Exponential Based
Apostol-Type Polynomials

In this section, we employ the definition of the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) that help in proving the generalizations of the previous

works of Khan et al. [33] and Pathan and Khan (see [34–36]). For the derivation of implicit formulas
involving the 2-variable truncated-exponential-based Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b),

the same considerations as developed for the ordinary Hermite and related polynomials in the works
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by Khan et al. [33] and Pathan et al. (see [34–36]) apply as well. We first prove the following results
involving the 2-variable truncated-exponential-based Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b).

Theorem 4. The following implicit summation formulas for the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) holds true:

e(r)Y
(α)
q+l,β(z, y; k, a, b) =

q

∑
n=0

l

∑
p=0

(
q
n

)(
l
p

)
(z − x)n+p

e(r)Y
(α)
q+l−n−p,β(x, y; k, a, b). (61)

Proof. We replace t by t + u and rewrite (45) as follows:(
21−k(t + u)k

βbet+u − ab

)α (
1

1 − y(t + u)r

)
= e−x(t+u)

∞

∑
q,l=0

e(r)Y
(α)
q+l,β(x, y; k, a, b)

tq

q!
ul

l!
. (62)

Replacing x by z in the Equation (62) and equating the resulting equation to the above equation, we get

e(z−x)(t+u)
∞

∑
q,l=0

e(r)Y
(α)
q+l,β(x, y; k, a, b)

tq

q!
ul

l!
=

∞

∑
q,l=0

e(r)Y
(α)
n,β (z, y; k, a, b)

tq

q!
ul

l!
. (63)

Upon expanding the exponential function (63), we get

∞

∑
N=0

[(z − x)(t + u)]N

N!

∞

∑
q,l=0

e(r)Y
(α)
q+l,β(x, y; k, a, b)

tq

q!
ul

l!
=

∞

∑
q,l=0

e(r)Y
(α)
q+l,β(z, y; k, a, b)

tq

q!
ul

l!
, (64)

which, by appealing to the following series manipulation formula:

∞

∑
N=0

f (N)
(x + y)N

N!
=

∞

∑
m,n=0

f (m + n)
xm

m!
yn

n!
(65)

in the left-hand side of (64), becomes

∞

∑
n,p=0

(z − x)n+ptnup

n! p!

∞

∑
q,l=0

e(r)Y
(α)
q+l,β(x, y; k, a, b)

tq

q!
ul

l!
=

∞

∑
q,l=0

e(r)Y
(α)
q+l,β(z, y; k, a, b)

tq

q!
ul

l!
. (66)

Now, replacing q by q − n and l by l − p, and using a lemma in [37] in the left-hand side of (66), we get

∞

∑
q,l=0

q

∑
n=0

l

∑
p=0

(z − x)n+p

n! p! e(r)Y
(α)
q+l−n−p,β(x, y; k, a, b)

tq

(q − n)!
ul

(l − p)!

=
∞

∑
q,l=0

e(r)Y
(α)
q+l,β(z, y; k, a, b)

tq

q!
ul

l!
. (67)

Finally, on equating the coefficients of the like powers of t and u in the equation (67), we get the
required result (61) asserted by Theorem 4.

If we set
k = a = b = 1 and β = λ

in Theorem 4, we get the following corollary.
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Corollary 1. The following implicit summation formula for the truncated-exponential-based Bernoulli
polynomials e(r)B

(α)
n (x, y; λ) holds true:

e(r)B
(α)
q+l(z, y; λ) =

q

∑
n=0

l

∑
p=0

(
q
n

)(
l
p

)
(z − x)n+p

e(r)B
(α)
q+l−p−n(x, y; λ). (68)

For
k + 1 = −a = b = 1 and β = λ

in Theorem 4, we get the following corollary.

Corollary 2. The following implicit summation formula for the truncated-exponential-based Euler polynomials

e(r)E
(α)
n (x, y; λ) holds true:

e(r)E
(α)
q+l(z, y; λ) =

q

∑
n=0

l

∑
p=0

(
q
n

)(
l
p

)
(z − x)n+p

e(r)E
(α)
q+l−p−n(x, y; λ). (69)

Letting
k = −2a = b = 1 and 2β = λ

in Theorem 4, we get the following corollary.

Corollary 3. The following implicit summation formulas for the truncated-exponential-based Genocchi
polynomials e(r)G

(α)
n (x, y; λ) holds true:

e(r)G
(α)
q+l(z, y; λ) =

q

∑
n=0

l

∑
p=0

(
q
n

)(
l
p

)
(z − x)n+p

e(r)G
(α)
q+l−p−n(x, y; λ). (70)

Theorem 5. The following implicit summation formula involving the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) holds true:

e(r)Y
(α)
n,β (x, y; k, a, b) =

n

∑
s=0

(
n
s

)
Y(α)

n−s,β(k, a, b)e(r)s (x, y). (71)

Proof. By the definition (45), we have(
21−ktk

βbet − ab

)α

ext
(

1
1 − ytr

)
=

∞

∑
n=0

Y(α)
n,β (k, a, b)

tn

n!

∞

∑
s=0

e(r)s (x, y)
ts

s!
. (72)

Now, replacing n by n − s in the right-hand side of the Equation (72) and comparing the coefficients of
t, we get the result (71) asserted by Theorem 5.

If we set
k = a = b = 1 and β = λ

in Theorem 5, we get the following corollary.

Corollary 4. The following implicit summation formula for the 2-variable truncated-exponential-based
Bernoulli polynomials e(r)B

(α)
n (x, y; λ) holds true:

e(r)B
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
B(α)

n−s(λ)e
(r)
s (x, y). (73)
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For
k + 1 = −a = b = 1 and β = λ

in Theorem 5, we get the following corollary.

Corollary 5. The following implicit summation formula for the 2-variable truncated-exponential-based Euler
polynomials e(r)E

(α)
n (x, y; λ) holds true:

e(r)E
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
E(α)

n−s(λ)e
(r)
s (x, y). (74)

Letting
k = −2a = b = 1 and 2β = λ

in Theorem 5, we get the following corollary.

Corollary 6. The following implicit summation formula for the 2-variable truncated-exponential-based Genocchi
polynomials e(r)G

(α)
n (x, y; λ) holds true:

e(r)G
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
G(α)

n−s(λ)e
(r)
s (x, y). (75)

Theorem 6. The following implicit summation formula involving the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) holds true:

e(r)Y
(α)
n,β (x + z, y; k, a, b) =

n

∑
s=0

(
n
s

)
e(r)Y

(α)
n−s,β(x, y; k, a, b)zs. (76)

Proof. We first replace x by x + z in (45). Then, by using (16), we rewrite the generating function (45)
as follows: (

21−ktk

βbet − ab

)α

e(x+z)t
(

1
1 − ytr

)
=

∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!

∞

∑
s=0

(zt)s

s!

=
∞

∑
n=0

e(r)Y
(α)
n,β (x + z, y; k, a, b)

tn

n!
. (77)

Furthermore, upon replacing n by n − s in l.h.s and comparing the coefficients of tn, we complete the
proof of Theorem 6.

For
k = a = b = 1 and β = λ

in Theorem 6, we get the following corollary.

Corollary 7. The following implicit summation formula for the 2-variable truncated-exponential-based
Bernoulli polynomials e(r)B

(α)
n (x, y; λ) holds true:

e(r)B
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
e(r)B

(α)
n−s(x, y; λ)Hs(z, u). (78)

Upon setting
k + 1 = −a = b = 1 and β = λ

in Theorem 6, we get the following corollary.
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Corollary 8. The following implicit summation formula for the 2-variable truncated-exponential-based Euler
polynomials e(r)E

(α)
n (x, y; λ) holds true:

e(r)E
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
e(r)E

(α)
n−s(x, y; λ)Hs(z, u). (79)

Letting
k = −2a = b = 1 and 2β = λ

in Theorem 6, we get the following corollary.

Corollary 9. The following implicit summation formula for the 2-variable truncated-exponential-based Genocchi
polynomials e(r)G

(α)
n (x, y; λ) holds true:

e(r)G
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
e(r)G

(α)
n−s(x, y; λ)Hs(z, u). (80)

Theorem 7. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) holds true:

e(r)Y
(α)
n,β (x, y; k, a, b) =

n

∑
r=0

(
n
r

)
Y(α)

n−r,β(x − z; k, a, b)e(r)(z, y). (81)

Proof. Let us rewrite Equation (45) as follows:(
21−ktk

βbet − ab

)α

e(x−z+z)t
(

1
1 − ytr

)
=

∞

∑
n=0

Y(α)
n,β (x − z; k, a, b)

tn

n!

∞

∑
r=0

e(r)(z, y)
tr

r!
. (82)

Replacing n by n − r and using (45), and then equating the coefficients of the of tn, we complete the
proof of Theorem 7.

For
k = a = b = 1 and β = λ

in Theorem 7, we get the following corollary.

Corollary 10. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type Bernoulli polynomials e(r)B

(α)
n (x, y; λ) holds true:

e(r)B
(α)
n (x, y; λ) =

n

∑
r=0

(
n
r

)
B(α)

n−r(x − z; λ)e(r)(z, y). (83)

Letting
k + 1 = −a = b = 1 and β = λ

in Theorem 7, we get the following corollary.

Corollary 11. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type Euler polynomials e(r)E

(α)
n (x, y; λ) holds true:

e(r)E
(α)
n (x, y; λ) =

n

∑
r=0

(
n
r

)
E(α)

n−r(x − z; λ)e(r)(z, y). (84)
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If we set
k = −2a = b = 1 and 2β = λ

in Theorem 7, we get the following corollary.

Corollary 12. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type Genocchi polynomials e(r)G

(α)
n (x, y; λ) holds true:

e(r)G
(α)
n (x, y; λ) =

n

∑
r=0

(
n
r

)
G(α)

n−r(x − z; λ)e(r)(z, y). (85)

Theorem 8. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) holds true:

e(r)Y
(α)
n,β (x + 1, y; k, a, b) =

n

∑
m=0

(
n
m

)
e(r)Y

(α)
n−m,β(x, y; k, a, b). (86)

Proof. Using the generating function (45), we find that

∞

∑
n=0

(
e(r)Y

(α)
n,β (x + 1, y; k, a, b)− e(r)Y

(α)
n,β (x, y; k, a, b)

) tn

n!

=

(
21−ktk

βbet − ab

)α (
1

1 − ytr

)
(et − 1)

=
∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!

(
∞

∑
r=0

tm

m!
− 1

)

=
∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!

∞

∑
r=0

tm

m!
−

∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!

=
∞

∑
n=0

[
n

∑
r=0

(
n
r

)
e(r)Y

(α)
n−m,β(x, y; k, a, b)− e(r)Y

(α)
n,β (x, y; k, a, b)

]
tn

n!
.

which, upon equating the coefficients of tn, yields the assertion (86) of Theorem 8.

Remark 5. Several corollaries and consequences of Theorem 11 can be deduced by using many of the
aforementioned specializations of the various parameters involved in Theorem 8.

4. General Symmetry Identities

In this section, we give general symmetry identities for the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) by applying the generating functions (39) and (45).

The results extend some known identities of Özarslan (see [31,32]), Khan [38], and Pathan and Khan
(see [34–36]).

Theorem 9. Let α, k ∈ N0, a, b ∈ R \ {0}, β ∈ C, x, y ∈ R and n ∈ N0. Then the following symmetry
identity holds true:

n

∑
m=0

(
n
m

)
dmcn−m

e(r)Y
(α)
n−m,β(dx, dry; k, a, b) e(r)Y

(α)
m,β(cX, crY; k, a, b)

=
n

∑
m=0

(
n
m

)
cmdn−m

e(r)Y
(α)
n−m,β(cx, cry; k, a, b)e(r)Y

(α)
m,β(dX, drY; k, a, b). (87)
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Proof. Let us first consider the following expression:

g(t) =

(
ckdk22(1−k)t2k

(βbect − ab)(βbedt − ab)

)α

ecdxt
(

1
1 − y(cdt)r

)
ecdXt

(
1

1 − Y(cdt)r

)
,

which shows that the function g(t) is symmetric in the parameters a and b. Then, by expanding g(t)
into series in two different ways, we get

g(t) =
∞

∑
n=0

e(r)Y
(α)
n,β (dx, dry; k, a, b)

(ct)n

n!

∞

∑
m=0

e(r)Y
(α)
m,β(cX, crY; k, a, b)

(dt)m

m!

=
∞

∑
n=0

n

∑
m=0

(
n
m

)
dmcn−m

e(r)Y
(α)
n−m,β(dx, dry; k, a, b) e(r)Y

(α)
m,β(cX, crY; k, a, b)tn (88)

and

g(t) =
∞

∑
n=0

e(r)Y
(α)
n,β (cx, cry; k, a, b)

(dt)n

n!

∞

∑
m=0

e(r)Y
(α)
m,β(dX, drY; k, a, b)

(ct)m

m!

=
∞

∑
n=0

n

∑
m=0

(
n
m

)
cmdn−m

e(r)Y
(α)
n−m,β(cx, cry; k, a, b) e(r)Y

(α)
m,β(dX, drY; k, a, b)tn. (89)

Comparing the coefficients of tn on the right-hand sides of Equations (88) and (89), we arrive at the
desired result (87).

For
k = a = b = 1 and β = λ

in Theorem 9, we get the following corollary.

Corollary 13. For all c, d, r ∈ N, n ∈ N0 and λ ∈ C, the following symmetry identity for the 2-variable
truncated-exponential-based Apostol-type Bernoulli polynomials holds true:

n

∑
m=0

(
n
m

)
dmcn−m

e(r)B
(α)
n−m(dx, dry; λ) e(r)B

(α)
m (cX, crY; λ)

=
n

∑
m=0

(
n
m

)
cmdn−m

e(r)B
(α)
n−m(cx, cry; λ) e(r)B

(α)
m (dX, drY; λ). (90)

Putting
k + 1 = −a = b = 1 and β = λ

in Theorem 9, we get the following corollary.

Corollary 14. For all r ∈ N, n ∈ N0 and λ ∈ C, the following symmetry identity for the 2-variable
truncated-exponential-based Apostol-type Euler polynomials holds true:

n

∑
m=0

(
n
m

)
dmcn−m

e(r)E
(α)
n−m(dx, dry; λ) e(r)E

(α)
m (cX, crY; λ)

=
n

∑
m=0

(
n
m

)
cmdn−m

e(r)E
(α)
n−m(cx, cry; λ) e(r)E

(α)
m (dX, drY; λ). (91)

If we set
k = −2a = b = 1 and 2β = λ

in Theorem 9, we get the following corollary.
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Corollary 15. For all r ∈ N, n ∈ N0 and λ ∈ C, the following symmetry identity for the 2-variable
truncated-exponential-based Apostol-type Genocchi polynomials holds true:

n

∑
m=0

(
n
m

)
dmcn−m

e(r)G
(α)
n−m(dx, dry; λ) e(r)G

(α)
m (cX, crY; λ)

=
n

∑
m=0

(
n
m

)
cmdn−m

e(r)G
(α)
n−m(cx, cry; λ) e(r)G

(α)
m (dX, drY; λ). (92)

Theorem 10. Let α, k ∈ N0, a, b ∈ R \ {0}, β ∈ C, x, y ∈ R and n ∈ N0. Then the following symmetry
identity holds true:

n

∑
m=0

(
n
m

) c−1

∑
i=0

d−1

∑
j=0

cn−mdm
e(r)Y

(α)
n−m,β

(
dx +

d
c

i + j, dry; k, a, b
)

e(r)Y
(α)
m,β(cX, crY; k, a, b)

=
n

∑
m=0

(
n
m

) d−1

∑
i=0

c−1

∑
j=0

dn−mcm
e(r)Y

(α)
n−m,β

(
cx +

c
d

i + j, cry; k, a, b
)

e(r)Y
(α)
m,β(dX, drY; k, a, b). (93)

Proof. Let us first consider the following application:

g(t) =

(
ckdk22(1−k)t2k

(βbect − ab)(βbedt − ab)

)α

ecdxt
(

1
1 − y(cdt)r

)
(ecdt − 1)2

(ect − 1)(edt − 1)
ecdXt

(
1

1 − Y(cdt)r

)

=

(
2(1−k)cktk

βbect − ab

)α

ecdxt
(

1
1 − y(cdt)r

)(
ecdt − 1
ect − 1

)(
2(1−k)dktk

βbedt − ab

)α

· ecdXt
(

1
1 − Y(cdt)r

)(
1

ecdt − 1
edt − 1

)
=

(
2(1−k)cktk

(βbect − ab

)α

ecdxt
(

1
1 − y(cdt)r

) c−1

∑
i=0

edti

(
2(1−k)dktk

βbedt − ab

)α

· ecdXt
(

1
1 − Y(cdt)r

)
ecdyt

d−1

∑
j=0

ectj

=
∞

∑
n=0

[
n

∑
m=0

(
n
m

) c−1

∑
i=0

d−1

∑
j=0

cn−mdm
e(r)

· Y(α)
n−m,β

(
dx +

d
c

i + j, dry; k, a, b
)

e(r)Y
(α)
m,β(cX, crY; k, a, b)

]
tn. (94)

On the other hand, we have

g(t) =
∞

∑
n=0

(
n

∑
m=0

(
n
m

) d−1

∑
i=0

c−1

∑
j=0

dn−mcm

· e(r)Y
(α)
n−m,β

(
cx +

c
d

i + j, cry; k, a, b
)

e(r)Y
(α)
m,β(dX, drY; k, a, b)

)
tn. (95)

By comparing the coefficients of tn on the right-hand sides of (94) and (95), we arrive at the desired
result (93) asserted by Theorem 10.

Remark 6. Several corollaries and consequences of Theorem 11 can be derived by making use of many of the
aforementioned specializations of the various parameters involved in Theorem 10.
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Theorem 11. For each pair of integers a and b and all integers n ∈ N0, the following identity holds true:

n

∑
m=0

(
n
m

) c−1

∑
i=0

d−1

∑
j=0

cn−mdm
e(r)Y

(α)
n−m,β

(
dx +

d
c

i, dry; k, a, b
)

e(r)Y
(α)
m,β(cX +

c
d

j, crY; k, a, b)

=
n

∑
m=0

(
n
m

) d−1

∑
i=0

c−1

∑
j=0

dn−mcm
e(r)Y

(α)
n−m,β

(
cx +

c
d

i, cry; k, a, b
)

· e(r)Y
(α)
m,β(dX +

d
c

j, drY; k, a, b). (96)

Proof. The proof of Theorem 11 is analogous to that of Theorem 10, so we omit the details involved in
the proof of Theorem 11.

Remark 7. Several corollaries and consequences of Theorem 11 can be derived by applying many of the
aforementioned specializations of the various parameters involved in Theorem 11.

We conclude our present investigation by proving the following symmetric identity involving the
number Sk(n, λ), which is defined by (44).

Theorem 12. For all positive integers a and b, and for n ∈ N0, the following symmetric identity holds true:

n

∑
m=0

(
n
m

)
cn−mdm

e(r)Y
(α)
n−m,β (dx, dry; k, a, b)

m

∑
i=0

(
m
i

)
Si

(
c − 1;

(
β

a

)b
)

e(r)Y
(α)
m−i,β(cX, crY; k, a, b)

=
n

∑
m=0

(
n
m

)
cmdn−m

e(r)Y
(α)
n−m,β (cx, cry; k, a, b)

m

∑
i=0

(
m
i

)
Si

(
d − 1;

(
β

a

)b
)

· e(r)Y
(α)
m−i,β(dX, drY; k, a, b). (97)

Proof. We first consider the function g(t) given by

g(t) =
(22(1−k)ckdkt2k)α(βbecdt − ab)

(βbect − ab)α(βbedt − ab)α+1 ecdxt
(

1
1 − y(cdt)r

)
ecdXt

(
1

1 − Y(cdt)r

)
=

(
2(1−k)cktk

βbect − ab

)α

ecdxt
(

1
1 − y(cdt)r

)(
βbecdt − ab

βbedt − ab

)(
2(1−k)dktk

βbedt − ab

)α

ecdXt
(

1
1 − Y(cdt)r

)

=

(
∞

∑
n=0

e(r)Y
(α)
n,β (dx, dry; k, a, b)

(ct)n

n!

)[
∞

∑
n=0

Sn

(
c − 1;

(
β

a

)b
)

(dt)n

n!

]

·
(

∞

∑
n=0

e(r)Y
(α)
n,β (cX, crY; k, a, b)

(dt)n

n!

)
.

Using similar arguments as above, we get

g(t) =

(
∞

∑
n=0

e(r)Y
(α)
n,β (cx, cry; k, a, b)

(dt)n

n!

)[
∞

∑
n=0

Sn

(
d − 1;

(
β

a

)b
)

(ct)n

n!

]

·
(

∞

∑
n=0

e(r)Y
(α)
n,β (dX, drY; k, a, b)

(ct)n

n!

)
. (98)

Finally, after a suitable manipulation with the summation index in (98) followed by a comparison
of the coefficients of tn, the proof of Theorem 12 is completed.
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5. Conclusions

Özden ([29]) defined the unified polynomials Y(α)
n,β (x; k, a, b) of order α by means of the following

generating function (see also Remark 1 above):

(
21−ktk

βbet − ab

)α

ext =
∞

∑
n=0

Y(α)
n,β (x; k, a, b)

tn

n!(
|t| < 2π when β = a; |t| <

∣∣∣∣b log(
β

a
)

∣∣∣∣ when β 	= a; 1α := 1; k ∈ N0; a, b ∈ R \ {0}; α, β ∈ C

)
.

Basing our investigation upon this generating function, we have introduced generating function for
the 2-variable truncated-exponential-based Apostol-type polynomials denoted by e(r)Y

(α)
n,β (x, y; k, a, b)

as follows:
∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!
=

(
21−ktk

βbet − ab

)α

ext
(

1
1 − ytr

)
,

which we have found to be instrumental in deriving quasi-monomiality with respect to the following
multiplicative and derivative operators:

M̂e(r)Y = x + ry∂yy∂r−1
x +

αk(βbet − ab)− αβb∂xe∂x

∂x(βbet − ab)

and
P̂e(r)Y = ∂x.

We have also presented a further investigation to obtain some implicit summation formulas and
symmetric identities by means of their generating functions.

In our next investigation, we propose to study an appropriate combination of the operational
approach with that involving integral transforms with a view to studying integral representations
related to the truncated-exponential-based Apostol-type polynomials which we have introduced and
studied in this article.
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1. Introduction

We denote by A the class of functions f that are analytic in the open unit disc D = {z : |z| < 1}
and of the form:

f (z) = z +
∞

∑
n=2

anzn. (1)

Let S denote the class of all functions in A, which are univalent in D. Let S∗ (α),
∼
S∗ (α) and

∼
C (α)

denote the classes of starlike, strongly starlike and strongly convex functions of order α, respectively,
and defined as:

S∗ (α) =

{
f : f ∈ A and �

(
z f ′ (z)

f (z)

)
> α, z ∈ U , α ∈ [0, 1)

}
,

∼
S∗ (α) =

{
f : f ∈ A and

∣∣∣∣arg
(

z f ′ (z)
f (z)

)∣∣∣∣ < απ

2
, z ∈ U , α ∈ [0, 1)

}
,

and:
∼
C (α) =

{
f : f ∈ A and

∣∣∣∣arg
(

1 +
z f ′′ (z)
f ′ (z)

)∣∣∣∣ < απ

2
, z ∈ U , α ∈ [0, 1)

}
.
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It is clear that: ∼
S∗ (1) = S∗ (0) = S∗,

∼
C (1) = C (0) = C.

The class UCV of uniformly convex functions is defined as:

UCV =

{
f ∈ A : �

(
1 +

z f ′′ (z)
f ′ (z)

)
>

∣∣∣∣ z f ′′ (z)
f ′ (z)

∣∣∣∣ , z ∈ D
}

.

For more detail, see [1]. If f and g are analytic functions, then the function f is said to be
subordinate to g, written as f (z) ≺ g(z), if there exists a Schwarz function w with w(0) = 0 and
|w| < 1 such that f (z) = g(w(z)). Furthermore, if the function g is univalent in U , then we have the
following equivalent relation:

f (z) ≺ g(z) ⇐⇒ f (0) = g(0) and f (U ) ⊂ g(U ).

Now, we consider the second order inhomogeneous differential equation:

z2w′′ (z) + zw′ (z) +
(

z2 − L2
)

w (z) =
4
( z

2
)L+1

√
πΓ

(
L + 1

2

) . (2)

The solution of the homogeneous part is Bessel functions of order L, where L is a real or complex
number. For more details about Bessel functions, we refer to [2–8]. The particular solution of the
inhomogeneous equation defined in Equation (2) is called the Struve function of order L; see [9]. It is
defined as:

XL (z) =
∞

∑
n=0

(−1)n (z/2)2n+L+1

Γ (n + 3/2) Γ (L + n + 3/2)
. (3)

Now, we consider the differential equation:

z2w′′ (z) + zw′ (z)−
(

z2 + L2
)

w (z) =
4
( z

2
)L+1

√
πΓ

(
L + 1

2

) . (4)

The Equation (4) differs from the Equation (2) in the coefficients of w. Its particular solution is
called the modified Struve functions of order L and is given as:

YL (z) = −ie−ipπ/2XL (iz) =
∞

∑
n=0

( z
2
)2n+L+1

Γ (n + 3/2) Γ
(

L + n + 3
2
) .

Again, consider the second order inhomogeneous differential equation:

z2w′′ (z) + bzw′ (z) +
[
cz2 − L2 + (1 − b) L

]
w (z) =

4
( z

2
)L+1

√
πΓ

(
L + b

2

) , (5)

where b, c, L ∈ C. The Equation (5) generalizes the Equations (2) and (4). In particular, for b = 1,
c = 1, we obtain Equation (2), and for b = 1, c = −1, we obtain Equation (4). Its particular solution
has the series form:

wL,b,c (z) =
∞

∑
n=0

(−1)n cn (z/2)2n+L+1

Γ (n + 3/2) Γ (L + n + (b + 2) /2)
(6)
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and is called the generalized Struve function of order L. This series is convergent everywhere. We take
the transformation:

uL,b,c (z) = 2L√πΓ (L + (b + 2) /2) z(−L−1)/2wL,b,c
(√

z
)
=

∞

∑
n=0

(−c/4)n zn

(3/2)n (q)n
, (7)

where q = L+(b + 2) /2 	= 0, −1, −2, . . . and (γ)n = Γ(γ+n)
Γ(γ) = γ (γ + 1) . . . (γ + n − 1) . This function

is analytic in the whole complex plane and satisfies the differential equation:

4z2w′′ (z) + 2 (2p + b + 3) zw′ (z) + [cz + 2p + b]w (z) = 2p + b,

where Γ (.) denotes the Gamma function. The function uL,b,c unifies the Struve functions and modified
Struve functions. The function uL,b,c is not in the class A of analytic functions; therefore, we consider
the following normalized form of the Struve function as:

vL,b,c (z) = zuL,b,c = z +
∞

∑
n=1

(−c/4)n zn+1

(3/2)n (q)n
. (8)

Special cases:

(i) For b = 1, c = 1, we have the normalized Struve function XL : A → A of order L. It is given as:

XL (z) = 2L√πΓ
(

L +
3
2

)
z
(−L+1)

2 XL
(√

z
)

= z +
∞

∑
n=1

(−1/4)n zn+1

(3/2)n (q)n
. (9)

(ii) For b = 1, c = −1, we have the normalized Struve function YL : A → A of order L. It is given
as:

YL (z) = 2L√πΓ
(

L +
3
2

)
z
(−L+1)

2 YL
(√

z
)

= z +
∞

∑
n=1

(1/4)n zn+1

(3/2)n (q)n
. (10)

The functions uL,b,c and vL,b,c were introduced and studied by Orhan and Yugmur [10] and
further investigated by other authors [11–13]. In the last few years, many mathematicians have set the
univalence criteria of several of those integral operators that preserve the class S . By using a variety
of different analytic techniques, operators and special functions, several authors have studied the
univalence criterion. Recently Din et al. [14] studied the univalence of integral operators involving
generalized Struve functions. These operators are defined as follows:

Fα1,...,αn ,β(z) =

⎡⎣β

z∫
0

tβ−1
n

∏
i=1

(
vLi ,b,c(t)

t

) 1
αi

dt

⎤⎦ 1
β

, (11)

Mn,γ(z) =

⎡⎣(nγ + 1)
z∫

0

n

∏
i=1

{
vLi ,b,c(t)

}γ dt

⎤⎦
1

nγ+1

, (12)
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and:

Zλ (z) =

⎡⎣λ

z∫
0

tλ−1
(

evLi ,b,c(t)
)λ

dt

⎤⎦1/λ

. (13)

Now, we introduce the following integral operators HLi,b,c,γ1,..,γn ,β, ILi,b,c,γ1,...,γn ,δ,β : A → A involving
the generalized Struve functions as:

HLi ,b,c,γi ,β (z) =

⎧⎨⎩β

z∫
0

tβ−1
n

∏
i=1

(
vLi ,b,c (t)

gi (t)

)γi

dt

⎫⎬⎭
1
β

, (14)

ILi,b,c,γi ,δi ,β (z) =

⎧⎨⎩β

z∫
0

tβ−1
n

∏
i=1

(
v′

Li ,b,c (t)

t

)γi (
g′

i (t)
)δi dt

⎫⎬⎭
1
β

, (15)

where γi, δi, β are nonzero complex numbers, Li ∈ R for all i = 1, 2, · · · , n and gi ∈ A.
In this paper, our aim is to study certain geometric properties like the strong starlikeness and

strong convexity of the Struve functions and univalence for the integral operators HLi ,b,c,γi ,β and
ILi ,b,c,γi ,δi ,β associated with the generalized Struve functions. The starlikeness and uniform convexity
of the said integral operators are also part of this research.

2. Preliminary Results

We need the following lemmas to prove our main results.

Lemma 1 ([15]). Let G(z) be convex and univalent in the open unit disc with condition G(0) = 1. Let F(z) be
analytic in the open unit disc with condition F(0) = 1 and F ≺ G in the open unit disc. Then, ∀ n ∈ N∪ {0},
we obtain:

(n + 1)z−1−n
z∫

0

tnF(t)dt ≺ (n + 1)z−1−n
z∫

0

tnG(t)dt.

Lemma 2 ([16]). If g ∈ A satisfies: ∣∣∣∣1 + zg′′ (z)
g′ (z)

∣∣∣∣ < 2, then g ∈ S∗.

Lemma 3 ([17]). If g ∈ A satisfies: ∣∣∣∣ zg′′ (z)
g′ (z)

∣∣∣∣ < 1
2

, then g ∈ UCV .

Lemma 4 ([10]). If b, L ∈ R and c ∈ C, q = L + b+2
2 are so constrained that q > max

{
0, 7|c|

24

}
, then the

function vL,b,c : D −→ C satisfies the following inequalities.

(i)
∣∣∣∣ zv′

L,b,c(z)
vL,b,c(z)

− 1
∣∣∣∣ ≤ |c|(6q−|c|)

3(4q−|c|)(3q−|c|) ,

(ii)
∣∣∣∣ zv′′

L,b,c(z)
v′

L,b,c(z)

∣∣∣∣ ≤ 6|c|
(12q−7|c|) .

Lemma 5 ([18]). If g ∈ A satisfies the following inequality:

1 − |z|2�(α)

� (α)

∣∣∣∣ zg′′ (z)
g′ (z)

∣∣∣∣ ≤ 1, � (α) > 0,
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then for every complex number β, �β ≥ � (α) , the function:

Gβ (z) =

⎛⎝β

z∫
0

tβ−1g′ (t) dt

⎞⎠ 1
β

∈ S .

Lemma 6 ([19]). Let g (z) = z + a2z2 + · · · be the analytic function in D. If:∣∣∣∣ g′′ (z)
g′ (z)

∣∣∣∣ ≤ K, z ∈ D,

where K � 3.05, then g is univalent in D.

Remark 1. The constant K is the solution of the equation 8
[

x (x − 2)3
] 1

2 − 3 (4 − x)2 = 12.
An approximation by using the computer programs suggest the value 3.03902118847875. Kudriasov used the
approximated value equal to 3.05.

3. Geometric Properties of Generalized Struve Functions

Theorem 1. If q ≥ 7|c|
12 , then vL,b,c ∈

∼
S∗ (α) , where:

α =
2
π

arcsin

(
ψ

√
1 − ψ2

4
+

ψ

2

√
1 − ψ2

)
(16)

and ψ = 4|c|
3(4q−|c|) is such that arcsin ψ

2 + arcsin ψ ∈
[
−π

2 , π
2
]
.

Proof. By using Equation (8) with the triangle inequality, we have:

∣∣∣v′
L,b,c (z)− 1

∣∣∣ ≤ ∞

∑
n=1

|c|n (n + 1)
(3/2)n 4n (q)n

By the help of the inequalities:

(3/2)n ≥ 3
4
(n + 1) , (q)n ≥ qn, ∀ n ≥ 1,

we obtain: ∣∣∣v′
L,b,c (z)− 1

∣∣∣ ≤ |c|
3q

∞

∑
n=1

( |c|
4q

)n−1

=
4 |c|

3 (4q − |c|) = ψ, q >
|c|
4

. (17)

For q ≥ 7|c|
12 , it is clear that 0 < ψ ≤ 1. Furthermore, from expression (17) , we concluded that:

v′
L,b,c (z) ≺ 1 + ψz ⇒

∣∣∣arg
(

v′
L,b,c (z)

)∣∣∣ < arcsin ψ. (18)

With the help of Lemma 1, take n = 0 with F(z) = v′
L,b,c(z) and G(z) = 1 + ψz, and we get:

vL,b,c (z)
z

≺ 1 +
ψ

2
z. (19)
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As a result: ∣∣∣∣arg
(

vL,b,c(z)
z

)∣∣∣∣ < arcsin
ψ

2
. (20)

By using relations (18) and (19) , we obtain:∣∣∣∣∣arg

(
zv′

L,b,c (z)
vL,b,c (z)

)∣∣∣∣∣ =

∣∣∣∣arg
(

z
vL,b,c (z)

)
− arg

(
v′

L,b,c (z)
)∣∣∣∣

≤
∣∣∣∣arg

(
z

vL,b,c (z)

)∣∣∣∣+ ∣∣∣arg
(

v′
L,b,c (z)

)∣∣∣
< arcsin

ψ

2
+ arcsin ψ.

As 0 < ψ ≤ 1, thus one can write the above last expression as:∣∣∣∣∣arg

(
zv′

L,b,c (z)
vL,b,c (z)

)∣∣∣∣∣ < arcsin

(
ψ

√
1 − ψ2

4
+

ψ

2

√
1 − ψ2

)
,

which shows that vL,b,c ∈
∼
S∗ (α) for α = 2

π arcsin
(

ψ

√
1 − ψ2

4 + ψ
2

√
1 − ψ2

)
.

Theorem 2. If q ≥ 4|c|
3 , then vL,b,c ∈

∼
C (α) , where:

α =
2
π

arcsin

(
ϕ

√
1 − ϕ2

4
+

ϕ

2

√
1 − ϕ2

)
, (21)

and ϕ = 2|c|
3q−2|c| is such that arcsin ϕ

2 + arcsin ϕ ∈
[
−π

2 , π
2
]
.

Proof. By using the well-known triangle inequality:

|z1 + z2| ≤ |z1|+ |z2| ,

with the inequalities:
(n + 1)2 ≤ 4n, (q)n ≥ qn ∀ n ∈ N,

we obtain: ∣∣∣∣(zv′
L,b,c(z)

)′
− 1

∣∣∣∣ ≤ ∞

∑
n=1

|c|n (n + 1)2

(3/2)n 4n (q)n

≤ 2 |c|
3q

∞

∑
n=1

(
2 |c|
3q

)n−1

=
2 |c|

3q − 2 |c| = ϕ. (22)

It is clear that 0 < ϕ ≤ 1 for q ≥ 4|c|
3 , and from the expression (22), we conclude that:

(
zv′

L,b,c(z)
)′

≺ 1 + ϕz ⇒
∣∣∣∣arg

(
zv′

L,b,c(z)
)′∣∣∣∣ < arcsin ϕ. (23)

With the help of Lemma 1, take n = 0 with F(z) =
(

zv′
L,b,c(z)

)′
and G(z) = 1 + ϕz, and we get:

zv′
L,b,c(z)

z
≺ 1 +

ϕ

2
z. (24)
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This implies that:

v′
L,b,c(z) ≺ 1 +

ϕ

2
z.

As a result: ∣∣∣arg v′
L,b,c(z)

∣∣∣ < arcsin
ϕ

2
. (25)

By using relations (23) and (25), we obtain:∣∣∣∣∣∣∣arg

⎛⎜⎝
(

zv′
L,b,c(z)

)′

v′
L,b,c(z)

⎞⎟⎠
∣∣∣∣∣∣∣ =

∣∣∣∣arg
(

zv′
L,b,c(z)

)′
− arg v′

L,b,c(z)
∣∣∣∣

≤
∣∣∣∣arg

(
zv′

L,b,c(z)
)′∣∣∣∣+ ∣∣∣arg

(
v′

L,b,c(z)
)∣∣∣

< arcsin
ϕ

2
+ arcsin ϕ.

As 0 < ϕ ≤ 1, thus one can write the above last expression as:∣∣∣∣∣∣∣arg

⎛⎜⎝
(

zv′
L,b,c(z)

)′

v′
L,b,c(z)

⎞⎟⎠
∣∣∣∣∣∣∣ < arcsin

(
ϕ

√
1 − ϕ2

4
+

ϕ

2

√
1 − ϕ2

)
,

which shows that vL,b,c ∈
∼
C (α) for α = 2

π arcsin
(

ϕ

√
1 − ϕ2

4 + ϕ
2

√
1 − ϕ2

)
.

Theorem 3. Let q > 19|c|
12 , then vL,b,c ∈ UCV .

Proof. Since: ∣∣∣∣∣ zv′′
L,b,c (z)

v′
L,b,c (z)

∣∣∣∣∣ ≤ 6 |c|
(12q − 7 |c|) .

By using Lemma 3, we have the required result.

4. Univalence Criteria for Integral Operators

In this section, we find the univalence of these integral operators defined by generalized Struve
functions, by using the above lemmas.

Theorem 4. Let L1, . . . , Ln, b ∈ R, c ∈ C and qi >
7|c|
24 with qi = Li +

b+2
2 , i = 1, ..., n. Let vLi ,b,c : D −→ C

be defined in the Equation (8). Suppose q = min (q1, q2, . . . , qn), γi are non-zero complex numbers and if
gi ∈ A with: ∣∣∣∣ g′′

i (z)
g′

i (z)

∣∣∣∣ ≤ K, z ∈ D,

where K � 3.05, these numbers satisfying the relations:

1
� (α)

(
1 +

|c| (6q − |c|)
3 (4q − |c|) (3q − |c|)

) n

∑
i=1

|γi|+
4

� (α)

n

∑
i=1

|γi| < 1, (26)

when 0 < � (α) < 1 and for � (α) ≥ 1:

1
� (α)

(
1 +

|c| (6q − |c|)
3 (4q − |c|) (3q − |c|)

) n

∑
i=1

|γi|+ 4
n

∑
i=1

|γi| < 1, (27)

then for every complex number β, � (β) ≥ � (α) > 0, the function HLi ,b,c,γi ,β defined in (14) is univalent.
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Proof. Consider the function:

HLi ,b,c,γi (z) =
z∫
0

n

∏
i=1

(
vLi ,b,c (t)

gi (t)

)γi

dt. (28)

By taking the derivative of Equation (28), we get:

H′
Li ,b,c,γi

(z) =
n

∏
i=1

(
vLi ,b,c (z)

gi (z)

)γi

. (29)

It is clear that HLi ,b,c,γi (0) = H′
Li ,b,c,γi

(0)− 1 = 0. It follows easily that:

zH′′
Li ,b,c,γi

(z)

H′
Li ,b,c,γi

(z)
=

n

∑
i=1

γi

{(
zv′

Li ,b,c (z)

vLi ,b,c (z)

)
−
(

zg′
i (z)

gi (z)

)}

and:

1 − |z|2�(α)

� (α)

∣∣∣∣∣ zH′′
Li ,b,c,γi

(z)

H′
Li ,b,c,γi

(z)

∣∣∣∣∣ ≤ 1 − |z|2�(α)

� (α)

{
n

∑
i=1

|γi|
∣∣∣∣∣ zv′

Li ,b,c (z)

vLi ,b,c (z)

∣∣∣∣∣+ n

∑
i=1

|γi|
∣∣∣∣ zg′

i (z)
gi (z)

∣∣∣∣
}

.

Now, using the Lemma 6, we have gi ∈ S , i = 1, ..., n, and:∣∣∣∣ zg′
i (z)

gi (z)

∣∣∣∣ ≤ 1 + |z|
1 − |z| . (30)

By virtue of the above inequality (30), we get:

1 − |z|2�(α)

� (α)

∣∣∣∣∣ zH′′
Li ,b,c,γi

(z)

H′
Li ,b,c,γi

(z)

∣∣∣∣∣ ≤ 1 − |z|2�(α)

� (α)

{
n

∑
i=1

|γi|
∣∣∣∣∣ zv′

Li ,b,c (z)

vLi ,b,c (z)

∣∣∣∣∣+ n

∑
i=1

|γi|
1 + |z|
1 − |z|

}

≤ 1 − |z|2�(α)

� (α)

n

∑
i=1

|γi|
∣∣∣∣∣ zv′

Li ,b,c (z)

vLi ,b,c (z)

∣∣∣∣∣+ 1 − |z|2�(α)

� (α)

2
1 − |z|

n

∑
i=1

|γi| .

First, we consider the part:

1 − |z|2�(α)

� (α)

n

∑
i=1

|γi|
∣∣∣∣∣ zv′

Li ,b,c (z)

vLi ,b,c (z)

∣∣∣∣∣ .

This implies that:

1 − |z|2�(α)

� (α)

n

∑
i=1

|γi|
∣∣∣∣∣ zv′

Li ,b,c (z)

vLi ,b,c (z)

∣∣∣∣∣ ≤ 1
� (α)

n

∑
i=1

|γi|
∣∣∣∣∣ zv′

Li ,b,c (z)

vLi ,b,c (z)

∣∣∣∣∣ .

Using Lemma 5, we have:

1 − |z|2�(α)

� (α)

n

∑
i=1

|γi|
∣∣∣∣∣ zv′

Li ,b,c (z)

vLi ,b,c (z)

∣∣∣∣∣ ≤ 1
� (α)

n

∑
i=1

|γi|
{

1 +
|c| (6qi − |c|)

3 (4qi − |c|) (3qi − |c|)

}
.

We define the function τ :
(

7|c|
24 , ∞

)
−→ R, τ (x) = |c|(6x−|c|)

3(4x−|c|)(3x−|c|) . It is a decreasing function;
therefore:

|c| (6qi − |c|)
3 (4qi − |c|) (3qi − |c|) ≤ |c| (6q − |c|)

3 (4q − |c|) (3q − |c|) ,
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hence:
1 − |z|2�(α)

� (α)

n

∑
i=1

|γi|
∣∣∣∣∣ zv′

Li ,b,c (z)

vLi ,b,c (z)

∣∣∣∣∣ ≤ 1
� (α)

n

∑
i=1

|γi|
{

1 +
|c| (6q − |c|)

3 (4q − |c|) (3q − |c|)

}
. (31)

Now, we consider the part:
1 − |z|2�(α)

� (α)

2
1 − |z|

n

∑
i=1

|γi| .

For this, we have the following cases:

(1) For 0 < � (α) < 1, then the function v : (0, 1) −→ R, v (x) = 1 − a2x, x = � (α) and |z| = a is
increasing and:

1 − |z|2�(α) ≤ 1 − |z|2 ;

therefore:
1 − |z|2�(α)

� (α)

2
1 − |z|

n

∑
i=1

|γi| ≤
4

� (α)

n

∑
i=1

|γi| . (32)

From the inequalities (31) and (32), for 0 < � (α) < 1, we have:

1 − |z|2�(α)

� (α)

∣∣∣∣∣ zH′′
Li ,b,c,γi

(z)

H′
Li ,b,c,γi

(z)

∣∣∣∣∣ ≤ 1
� (α)

(
1 +

|c| (6q − |c|)
3 (4q − |c|) (3q − |c|)

) n

∑
i=1

|γi|+
4

� (α)

n

∑
i=1

|γi| . (33)

(2) For � (α) ≥ 1, consider the function w : [1, ∞) −→ R, w (x) = 1−a2x

x , x = � (α) and |z| = a is
a decreasing function and:

1 − |z|2�(α)

� (α)
≤ 1 − |z|2 ;

therefore:
1 − |z|2�(α)

� (α)

2
1 − |z|

n

∑
i=1

|γi| ≤ 4
n

∑
i=1

|γi| . (34)

By combining the inequalities (31) and (34) for � (α) ≥ 1, we get:(
1 − |z|2�(α)

� (α)

) ∣∣∣∣∣ zH′′
Li ,b,c,γi

(z)

H′
Li ,b,c,γi

(z)

∣∣∣∣∣ ≤ 1
� (α)

(
1 +

|c| (6q − |c|)
3 (4q − |c|) (3q − |c|)

) n

∑
i=1

|γi|+ 4
n

∑
i=1

|γi| . (35)

From the inequalities (26) , (27) , (33) and (35), we obtain:

1 − |z|2�(α)

� (α)

∣∣∣∣∣ zH′′
Li ,b,c,γi

(z)

H′
Li ,b,c,γi

(z)

∣∣∣∣∣ < 1.

Therefore, using Lemma 5, we get the required result.

Theorem 5. Let L1, . . . Ln, b ∈ R, c ∈ C and qi >
7|c|
24 with qi = Li +

(b+2)
2 , i = 1, . . . , n. Let vLi ,b,c : D −→

C be defined in the Equation (8). Suppose q = min (q1, q2, ......qn) , γi, δi are non-zero complex numbers and if
gi ∈ A with ∣∣∣∣ g′′

i (z)
g′

i (z)

∣∣∣∣ ≤ K, z ∈ D,

where K � 3.05, and these numbers satisfy the relation:

1
� (α)

|c| (6q − |c|)
3 (4q − |c|) (3q − |c|)

n

∑
i=1

|γi|+
2K

(2� (α) + 1)
(2�(α)+1)

2�(α)

n

∑
i=1

|δi| < 1. (36)
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Then, for every complex number β, � (β) ≥ � (α) > 0, the function ILi ,b,c,γi ,δi ,β defined in Equation (15)
is univalent.

Proof. Consider the function:

ILi ,b,c,γi ,δi (z) =
z∫
0

n

∏
i=1

(
vLi ,b,c (t)

t

)γi (
g′

i (t)
)δi dt. (37)

By taking the derivative of Equation (37), we get:

I′Li ,b,c,γi ,δi
(z) =

n

∏
i=1

(
vLi ,b,c (z)

z

)γi (
g′

i (z)
)δi . (38)

It is clear that ILi ,b,c,γi ,δi
∈ A. It follows easily that:

zI′′Li ,b,c,γi ,δi
(z)

I′Li ,b,c,γi ,δi
(z)

=
n

∑
i=1

γi

(
zv′

Li ,b,c (z)

vLi ,b,c (z)
− 1

)
+

n

∑
i=1

δi

{
zg′′

i (z)
g′

i (z)

}
.

Therefore, we obtain:

1 − |z|2�(α)

� (α)

∣∣∣∣∣ zI′′Li ,b,c,γi ,δi
(z)

I′Li ,b,c,γi ,δi
(z)

∣∣∣∣∣
≤ 1 − |z|2�(α)

� (α)

{
|γi|

∣∣∣∣∣ zv′
Li ,b,c (z)

vLi ,b,c (z)
− 1

∣∣∣∣∣+ |z| |δi|
∣∣∣∣ g′′

i (z)
g′

i (z)

∣∣∣∣
}

.

This implies that:

1 − |z|2�(α)

� (α)

∣∣∣∣∣ zI′′Li ,b,c,γi ,δi (z)

I′Li ,b,c,γi,δi
(z)

∣∣∣∣∣ ≤
{

1 − |z|2�(α)

� (α)

n

∑
i=1

|γi|
∣∣∣∣∣ zv′

Li ,b,c (z)

vLi ,b,c (z)
− 1

∣∣∣∣∣
+

1 − |z|2�(α)

� (α)
|z|

n

∑
i=1

|δi|
∣∣∣∣ g′′

i (z)
g′

i (z)

∣∣∣∣
}

. (39)

Using Lemmas 4 and 6, we get:

1 − |z|2�(α)

� (α)

∣∣∣∣∣ zI′′Li ,b,c,γi ,δi
(z)

I′Li ,b,c,γi ,δi
(z)

∣∣∣∣∣ ≤
{

1 − |z|2�(α)

� (α)

n

∑
i=1

|γi|
|c| (6qi − |c|)

3 (4qi − |c|) (3qi − |c|)

+
1 − |z|2�(α)

� (α)
|z| K

n

∑
i=1

}
|δi| .

As was mentioned before:

|c| (6qi − |c|)
3 (4qi − |c|) (3qi − |c|) ≤ |c| (6q − |c|)

3 (4q − |c|) (3q − |c|) ;

therefore:

1 − |z|2�(α)

� (α)

∣∣∣∣∣ zI′′Li ,b,c,γi ,δi
(z)

I′Li ,b,c,γi ,δi
(z)

∣∣∣∣∣ ≤
{

1 − |z|2�(α)

� (α)

|c| (6q − |c|)
3 (4q − |c|) (3q − |c|)

n

∑
i=1

|γi|

+
1 − |z|2�(α)

� (α)
|z| K

n

∑
i=1

|δi|
}

.
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Consider the function h : [0, 1] −→ R, h (x) =
x(1−x2a)

a , x = |z| , a = � (α) . Then:

max h (x) =
2

(2a + 1)
(2a+1)

2a

, x ∈ [0, 1] .

This implies that:

1 − |z|2�(α)

� (α)

∣∣∣∣∣ zI′′Li ,b,c,γi ,δi
(z)

I′Li ,b,c,γi ,δi
(z)

∣∣∣∣∣ ≤
{

1 − |z|2�(α)

� (α)

|c| (6q − |c|)
3 (4q − |c|) (3q − |c|)

n

∑
i=1

|γi|

+
2K

(2� (α) + 1)
(2�(α)+1)

2�(α)

n

∑
i=1

|δi|

⎫⎬⎭ .

Using the inequalities (36) and (39), we get:

1 − |z|2�(α)

� (α)

∣∣∣∣∣ zI′′Li ,b,c,γi ,δi
(z)

I′Li ,b,c,γi ,δi
(z)

∣∣∣∣∣ < 1.

Therefore, by using Lemma 5, we get the required result.

Corollary 1. Consider the function XLi (z) : D −→ C defined in the Equation (9). Let L1, . . . , Ln > −1.75
(n ∈ N) and L = min {L1, . . . , Ln} . Furthermore, let the parameter γi be non-zero complex numbers with
{i = 1, 2, 3, . . . , n} and if gi ∈ A with: ∣∣∣∣ g′′

i (z)
g′

i (z)

∣∣∣∣ ≤ K, z ∈ D,

where K � 3.05, and these numbers satisfy the relations:

1
� (α)

(
1 +

4 (3L + 4)
3 (24L2 + 58L + 35)

) n

∑
i=1

|γi|+
4

� (α)

n

∑
i=1

|γi| < 1,

when 0 < � (α) < 1 and for � (α) ≥ 1:[
1

� (α)

(
1 +

4 (3L + 4)
3 (24L2 + 58L + 35)

) n

∑
i=1

|γi|+ 4
n

∑
i=1

|γi| < 1

]
;

then for every complex number β, � (β) ≥ � (α) > 0, the function HLi,b,c,γi ,β is univalent.

Corollary 2. Consider the function XLi defined in the Equation (9). Let L1, . . . , Ln > −1.75 (n ∈ N) and
L = min {L1, . . . , Ln} . Furthermore, let the parameter γi, δi be non-zero complex numbers and if gi ∈ A with:∣∣∣∣ g′′

i (z)
g′

i (z)

∣∣∣∣ ≤ K, z ∈ D,

where K � 3.05, and these numbers satisfy the relation:

1
� (α)

4 (3L + 4)
3 (24L2 + 58L + 35)

n

∑
i=1

|γi|+
2K

(2� (α)� (γ) + 1)
(2�(α)+1)

2�(α)

n

∑
i=1

|δi| < 1;

then for every complex number β, � (β) ≥ � (α) > 0, the function ILi ,b,c,γi ,δi ,β is univalent.
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Corollary 3. Consider the function YLi (z) : D −→ C defined in the Equation (10). Let L1, . . . , Ln > −1.75
(n ∈ N) and L = min {L1, L2, ..., Ln} . Furthermore, let the parameters γi be non-zero complex numbers with
{i = 1, . . . , n} and if gi ∈ A with: ∣∣∣∣ g′′

i (z)
g′

i (z)

∣∣∣∣ ≤ K, z ∈ D,

where K � 3.05, and these numbers satisfy the relations:

1
� (α)

(
1 +

4 (3L + 4)
3 (24L2 + 58L + 35)

) n

∑
i=1

|γi|+
4

� (α)

n

∑
i=1

|γi| < 1,

when 0 < � (α) < 1 and for � (α) ≥ 1:[
1

� (α)

(
1 +

4 (3L + 4)
3 (24L2 + 58L + 35)

) n

∑
i=1

|γi|+ 4
n

∑
i=1

|γi| < 1

]
;

then for every complex number β, � (β) ≥ � (α) > 0, the function HLi ,b,c,γi ,β is univalent.

Corollary 4. Consider the function YLi (z) : D −→ C defined in the Equation (10). Let L1, . . . , Ln > −1.75
(n ∈ N) and L = min {L1, L2, ..., Ln} . Furthermore, let the parameter γi, δi be non-zero complex numbers and
if gi ∈ A with: ∣∣∣∣ g′′

i (z)
g′

i (z)

∣∣∣∣ ≤ K, z ∈ D,

where K � 3.05, and these numbers satisfy the relation:

1
� (α)� (γ)

4 (3L + 4)
3 (24L2 + 58L + 35)

n

∑
i=1

|γi|+
2K

(2� (α) + 1)
(2�(α)+1)

2�(α)

n

∑
i=1

|δi| < 1;

then for every complex number β, � (β) ≥ � (α) > 0, the function ILi ,b,c,γi ,δi ,β is univalent.

5. Starlikeness and Uniform Convexity Criteria for the Integral Operator

In this section, we find the starlikeness and uniform convexity of these integral operators defined
by generalized Struve functions.

Theorem 6. Let L1, . . . , Ln, b ∈ R, c ∈ C and qi >
7|c|
24 with qi = Li +

(b+2)
2 , i = 1, . . . , n. Let vLi ,b,c :

D −→ C be defined in the Equation (8). Let the function gi satisfy the condition
∣∣∣ zg′

i(z)
gi(z)

∣∣∣ ≤ M, where M is
a positive integer. Suppose q = min (q1, . . . , qn) and γi are non-zero complex numbers and these numbers
satisfy the relation:

n

∑
i=1

{
|γi|

( |c| (6q − |c|)
3 (4q − |c|) (3q − |c|) + 1

)
+ |γi| M

}
< 1,

then the function HLi ,b,c,γi ,1 defined in the Equation (14) is in class S∗.

Proof. Consider the function:

HLi ,b,c,γi ,1 (z) =
z∫
0

n

∏
i=1

(
vLi ,b,c (t)

gi (t)

)γi

dt. (40)

Hence:

1 +
zH′′

Li ,b,c,γi ,1
(z)

H′
Li ,b,c,γi ,1

(z)
=

n

∑
i=1

[
γi

(
zv′

Li ,b,c (z)

vLi ,b,c (z)

)
− γi

(
zg′

i (z)
g′

i (z)

)]
+ 1.
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This implies that:∣∣∣∣∣1 + zH′′
Li ,b,c,γi ,1

(z)

H′
Li ,b,c,γi ,1

(z)

∣∣∣∣∣ ≤ n

∑
i=1

|γi|
∣∣∣∣∣ zv′

Li ,b,c (z)

vLi ,b,c (z)

∣∣∣∣∣+ n

∑
i=1

|γi|
∣∣∣∣ zg′

i (z)
g′

i (z)

∣∣∣∣+ 1. (41)

Using Lemma 4(i), ∣∣∣∣∣ zv′
L,b,c (z)

vL,b,c (z)
− 1

∣∣∣∣∣ ≤ |c| (6q − |c|)
3 (4q − |c|) (3q − |c|)

and: ∣∣∣∣ zg′
i (z)

gi (z)

∣∣∣∣ ≤ M,

we have: ∣∣∣∣∣1 + zH′′
Li ,b,c,γi ,1

(z)

H′
Li ,b,c,γi ,1

(z)

∣∣∣∣∣ ≤ n

∑
i=1

{
γi

( |c| (6qi − |c|)
3 (4qi − |c|) (3qi − |c|) + 1

)
+ γi M

}
+ 1.

Since:
|c| (6qi − |c|)

3 (4qi − |c|) (3qi − |c|) ≤ |c| (6q − |c|)
3 (4q − |c|) (3q − |c|) ,

therefore: ∣∣∣∣∣1 + zH′′
Li ,b,c,γi ,1

(z)

H′
Li ,b,c,γi ,1

(z)

∣∣∣∣∣ ≤ n

∑
i=1

{
|γi|

( |c| (6q − |c|)
3 (4q − |c|) (3q − |c|) + 1

)
+ |γi| M

}
+ 1.

Furthermore,
n

∑
i=1

{
|γi|

( |c| (6q − |c|)
3 (4q − |c|) (3q − |c|) + 1

)
+ |γi| M

}
< 1,

implies that: ∣∣∣∣∣1 + zH′′
Li ,b,c,γi ,1

(z)

H′
Li ,b,c,γi ,1

(z)

∣∣∣∣∣ < 2.

By using Lemma 2, the function HLi ,b,c,γi ,1 ∈ S∗.

Theorem 7. Let L1, . . . , Ln, b ∈ R, c ∈ C and qi >
7|c|
24 with qi = Li +

b+2
2 , i = 1, . . . , n. Let vLi ,b,c : D −→

C be defined in the Equation (8). Let the function gi satisfy the condition
∣∣∣ zg′

i(z)
gi(z)

∣∣∣ ≤ M, where M is a positive
integer. Suppose q = min (q1, q2, . . . , qn) and γi are non-zero complex numbers and these numbers satisfy
the relation:

n

∑
i=1

{
|γi|

( |c| (6q − |c|)
3 (4q − |c|) (3q − |c|) + 1

)
+ |γi| M

}
<

1
2

,

then the function HLi ,b,c,γi ,1 ∈ UCV .

Proof. Consider the function:

HLi ,b,c,γi ,1 (z) =
z∫
0

n

∏
i=1

(
vLi ,b,c (t)

gi (t)

)γi

dt. (42)

This implies that:

zH′′
Li ,b,c,γi ,1

(z)

H′
Li ,b,c,γi ,1

(z)
=

n

∑
i=1

[
γi

(
zv′

Li ,b,c (z)

vLi ,b,c (z)

)
− γi

(
zg′

i (z)
g′

i (z)

)]
.
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Therefore: ∣∣∣∣∣ zH′′
Li ,b,c,γi ,1

(z)

H′
Li ,b,c,γi ,1

(z)

∣∣∣∣∣ ≤ n

∑
i=1

|γi|
∣∣∣∣∣ zv

′
Li ,b,c (z)

vLi ,b,c (z)

∣∣∣∣∣+ n

∑
i=1

|γi|
∣∣∣∣ zg′

i (z)
g′

i (z)

∣∣∣∣ , (43)

Using Lemma 4(i): ∣∣∣∣∣ zv′
L,b,c (z)

vL,b,c (z)
− 1

∣∣∣∣∣ ≤ |c| (6q − |c|)
3 (4q − |c|) (3q − |c|)

and: ∣∣∣∣ zg′
i (z)

gi (z)

∣∣∣∣ ≤ M,

we have: ∣∣∣∣∣ zH′′
Li ,b,c,γi ,1

(z)

H′
Li ,b,c,γi ,1

(z)

∣∣∣∣∣ ≤ n

∑
i=1

{
|γi|

( |c| (6qi − |c|)
3 (4qi − |c|) (3qi − |c|) + 1

)
+ |γi| M

}
.

Since:
|c| (6qi − |c|)

3 (4qi − |c|) (3qi − |c|) ≤ |c| (6q − |c|)
3 (4q − |c|) (3q − |c|) ;

therefore: ∣∣∣∣∣ zH′′
Li ,b,c,γi ,1

(z)

H′
Li ,b,c,γi ,1

(z)

∣∣∣∣∣ ≤ n

∑
i=1

{
|γi|

( |c| (6q − |c|)
3 (4q − |c|) (3q − |c|) + 1

)
+ |γi| M

}
.

Using:
n

∑
i=1

{
|γi|

( |c| (6q − |c|)
3 (4q − |c|) (3q − |c|) + 1

)
+ |γi| M

}
<

1
2

,

then: ∣∣∣∣∣ zH′′
Li ,b,c,γi ,1

(z)

H′
Li ,b,c,γi ,1

(z)

∣∣∣∣∣ < 1
2

.

Hence, by using Lemma 3, HLi ,b,c,γi ,1 ∈ UCV .

Corollary 5. (1) Consider the function XLi defined in the Equation (9). Let L1, . . . , Ln > −1.75 (n ∈ N),

L = min {L1, L2, ..., Ln} and the function gi satisfy the condition
∣∣∣ zg′

i(z)
gi(z)

∣∣∣ ≤ M, where M is a positive integer.
Suppose q = min (q1, q2, ......qn) and γi are non-zero complex numbers and these numbers satisfy the inequality:

n

∑
i=1

{
|γi|

(
4 (3L + 4)

3 (24L2 + 58L + 35)
+ 1

)
+ |γi| M

}
< 1,

then the function HLi ,b,c,γi ,1 ∈ S∗.
(2) Consider the function XLi defined as the Equation (9). Let L1, . . . , Ln > −1.75 (n ∈ N),

L = min {L1, L2, . . . , Ln} and the function gi satisfy the condition
∣∣∣ zg′

i(z)
gi(z)

∣∣∣ ≤ M, where M is a positive
integer. Suppose q = min (q1, q2, . . . , qn) and γi are non-zero complex numbers and these numbers satisfy
the inequality:

n

∑
i=1

{
|γi|

(
8 (3L + 4)

3 (24L2 + 58L + 35)
+ 1

)
+ |γi| M

}
<

1
2

,

then the function HLi ,b,c,γi ,1 ∈ UCV .
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Corollary 6. (1) Consider the function YLi defined as the Equation (10). Let L1, . . . , Ln > −1.75 (n ∈ N),

L = min {L1, L2, ..., Ln} and the function gi satisfy the condition
∣∣∣ zg′

i(z)
gi(z)

∣∣∣ ≤ M, where M is a positive integer.
Suppose q = min (q1, q2, ......qn) and γi are non-zero complex numbers and these numbers satisfy the inequality:

n

∑
i=1

{
|γi|

(
4 (3L + 4)

3 (24L2 + 58L + 35)
+ 1

)
+ |γi| M

}
< 1,

then the function HLi ,b,c,γi ,1 ∈ S∗.
(2) Consider the function YLi defined as the Equation (10). Let L1, . . . , Ln > −1.75 (n ∈ N), L =

min {L1, L2, . . . , Ln} and the function gi satisfy the condition
∣∣∣ zg′

i(z)
gi(z)

∣∣∣ ≤ M, where M is a positive integer.
Suppose q = min (q1, q2, . . . , qn) and γi are non-zero complex numbers and these numbers satisfy the
inequality:

n

∑
i=1

{
|γi|

(
8 (3L + 4)

3 (24L2 + 58L + 35)
+ 1

)
+ |γi| M

}
<

1
2

,

then the function HLi ,b,c,γi ,1 ∈ UCV .
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Abstract: The application of machine learning techniques to sound signals requires the previous
characterization of said signals. In many cases, their description is made using cepstral coefficients
that represent the sound spectra. In this paper, the performance in obtaining cepstral coefficients by
two integral transforms, Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT),
are compared in the context of processing anuran calls. Due to the symmetry of sound spectra, it is
shown that DCT clearly outperforms DFT, and decreases the error representing the spectrum by more
than 30%. Additionally, it is demonstrated that DCT-based cepstral coefficients are less correlated
than their DFT-based counterparts, which leads to a significant advantage for DCT-based cepstral
coefficients if these features are later used in classification algorithms. Since the DCT superiority
is based on the symmetry of sound spectra and not on any intrinsic advantage of the algorithm,
the conclusions of this research can definitely be extrapolated to include any sound signal.

Keywords: spectrum symmetry; DCT; MFCC; audio features; anuran calls

1. Introduction

Automatic processing of sound signals is a very active topic in many fields of science and
engineering which find applications in multiple areas, such as speech recognition [1], speaker
identification [2,3], emotion recognition [4], music classification [5], outlier detection [6], classification
of animal species [7–9], detection of biomedical disease [10], and design of medical devices [11]. Sound
processing is also applied in urban and industrial contexts, such as environmental noise control [12],
mining [13], and transportation [14,15].

These applications typically include, among their first steps, the characterization of the sound:
a process which is commonly known as feature extraction [16]. A recent survey of techniques employed
in sound feature extraction can be found in [17], of which Spectrum-Temporal Parameters (STPs) [18],
Linear Prediction Coding (LPC) coefficients [19], Linear Frequency Cepstral Coefficients (LFCC) [20],
Pseudo Wigner-Ville Transform (PWVT) [21], and entropy coefficients [22] are of note.

Nevertheless, the Mel-Frequency Cepstral Coefficients (MFCC) [23] are probably the most
widely employed set of features in sound characterization and the majority of the sound processing
applications mentioned above are based on their use. Additionally, these features have also been
successfully employed in other fields, such as analysis of electrocardiogram (ECG) signals [24],
gait analysis [25,26], and disturbance interpretation in power grids [27].

On the other hand, the processing and classification of anuran calls have attracted the attention of
the scientific community for biological studies and as indicators of climate change. This taxonomic
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group is regarded as an outstanding gauge of biodiversity. Nevertheless, frog populations have
suffered a significant decrease in the last years due to habitat loss, climate change and invasive
species [28]. So, the continual monitoring of frog populations is becoming increasingly important to
develop adequate conservation policies [29].

It should be mentioned that the system of sound production in ectotherms is strongly affected by
the ambient temperature. Therefore, the temperature can significantly influence the patterns of calling
songs by modifying the beginning, duration, and intensity of calling episodes and, thus, the anuran
reproductive activity. The presence or absence of certain anuran calls in a certain territory, and their
evolution over time, can therefore be used as an indicator of climate change.

In our previous work, several classifiers for anuran calls are proposed that use non-sequential
procedures [30] or temporally-aware algorithms [31], or that consider score series [32], mainly using a
set of MPEG-7 features [33]. MPEG-7 is an ISO/IEC standard developed by MPEG (Moving Picture
Experts Group). In [34], the comparison of MPEG-7 and MFCC are undertaken both in terms of
classification performance and computational cost. Finally, the optimal values of MFCC options for
the classification of anuran calls are derived in [35].

State of the art classification of sound relies on Convolutional Neural Networks (CNN) that take
input from some form of the spectrogram [36] or even the raw waveform [37]. Moreover, CNN deep
learning approaches have also been used in the identification of anuran sound [38]. In spite of that,
studying and optimizing the process of extracting MFCC features is of great interest at least for three
reasons. First, because sound processing goes beyond the classification task, including procedures
such as compression, segmentation, semantic description, sound database retrieval, etc. Secondly,
because the spectrograms that feed the state-of-the-art deep CNN classifiers can be constructed
using MFCC [39]. And finally due to the fact that CNN classifiers based on spectrograms or raw
waveforms require intensive computing resources which makes them unsuitable for implementation in
low-cost low-power-consumption distributed nodes, as is the usual case in environmental monitoring
networks [35].

As presented in greater detail later, the MFCC features are a representation of the sounds in the
cepstral domain. They are derived after a first integral transform (from time to frequency domain),
which obtains the sound spectrum, and then a second integral transform is carried out (from frequency
to cepstral domain). In this paper, we will show that, by exploiting the symmetry of the sound spectra,
it is possible to obtain a more accurate representation of the anuran calls and the derived features will
therefore more precisely reflect the sound.

The main contribution of the paper is to offer a better understanding of the reason (symmetry)
that justify and quantify why Discrete Cosine Transform (DCT) has been extensively used to
compute MFCC. In more detail, the paper will show that DCT-based sound features yielded
to a significantly lower error representing spectra, which is a very convenient result for several
applications such as sound compression. Additionally, through the paper it will be demonstrated that
symmetry-based features (DCT) are less correlated, which is an advantage to be exploited in later
classification algorithms.

2. Materials and Methods

2.1. Extracting MFCC

The process of extracting the MFCC features from the n samples of a certain sound requires 7 steps
in 3 different domains, which are depicted in Figure 1, and can be summarized as follows:

1. Pre-emphasis (time domain): The sound’s high frequencies are increased to compensate for the
fact that the Signal-to-Noise Ratio (SNR) is usually lower at these frequencies.

2. Framing (time domain): The n samples of the full-length sound segment are split into frames of
short duration (N samples, N � n). These frames are commonly obtained using non-rectangular
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overlapping windows (for instance, Hamming windows [40]). The subsequent steps are executed
on the N samples of each frame.

3. Log-energy spectral density (spectral domain): Using the Discrete Fourier Transform (DFT) or its
faster version, the Fast Fourier Transform (FFT), the N samples of each frame are converted into
the N samples of an energy spectral density, which are usually represented in a log-scale.

4. Mel bank filtering (spectral domain): The N samples of each frame’s spectrum are grouped into
M banks of frequencies, using M triangular filters centred according to the mel scale [41] and the
mel Filter Bank Energy (mel-FBE) is obtained.

5. Integral transform (cepstral domain): The M samples of the mel-FBE (in the spectral domain)
are converted into M samples in the cepstral domain using an integral transform. In this article,
it will be shown that the exploitation of the symmetry of the DFT integral transform obtained in
step 3 yields a cepstral integral transform with a better performance.

6. Reduction of cepstral coefficients (cepstral domain): The M samples of the cepstrum are reduced
to C coefficients by discarding the least significant coefficients.

7. Liftering (cepstral domain): The C coefficients of the cepstrum are finally liftered to compensate
for the fact that high quefrency coefficients are usually much smaller than their low
quefrency counterparts.

Figure 1. The process of extracting the Mel-Frequency Cepstral Coefficients (MFCC) features from a
certain sound.

In this process, integral transforms are used twice: in step 3 to move from the time domain into the
spectral domain; and in step 5 to move forward into the cepstral domain. In this paper, the symmetric
properties of the DFT integral transform in step 3 will be exploited for the selection of the most
appropriate integral transform required in step 5.

2.2. Integral Transforms of Non-Symmetric Functions

As detailed in the previous subsection, a sound spectrum is featured in order to obtain the
MFCC of a sound, specifically by characterizing the logarithm of its energy spectral density. In short,
this would be a particular case of the characterization of a function f (x) by means of a reduced set of
values where, in this case, f (x) is the spectrum of a sound. To address this problem, which is none
other than that of the compression of information, several techniques have been proposed, from among
which the frequency representation of the function stands out. In effect, the idea underlying this type
of technique is to consider the original signal, expand it in Fourier series, and then approximate the
function by means of a few terms of its expansion. Thus, instead of having to supply the values of the
function corresponding to each value of x, only the amplitude values (and eventually also the phase)
of a reduced number of harmonics are provided.
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Let us consider an arbitrary example function f (x), such as that shown in Figure 2, of which
we know only one fragment in the interval [x0, x0 + P] (dashed line). Now let us consider that
this function is sampled, and the values only at specific points for x = xn, separated at intervals
Δx, are known. By denoting N as the total number of points (samples) in a period, we know that
Δx = P/N. The sampled function will be called f̂ (xn) = fn where the hat ( ˆ ) above f represents a
sampled function.

Figure 2. Known fragment of an example function f (x) (dashed line) and its corresponding sampled
function f̂ (xn) (dots).

The usual way to obtain the spectrum of that function is to define a periodic function fp(x) of
period P that coincides with the previous function in the known interval (see Figure 3), and to proceed
to compute the spectrum of that new function. The spectral representation of the function fp(x) is
composed of the complex coefficients of the Fourier series expansion given by [42].

ck =
1
P

∫ x0+P

x0

f (x)e−j 2πkx
P dx. (1)

Figure 3. Periodic function fp(x) obtained by repetition of the known fragment of f (x).

On the other hand, the sampled function, f̂ (xn) = fn, will have a spectral representation ĉk that
corresponds to ck, when the sampling of the variable x is taken into account. Now let us call I(x) the
integrand of Equation (1), i.e.,

I(x) = f (x)e−j 2πkx
P , (2)
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and hence the spectral representation of the non-sampled function fp(x) is featured by the coefficients

ck =
1
P

∫ x0+P

x0

I(x)dx. (3)

in order to obtain the values ĉk that take into account the sampling of the variable x, the continuous
calculation of the area that supposes the integral of the previous expression is substituted with the sum
of the rectangles corresponding to the discrete values (sum of Riemann). In Figure 4, the calculation of
the real part of ĉ1 is depicted for the example function fp(x).

Figure 4. Integration of sampled functions (sum of Riemann).

Therefore,

ĉk ≡ [ck]x=xn
=

[
1
P

∫ x0+P

x0

I(x)dx
]

x=xn

. (4)

From this equation it can be derived (see supplementary material) that

ĉk =
1
N

e−j 2πkx0
NΔx

N−1

∑
n=0

fn e−j 2πkn
N . (5)

It can be observed that the spectral representation ĉk depends on the point x0 selected as the origin

of coordinates, due to the factor e−j 2πkx0
NΔx . This factor does not affect the amplitude spectrum (since its

modulus is 1), but it does affect the phase spectrum corresponding to the known time-shift property of
the Fourier Transform. For practical purposes, the origin of coordinates is usually considered to be the
starting point of the sequence, that is, at x0 = 0, and hence the spectral representation finally becomes

ĉk =
1
N

N−1

∑
n=0

fn e−j 2πkn
N . (6)

This expression coincides with the usual definition of the Discrete Fourier Transform (DFT) [43].
In other words: The Discrete Fourier Transform of a known fragment of a function presupposes the
periodic repetition of that fragment.

2.3. Integral Transforms of Symmetric Functions

Let us now again consider the function f (x) of which we know only sampled values of a fragment
fn in the interval [x0, x0 + P], as shown in Figure 2. An alternative way of representing its spectrum
to that of periodically repeating the values fn as in Figure 3, lies in defining a sequence of values gn
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of length 2P that coincides with fn in the interval [x0, x0 + P], which is its symmetric in the interval
[x0 − P, x0], as depicted in Figure 5.

Figure 5. Known fragment of a symmetric example function g(x) (dashed line) and its corresponding
sampled function ĝ(xn) (dots). These functions are obtained by considering the original fragment of
the example function f (x) (blue) and its symmetric (green).

It can be observed that
gn = fn ∀n ∈ [0, N − 1]

gn = f−n−1 ∀n ∈ [−N, −1]
. (7)

Subsequently, a sequence of periodic values hn of period P′ = 2P is defined that coincides with gn in
the interval [x0 − P, x0 + P], as shown in Figure 6.

Figure 6. Periodic function hn obtained by repetition of the known fragment of gn.

In order to obtain the spectrum of the sequence of values hn it can be written that

ĉk =
1
P′

xn=x0+P−Δx

∑
xn=x0−P

hn e−j 2πkxn
P′ Δx. (8)

From this equation it can be derived (see supplementary material) that

ĉk =
1

2N
e−j πkx0

NΔx

[
ej πk

N

N−1

∑
n=0

fn ej πkn
N +

N−1

∑
n=0

fn e−j πkn
N

]
. (9)
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As can be observed, due to the factor e−j 2πkx0
NΔx , the spectral representation ĉk depends on the point

x0 where the origin of coordinates is defined. This factor does not affect the amplitude spectrum
(since its modulus is 1), but it does affect the phase spectrum, which corresponds to the known
time-shifting property of the Fourier transform. For practical purposes, the origin of coordinates
is usually considered to be located the midpoint of the symmetric sequence gn, that is, x0 = Δx/2,
as shown in Figure 7.

Figure 7. Defining the origin of coordinates.

Finally, the spectral representation becomes (see supplementary material)

ĉk =
1
N

N−1

∑
n=0

fn cos
[

πk
N

(
n +

1
2

)]
. (10)

This expression coincides with the usual definition of the Discrete Cosine Transform (DCT) [44].
In other words, the Discrete Cosine Transform of a known fragment of a function presupposes the
periodic repetition of that fragment and its symmetric.

2.4. Representing Anuran Call Spectra

With this digression, we can now address the question posed at the beginning of Section 2.2
concerning the best way to characterize the spectrum of a sound by using the sum of its harmonics.
Note that it is necessary to compute the spectrum (step 5) of a spectrum (step 4), that is,
the trans-spectrum or the cepstrum, as previously discussed. The decision regarding whether
this trans-spectrum (cepstrum) should be derived using either the Fourier transform, or the cosine
transform, is based on the form of the fragment fn (in this case the spectral values of the sound). That is,
it should be considered whether the best approximation to the spectrum is either a periodic repetition
of fn or, in contrast, a periodic repetition of fn and its symmetric.

Although this is a general question, we have addressed it in the context of a specific application
by featuring anuran calls for their further classification. The dataset employed contains 1 hour and
13 minutes of sounds which have been recorded at five different locations (four in Spain, and one in
Portugal) [32] and they were subsequently sampled at 44.1 kHz. The recordings include 4 types of
anuran calls and, since they have been taken in their natural habitat, are affected by highly significant
surrounding environmental noise (such as that of wind, water, rain, traffic, and voices).

In this paper, the duration of the frames (step 2) was set to 10 ms, such that each frame has
N = 441 data points and a total of W = 434, 313 frames are considered. The log-energy spectral
density (step 3) is obtained using a standard FFT algorithm, which obtains a spectrum with N = 441
values. The mel-scaling (step 4) employs a set of M = 23 filters, and hence the mel-FBE spectrum is
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characterised by this number of values (M = 23). In step 5, two different approaches for obtaining the
cepstrum are used and compared: DFT and DCT. The results are then analysed for a different number
of cepstral coefficients (1 ≤ C ≤ M).

In order to carry out a more systematic study of the spectrum approximation error, let us call
Ei(n) the original mel-FBE spectrum of the i-th frame (the result of step 4), where n is the filter
index (equivalent to the frequency in mel scale). Let us also call Hi(m) the spectrum of Ei(n), that is,
the cepstrum as obtained in step 5, where m is the cepstral index (equivalent to the quefrency in
mel scale). It can be written that Hi(m) = F [Ei(n)], where F represents either the DFT or the DCT
Fourier expansions.

After reducing the number of cepstral coefficients to a value of C ≤ M, the resulting approximate
cepstrum (step 6) will be called H̃i(m), where the tilde (˜) above the H represents an approximation.
Using these C values in the corresponding Fourier expansion leads to an approximation of the
mel-FBE, that is, Ẽi(n) = F−1

[
H̃i(m)

]
. The approximation error for the i-th frame is therefore

εi(n) = Ei(n) − Ẽi(n), that is, a different error for each value of n, the filter index (or frequency in
mel-scale). An error measure for the overall spectrum of the i-th frame can be obtained using the Root
Mean Square Error (RMSEi) defined as:

RMSEi ≡

√√√√ 1
M

M−1

∑
n=0

[εi(n)]
2 =

√√√√ 1
M

M−1

∑
n=0

[
Ei(n)− Ẽi(n)

]2
. (11)

In this paper, an arbitrary selected single frame is first considered, mainly for illustration purposes.
Its time-domain representation is depicted in Figure 8A while its spectrum is plotted in Figure 8B.
Some other examples can be found in [32].

Figure 8. Sound amplitude for an arbitrarily selected frame of an anuran call (A); and its log-scale
Energy Spectral Density (B).

Additionally, in order to compare the performance of the 2 competing algorithms obtaining the
cepstrum, an overall metric for the whole dataset is considered and defined as the mean RMSE for
every frame, that is,

RMSE ≡ 1
W

W

∑
i=1

RMSEi =
1

W

W

∑
i=1

√√√√ 1
M

M−1

∑
n=0

[εi(n)]
2. (12)

3. Results

Let us first consider a single frame, arbitrarily selected from the whole sound dataset. Although
these results are limited to that specific sound frame, very similar results are obtained if a different
frame is selected. Moreover, at the end of this section, the overall sound dataset is considered.
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For the case of the single frame, the mel-FBE spectrum obtained in step 4 is depicted in Figure 9.
This is the f (x) function whose spectrum (cepstrum in this case) must be computed in step 5.

Figure 9. Mel Filter Bank Energy (mel-FBE) spectrum for an arbitrarily selected frame of an anuran call.

For this frame, let us consider whether it is better to use either a DFT or a DCT. The decision
depends on whether the function f (x) can be considered as a fragment of a periodic repetition of:
(A) the fragment, as shown in Figure 10A, or (B) the function and its symmetric, as shown in Figure 10B.
In the first case, the DFT should be more appropriate, while in the second case the DCT would obtain
better results.

Figure 10. Periodic repetition of the mel-FBE spectrum (A); and the mel-FBE spectrum and its
symmetric (B).

However, the mel-FBE is nothing but a rescaled and compressed way of presenting a spectrum.
On the other hand, it is a well-known fact that the spectrum of a real signal is symmetric with
respect to the vertical axis [43]. And finally, it is also known that the spectrum of a sampled signal
is periodic [45]. For this reason, the repetition of the fragment of Figure 9 corresponds to Figure 10B
and, therefore, using the DCT to compute its trans-spectrum (or cepstrum) should obtain better results.
This hypothesis is verified in the following paragraphs for the selected frame, and, later in this section,
it is verified for the whole dataset.

The number of coefficients obtained by applying either DCT or DFT is M = 23, that is, they have
the same number of values that define the mel-FBE. The resulting cepstrum for the selected frame is
shown in Figure 11.

59



Symmetry 2019, 11, 405

Figure 11. Cepstral representation of the mel-FBE spectrum (cepstrum).

The ability to compress information of the Fourier transforms (either in the DFT or DCT version)
lies in the fact that it is not necessary to consider the full set of the M coefficients of the Fourier
expansion to obtain a good approximation of the original function. In Figure 12, the original mel-FBE
spectrum is depicted for the example frame, and those spectra recovered using C ≤ M cepstral
coefficients obtained using DCT.

Figure 12. Mel-FBE spectrum for an arbitrarily selected frame of an anuran call. Original spectrum and
recovered spectra using a different number of Discrete Cosine Transform (DCT) cepstral coefficients.

Additionally, as expected, the DCT achieves approximations to the original spectrum that are,
in general, significantly better than those obtained for the DFT with the same number of coefficients.
In Figure 13, the original mel-FBE spectrum is depicted for the example frame, and those spectra
recovered using C = 11 cepstral coefficients obtained using DFT and DCT.
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Figure 13. Mel-FBE spectrum for an arbitrarily selected frame of an anuran call. Original spectrum
and recovered spectrum using C = 11 coefficients obtained using Discrete Fourier Transform (DFT)
and DCT.

In order to quantify the error of recovering the selected mel-FBE spectrum using C ≤ M cepstral
coefficients, the Root Mean Square Error (RMSE) is computed in accordance with Equation (11).
The value of RMSE as a function of the number C of cepstral coefficients used for the recovery of the
spectrum is depicted in Figure 14, both for DFT and DCT.

Figure 14. Root Mean Square Error recovering the original mel-FBE spectrum when a different number
of C cepstral coefficients are used. The cepstral coefficients are obtained applying either DFT or DCT.

This analysis can be extended to include the computation of the RMSE for the whole dataset in
accordance with Equation (12). The value of RMSE as a function of the number C of cepstral coefficients
used for the recovery of the spectrum is depicted in Figure 15 for DFT and DCT separately.
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Figure 15. Root Mean Square Error for the whole dataset when either DFT or DCT is employed.

4. Discussion

Let us first consider the RMSEi for a single frame as depicted in Figure 14. Let us now regard the
case where, for instance, the number of values required to describe the mel-FBE spectrum (M = 23) is
halved, and hence the number of cepstral coefficients used for the recovering an approximation of the
spectrum is C = 11 (in accordance with Equations (6) and (10)).

In this case, it can be observed that RMSEi is 0.34 for DFT, and 0.30 for DCT. On the other hand,
as depicted in Figure 9, the values of the mel-FBE spectrum lie within the range [−6, −3], with a mean
value of −5.02. This means that the relative error of the spectrum representation is only 6.84% for DFT
(5.36% for DCT) when the number of values employed for that representation are halved.

Let us now focus on the RMSE when the DFT is used (green line), either for a single frame
(Figure 14) or for the whole dataset (Figure 15). In both cases, it can be observed that RMSE has values
only for an odd number of cepstral coefficients. This fact can be explained by recalling that, according
to Equation (6), every DFT cepstral coefficient ĉk is a complex number for 1 ≤ k ≤ M − 1 and a real
number for k = 0. On the other hand, according to Equation (10), the DCT cepstral coefficients ĉk are
real numbers for every value of k. Additionally, it has to be considered that DFT cepstrum is symmetric
(green line in Figure 11). Therefore, for k > 0, it can be written that ĉk = ĉM−k+1 and, therefore, only
one of these 2 terms have to be kept for recovery purposes. These circumstances jointly explain the
odd number of DFT cepstral coefficients.

To clarify this idea, let us consider an example where M = 23 and C = 5. The DCT cepstrum
is then described using ĉ0, ĉ1, ĉ2, ĉ3 and ĉ4, that is, 5 real numbers which can be employed to
approximately recover the mel-FBE spectrum. On the other hand, the DFT cepstrum is described using
ĉ0, which is a real number, and ĉ1 and ĉ2, which are complex numbers, that is, although 3 terms are
used, a total of 5 values (coefficients) are required. However, to approximately recover the mel-FBE
spectrum, the terms ĉ0, ĉ1, ĉ2, ĉ23 and ĉ22 can be used since ĉ1 = ĉ23 and ĉ2 = ĉ22.

As regards the results obtained for the whole dataset (Figure 15), it can be seen that DCT is better
at describing the mel-FBE spectra than is its DFT counterpart. This improvement (decrease of the
RMSE), can be measured by defining ΔRMSE ≡ RMSEDFT − RMSEDCT (Figure 16A) or its relative
value ΔRMSE(%) ≡ 100·ΔRMSE/RMSEDFT (Figure 16B). For example, for C = 11, the RMSE is
reduced from 0.209 (DFT) to 0.146, which involves an improvement of approximately 30%. For the
degenerated cases where C = 1 and C = M, there is no improvement. In the first case, only ĉ0 is used
which, according to Equations (6) and (10), is the mean value of the mel-FBE spectrum, that is, the DFT
and DCT recovering methods have the same error. On the other hand, if C = M then no reduction
on the number of coefficients is achieved, and both equations exactly recover the original spectrum
(no error).
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Figure 16. Improvement of DCT over DFT describing mel-FBE spectra. (A): ΔRMSE. (B): ΔRMSE(%).

The above results concern the mean improvement of DCT over DFT for every frame in the dataset.
In a more in-depth analysis, let us also compute its probability density function (pdf). The results
are depicted in Figure 17. In panel A, the pdf is shown for several values of the number of cepstral
coefficients (C). In panel B, the value of the pdf is colour-coded as a function of the improvement
(ΔError) and of the number of cepstral coefficients (C). It can be observed that only a negligible
number of the frames present a significant negative improvement, thereby demonstrating that DCT is
superior to DFT.

Δ

Δ

Figure 17. Improvement of DCT over DFT in describing mel-FBE spectra. (A): Probability density
function for several values of the number of cepstral coefficients. (B): Probability density function for
each value of the number of cepstral coefficients.

The higher performance of DCT over DFT is due to the fact that the mel-FBE spectra are a
special type of function derived from symmetric sound spectra. Consequently, if DCT and DFT were
compared in the task of recovering arbitrary functions, they would each present equal performance.
To demonstrate this claim, one million M-value arbitrary functions are randomly generated (M = 23),
and DFT and DCT are then employed to recover the original function with a reduced set of C coefficients
to measure the errors of that recovery. Finally, the improvement of DCT over DFT is computed.
The results are depicted in Figure 18 where it can be observed that positive and negative improvements
are symmetrically distributed around a zero-mean improvement. Therefore, it can be concluded that
DCT and DFT have similar performance in describing arbitrary functions.
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Figure 18. Improvement of DCT over DFT in describing arbitrary function. (A): Probability density
function for several values of the number of cepstral coefficients. (B): Probability density function for
each value of the number of cepstral coefficients.

From the above results, it is clear that DCT offers superior performance featuring mel-FBE spectra
and, therefore offers superior performance featuring sounds. When the purpose of these features
is to be used as input to some kind of classifier, then DCT offers an additional advantage. It is a
well-established result that classifiers obtain better results if their input features are low-correlated.
The reason is clear: a classification algorithm that includes a new feature that is highly correlated with
previous features adds almost no new information and, therefore, almost no classification improvement
should be expected. Let us therefore examine the correlation between coefficients obtained by DFT
and those by DCT.

Let us call μu the mean value of the u-th coefficient ĉui describing the i-th frame, obtained by

μu =
1

W

W

∑
i=1

ĉui, (13)

where W is the total number of frames in the dataset. The variance σ2
u of the u-th coefficient can be

obtained by

σ2
u =

1
W − 1

W

∑
i=1

(ĉui − μu)
2. (14)

The correlation ρuv between the u-th and the v-th coefficient for the whole dataset is therefore given by

ρuv =
1

W − 1

W

∑
i=1

ĉui − μu

σu
· ĉvi − μv

σv
. (15)

In Figure 19, the absolute values of the correlation are shown, whereby the values for the case
M = 23 are colour-coded. The correlations corresponding to the DFT are shown in panel A and those
corresponding to DCT in panel B. In the DFT case, each ĉui factor is a complex number, and hence the
total number of values is 46, whereby the first 23 coefficients represent the real parts and the last 23 the
imaginary parts. By simply considering the colours in that figure, it is clear that DCT coefficients are
less correlated.
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Figure 19. Correlation between cepstral coefficients describing mel-FBE spectra for DFT (panel A) and
DCT (panel B).

An alternative way to present this result is by using a histogram of the values of the correlation
coefficients, as depicted in Figure 20. Those corresponding to DCT are more frequent for the low values
of correlation, that is, DCT-obtained features are less correlated than those obtained using DFT. Hence,
classifiers of a more efficient nature should be expected from using DCT.

Figure 20. Histogram of the correlation among cepstral coefficients describing mel-FBE spectra for DFT
and DCT.

When the MFCC features are used as input of a later classification algorithm, the lower correlation
of DCT-obtained features should yield to a better classification performance. The results obtained
classifying anuran calls [35] do confirm a slight advantage for the DCT as it is reflected in Table 1.
This table has been produced taking the best result (geometric mean of sensitivity and specificity)
obtained through a set of ten classification procedures: minimum distance, maximum likelihood,
decision trees, k-nearest neighbors, support vector machine, logistic regression, neural networks,
discriminant function, Bayesian classifiers and hidden Markov models.

Table 1. Classification performance metrics for DCT and DFT.

Cepstral Transform ACC PRC F1

DFT 94.27% 74.46% 77.67%
DCT 94.85% 76.76% 78.93%

Let us finally consider the computing efforts required for these two algorithms which mainly
depend on the number of samples defining the mel-FBE spectra. Fast versions of DFT and DCT
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algorithms have been tested on a conventional desktop personal computer. The results are depicted
in Figure 21. It can be seen that DCT is about one order of magnitude slower than DFT. Although
this fact is certainly a drawback of DCT it has a limited impact on conventional MFCC extraction
process because the number of values describing the mel-FBE spectra is usually very low (about 20).
Additional studies on processing times for anuran sounds classification can be found in [34].

μ

Figure 21. Processing time required to compute the DFT and DCT vs. the number of samples describing
mel-FBE spectra.

5. Conclusions

In this article, it has been shown that DCT outperforms DFT in the task of representing sound
spectra. It has also been shown that this improvement is due to the symmetry of the spectrum and not
to any intrinsic advantage of DCT.

In representing the mel-FBE spectra required to obtain the MFCC features of anuran calls,
DCT errors are approximately 30% lower than DFT errors. This type of spectra is therefore much better
represented using DCT.

Additionally, it has been shown than MFCC features obtained using DCT are remarkably less
correlated than those obtained using DFT. This result will make DCT-based MFCC features more
powerful in later classification algorithms.

Although only one specific dataset has been analysed herein, the advantage of DCT can easily be
extrapolated to include any sound since this advantage is based on the symmetry of the spectrum of
the sound
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Abstract: In this paper, a fuzzy general linear method of order three for solving fuzzy Volterra
integro-differential equations of second kind is proposed. The general linear method is operated
using the both internal stages of Runge-Kutta method and multivalues of a multisteps method.
The derivation of general linear method is based on the theory of B-series and rooted trees.
Here, the fuzzy general linear method using the approach of generalized Hukuhara differentiability
and combination of composite Simpson’s rules together with Lagrange interpolation polynomial is
constructed for numerical solution of fuzzy volterra integro-differential equations. To illustrate the
performance of the method, the numerical results are compared with some existing numerical methods.

Keywords: fuzzy volterra integro-differential equations; fuzzy general linear method; fuzzy
differential equations; generalized Hukuhara differentiability

1. Introduction

Fuzzy differential equations (FDEs) and fuzzy integral equations (FIEs) have been extensively
studied in the past few years. They have appeared in many applications such as fuzzy matric spaces,
population models, medicine, engineering problems, and others (see [1,2]). In the treatment of FDEs,
one of the approaches was by using the definition of Hukuhara differentiability (see [3,4]). However, the
Hukuhara differentiability experienced a disadvantage in its solutions. To overcome this, generalized
Hukuhara differentiability was introduced by Bede and Gal in [5]. In the area of FIEs, the Rieman
integral concept was proposed by Goetschel and Voxman in [6]. Another concept of integration is
the Lebesgue concept by Kaleva in [7]. An early work in the numerical solutions of FDEs and FIEs
is by Friedman et al. in [8]. Later, the area of interest in FIEs has been expanded into the fuzzy
integro-differential equations (FIDEs). FIDEs take the form of both FDEs and FIEs. A particular class of
FIDEs is known as fuzzy Volterra integro-differential equations (FVIDEs). The existence and uniqueness
of FIDEs and FVIDEs solutions were investigated by Park and Jeong in [9], Hajighasemi et al. in [10],
and Zeinali et al. in [11]. Mikaeilvand et al. in [12] presented the numerical examples of FVIDEs using
the differential transform method. In [13], Allahviranloo et al. proposed a new technique to solve the
FVIDEs using definition of generalized differentiability. Later, Allahviranloo et al. in [14] discussed the
existence and uniqueness of second-order FVIDEs using the fuzzy kernel. Then Matinfar et al. in [15]
solved the FVIDEs using the variational iteration method while Sahu and Saha Ray used Legendre
wavelet method in [16].

In this work, we propose the numerical solutions of FVIDEs using the general linear method
(GLM) introduced by Butcher in [17]. The GLM is a generalization of Runge-Kutta method (RK) and
linear multistep method derived based on theory of B-series and definition of rooted trees. Recently,
the GLM was studied for finding the numerical solutions of FDEs by Rabiei et al. in [18] and based on
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that, in this paper we develop the fuzzy third-order GLM together with suitable integration method to
solve FVIDEs.

In Section 2, preliminaries on fuzzy numbers and theories are proposed. The concept of FVIDEs is
discussed in Section 3. In Section 4, the general form of GLM is given followed by demonstration of the
integration rules in Section 5. Then in Section 6, fuzzy version of the GLM combined with integration
rules for FVIDE is developed while in Section 7, we derived the fuzzy RK method for FVIDEs using
the same approaches used for GLM in Section 6. Section 8, some test problems are carried out to
illustrate the efficiency of obtained method compared with a derived fuzzy RK method of order three
in Section 7. Lastly, discussion and conclusion are presented in Section 9.

2. Preliminaries

In this section, some basic definitions on fuzzy numbers are given.

Definition 1 (see [19]). Consider a fuzzy subset of the real line u : R → [0, 1]. Then u is a fuzzy number if it
satisfies the following properties:

(i) u is normal, that is ∃ x0 ∈ R with u(x0) = 1;
(ii) u is fuzzy convex, that is u(tx + (1 − t)y) ≥ min u(x), u(y), ∀t ∈ [0, 1], x, y ∈ R;
(iii) u is upper semicontinuous on R, that is ∀ε > 0 ∃δ > 0 such that u(x)− u(x0) < ε, |x − x0| < δ;
(iv) u is compactly supported, that is cl{x ∈ R; u(x) > 0} is compact, where cl(A) denotes the closure of

the set A.

Then RF is called the space of fuzzy numbers.

Definition 2 (see [19]). For 0 < r ≤ 1, we have

[u]r = {x ∈ R; u(x) ≥ r},

and
[u]0 = cl{x ∈ R; u(x) > r}}.

Then the [u]r denotes the r-level set of the fuzzy number u. The 1-level will refer to the core while the
0-level refers to the support of the fuzzy number.

Proposition 1 (see [19]). A fuzzy number u is a pair u = (u−, u+) of functions u−, u+ : [0, 1] → R,
implying the end points of r-level set, following the conditions:

(i) u−
r ∈ R is a bounded nondecreasing left-continuous function ∀r ∈ [0, 1] and right-continuous for r = 0;

(ii) u+
r ∈ R is a bounded nonincreasing left-continuous function ∀r ∈ [0, 1] and right-continuous for r = 0;

(iii) u−
r ≤ u+

r for r = 1, which implies u−
r ≤ u+

r , ∀r ∈ [0, 1].

Definition 3 (see [19]). Let u, v ∈ RF, the distance D(u, v) between two fuzzy intervals is defined by

D∞(u, v) = sup
r∈[0,1]

max{|u−
r − v−

r |, |u+
r − v+r |}.

Then D∞(u, v) is the Hausdorff distance between fuzzy numbers.

Proposition 2 (see [19]). It is said that D∞(u, v) is a metric space in RF and the following properties hold:

(i) D∞(u + w, v + w)) = D∞(u, v), ∀u, v, w ∈ RF;
(ii) D∞(k · u, k · v) = |k|D∞(u, v), ∀u, v ∈ RF, ∀k ∈ R;
(iii) D∞(u + v, w + e) ≤ D∞(u, w) + D∞(v, e), ∀u, v, w, e ∈ RF.
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Definition 4. A function f : R → RF is said to be fuzzy continuous function if f exists for any fixed arbitrary
g0 ∈ R and ε > 0, δ > 0 such that |g − g0| < δ =⇒ D[ f (g), f (g0)] < ε.

Definition 5. Let x, y ∈ RF . If there exists z ∈ RF such that x = y ⊕ z, then z is called the Hukuhara
difference (H-difference) of x and y and it is denoted by x � y. (Please note that, x � y 	= x + (−y)).

Definition 6 (see [5]). Let f : (a, b) → RF and x0 ∈ (a, b). f is known as strongly generalized differentiable
at x0, if there exists an element f ′(x0) ∈ RF such that

(i) for all h > 0 sufficiently small, ∃ f (x0 + h)� f (x0), f (x0)� f (x0 − h) and the limits in metric D

lim
h↘0

f (x0 + h)� f (x0)

h
= lim

h↘0

f (x0)� f (x0 − h)
h

= f ′(x0), (1)

is type-(i)-differentiability on (a, b),
(ii) for all h > 0 sufficiently small, ∃ f (x0)� f (x0 + h), f (x0 − h)� f (x0) and the limits in metric D

lim
h↘0

f (x0)� f (x0 + h)
(−h)

= lim
h↘0

f (x0 − h)� f (x0)

(−h)
= f ′(x0). (2)

is type-(ii)-differentiability on (a, b),

Theorem 1 (see [20]). Let F : T → RF be a function and denote [F(t)]r = [ fr(t), gr(t)], for each r ∈ [0, 1].
Then

(i) If F is differentiable in the first form (1), then fr and gr are differentiable functions and [F′(t)]r =

[ f ′r(t), g′
r(t)],

(ii) If F is differentiable in the second form (2), then fr and gr are differentiable functions and [F′(t)]r =

[g′
r(t), f ′r(t)].

Definition 7 (see [15]). Let f : [a, b] → RF, for each partition P = {t0, t1, . . . , tn} of [a, b] and for arbitrary
ξi ∈ [ti − 1, ti], 1 ≤ i ≤ n, and suppose

Rp =
n

∑
i=1

(ξi)(ti − ti−1),

� : = max{|ti − ti−1|, 1 ≤ i ≤ n}.

The integration of f (t) over [a, b] is

∫ b

a
f (t)dt = lim

�→0
Rp,

given that in metric D, the limit exists. The definite integral of fuzzy function f (t) exists, if f (t) is continuous
function in metric D, and ( ∫ b

a
f (t)dt

)−

r
=

∫ b

a
f −r (t)dt,( ∫ b

a
f (t)dt

)+

r
=

∫ b

a
f+r (t)dt.
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3. Fuzzy Volterra Integro-Differential Equations

Consider the first order fuzzy initial value problems of second kind FVIDEs given by

y′(t) = f (t, y) +
∫ x

0
K(t, s)y(s)ds, y(t0) = y0 ∈ RF, (3)

and in short notation is given as

y′(t) = f
(

t, y,
∫ x

0
K(t, s)y(s)ds

)
, y(t0) = y0 ∈ RF, (4)

where function f : R×RF → RF, crisp function K(t, s) are continuous and y0 is a fuzzy number.
Using Theorem 1, and extending the characterization theorem in [19], FVIDE given in (4) for type

(i)-differentiability is equivalent to the following system of ODEs:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(y−

r )
′(t) = f −r (t, y−

r , y+r ) +
∫ t

0 K−(t, s)y(s)ds = F(t, y−
r , y+r ,

∫ t
0 K−(t, s)y(s)ds),

(y+r )′(t) = f+r (t, y−
r , y+r ) +

∫ t
0 K+(t, s)y(s)ds = G(t, y−

r , y+r ,
∫ t

0 K+(t, s)y(s)ds),

y−
r (0) = (y0)

−
r ,

y+r (0) = (y0)
+
r ,

(5)

and for type (ii)-differentiability FVIDE (4) is equivalent to the system of ODEs as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(y−

r )
′(t) = f+r (t, y−

r , y+r ) +
∫ t

0 K+(t, s)y(s)ds = G(t, y−
r , y+r ,

∫ t
0 K+(t, s)y(s)ds),

(y+r )′(t) = f −r (t, y−
r , y+r ) +

∫ t
0 K−(t, s)y(s)ds = F(t, y−

r , y+r ,
∫ t

0 K−(t, s)y(s)ds),

y−
r (0) = (y0)

−
r ,

y+r (0) = (y0)
+
r ,

(6)

where

K−(t, s)y(s)ds =

{
K(t, s)y−(s)ds, K(t, s) ≥ 0,

K(t, s)y+(s)ds, K(t, s) ≤ 0,

K+(t, s)y(s)ds =

{
K(t, s)y+(s)ds, K(t, s) ≥ 0,

K(t, s)y−(s)ds, K(t, s) ≤ 0.

4. General Linear Method

Consider the first order initial value problems

y′(x) = f (x, y(x)), y(x0) = y0. (7)

The general form of GLM (see [17]) is given as

Yi =
s

∑
j=1

aijhFj +
r

∑
j=1

uijy
[n−1]
j , i = 1, 2, . . . , s, (8)

y[n]i =
s

∑
j=1

bijhFj +
r

∑
j=1

vijy
[n−1]
j , i = 1, 2, . . . , r, (9)

where n is the step number, y[n]i , i = 1, 2, . . . , r are the approximate solutions, Yi, i = 1, 2, . . . , s is the
stage values and Fi, i = 1, 2, . . . , s is the stage derivatives.

The algebraic coefficients a, u, b, and v of the proposed method here, are given from Rabiei et al.
in [18] as shown in Table 1.
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Table 1. Coefficients of third-order GLM.

u11 = 1 u12 = 0
a21 = 13

18 u21 = 7
9 u22 = 2

9
a31 = −17

9 a32 = 2 u31 = 17
9 u32 = −8

9
b11 = 1

6 b12 = 2
3 b13 = 1

6 v11 = 1 v12 = 0
b21 = 0 b22 = 0 b23 = 0 v21 = 1 v22 = 0

5. Simpson’s Rule and Lagrange Interpolation Polynomial

In the FVIDE, the integral operator z ≈
∫ t

0 K(t, s)y(s)ds need to be approximated first before
applying the third-order fuzzy GLM. The range of integration is divided into two intervals as
shown below. ∫ t

0
K(t, s)y(s)ds =

∫ tn

0
K(t, s)y(s)ds +

∫ tn+c

tn
K(t, s)y(s)ds, (10)

where the grid points are calculated by tn = t0 + nh with h = T−t0
N and 0 < n < N. The value c is the

value of coefficient for third-order GLM given in Table 1.
The composite Simpson’s rule (Simpson’s II method defined in [21]) is used to compute the

integration in the interval
∫ tn

0 K(t, s)y(s)ds. Meanwhile we compute the integration in the interval∫ tn+c
tn

K(t, s)y(s)ds using Lagrange’s interpolation method. The Lagrange interpolating polynomial
is determined by interpolating on set of points {tn−1, tn, tn+c}. For points {t−1, t0, t 1

2
} the Lagrange

interpolating polynomial is:

P(t) =
(t − t0)(t − t 1

2
)

(t−1 − t0)(t−1 − t 1
2
)

y−1 +
(t − t−1)(t − t 1

2
)

(t0 − t−1)(t0 − t 1
2
)

y0 +
(t − t−1)(t − t0)

(t 1
2
− t−1)(t 1

2
− t0)

y1/2. (11)

Substituting t−1 = −h, t0 = 0, and t 1
2
= 1

2 h into (11) gives

P(t) =
2t (t − h/2)

3h2 y−1 − 2 (t + h) (t − h/2)
h2 y0 +

4 (t + h) t
3h2 y1/2. (12)

Then integrate Equation (12) with limit from 0 to h
2 , to produce

∫ t
n+ 1

2

tn
K(t, s)y(s)ds = h

{
− 1

72
K(t, s)y(tn−1) +

7
24

K(t, s)y(tn) +
2
9

K(t, s)y(tn+ 1
2
)
}

. (13)

In the first step where n = 0, the value of y(t−1) = y(t0 − h) is evaluated by using a fourth order
RK method.

6. Fuzzy General Linear Method for Fuzzy Volterra Integro-Differential Equations

Rabiei et al. [18] proposed the fuzzy GLM for solving FDEs. The convergence of the method also
was proven. Here, by using the third-order GLM derived in [18], we will apply the fuzzy GLM for
solving FVIDEs. Consider the fuzzy Problem 4, we denote the initial value y0 ∈ RF with r-level sets

[y0]r = [y−(t0; r), y+(t0; r)], r ∈ [0, 1]. (14)

The set of equally spaced grid points t0 < t1 < t2 · · · < tN = T is a set of interval T. The exact
solutions are given as

[Ỹ(t)]r = [Ỹ−(t; r), Ỹ+(t; r)], (15)

are approximated by
[y(t)]r = [y−(t; r), y+(t; r)]. (16)
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The grid points are calculated by tn = t0 + nh with h = T−t0
N and 0 < n < N. Thus, we have the

exact and approximate solutions at tn set as

[Ỹ(tn)]r = [Ỹ−(tn; r), Ỹ+(tn; r)], (17)

[y(tn)]r = [y−(tn; r), y+(tn; r)]. (18)

The third-order fuzzy GLM for solving FVIDEs based on type (i)-differentiability is given by
the formulae:

y−
i (tn+1; r) =

s=3

∑
j=1

bijhFj(tn, y(tn; r), z(tn; r)) +
r=2

∑
j=1

vijy−
j (tn; r), i = 1, . . . , r, (19)

y+i (tn+1; r) =
s=3

∑
j=1

bijhGj(tn, y(tn; r), z(tn; r)) +
r=2

∑
j=1

vijy+j (tn; r), i = 1, . . . , r, (20)

where

Y−
1 (y(tn; r)) = u11y−

1 (tn; r) + u12y−
2 (tn; r),

Y+
1 (y(tn; r)) = u11y+1 (tn; r) + u12y+2 (tn; r),

Y−
2 (y(tn; r)) = a21hF1(tn, y(tn; r), z(tn; r)) + u21y−

1 (tn; r) + u22y−
2 (tn; r),

Y+
2 (y(tn; r)) = a21hG1(tn, y(tn; r), z(tn; r)) + u21y+1 (tn; r) + u22y+2 (tn; r), (21)

Y−
3 (y(tn; r)) = a31hF1(tn, y(tn; r), z(tn; r)) + a32hF2(tn, y(tn; r), z(tn; r))

+ u31y−
1 (tn; r) + u32y−

2 (tn; r),

Y+
3 (y(tn; r)) = a31hG1(tn, y(tn; r), z(tn; r)) + a32hG2(tn, y(tn; r), z(tn; r))

+ u31y+1 (tn; r) + u32y+2 (tn; r),

such that
F1(tn, y(tn; r)) = min

{
f (tn + c1h, u, v)|u ∈ [Y−

1 (y(tn; r)), Y+
1 (y(tn; r))],

v ∈ [z−
1 (y(tn; r)), z+1 (y(tn; r))]

}
,

G1(tn, y(tn; r)) = max
{

f (tn + c1h, u, v)|u ∈ [Y−
1 (y(tn; r)), Y+

1 (y(tn; r))],

v ∈ [z−
1 (y(tn; r)), z+1 (y(tn; r))]

}
,

F2(tn, y(tn; r)) = min
{

f (tn + c2h, u, v)|u ∈ [Y−
2 (y(tn; r)), Y+

2 (y(tn; r))],

v ∈ [z−
2 (y(tn; r)), z+2 (y(tn; r))]

}
,

G2(tn, y(tn; r)) = max
{

f (tn + c2h, u, v)|u ∈ [Y−
2 (y(tn; r)), Y+

2 (y(tn; r))],

v ∈ [z−
2 (y(tn; r)), z+2 (y(tn; r))]

}
,

F3(tn, y(tn; r)) = min
{

f (tn + c3h, u, v)|u ∈ [Y−
3 (y(tn; r)), Y+

3 (y(tn; r))],

v ∈ [z−
3 (y(tn; r)), z+3 (y(tn; r))]

}
,

G3(tn, y(tn; r)) = max
{

f (tn + c3h, u, v)|u ∈ [Y−
3 (y(tn; r)), Y+

3 (y(tn; r))],

v ∈ [z−
3 (y(tn; r)), z+3 (y(tn; r))]

}
,

(22)
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and

z−
1 (y(tn)) =

∫ tn

0
K−(t, s)y(s; r)ds,

z+1 (y(tn)) =
∫ tn

0
K+(t, s)y(s; r)ds,

z−
2 (y(tn)) =

∫ tn

0
K−(t, s)y(s; r)ds +

∫ tn+c2

tn
K−(t, s)y(s)ds, (23)

z+2 (y(tn)) =
∫ tn

0
K+(t, s)y(s; r)ds +

∫ tn+c2

tn
K+(t, s)y(s)ds,

z−
3 (y(tn)) =

∫ tn

0
K−(t, s)y(s)ds +

∫ tn+c3

tn
K−(t, s)y(s)ds,

z+3 (y(tn)) =
∫ tn

0
K+(t, s)y(s)ds +

∫ tn+c3

tn
K+(t, s)y(s)ds.

Meanwhile the fuzzy third-order GLM for solving FVIDEs based on type (ii)-differentiability is
given by the formulae:

y−
i (tn+1; r) =

s=3

∑
j=1

bijhGj(tn, y(tn; r), z(tn; r)) +
r=2

∑
j=1

vijy−
j (tn; r), i = 1, . . . , r, (24)

y+i (tn+1; r) =
s=3

∑
j=1

bijhFj(tn, y(tn; r), z(tn; r)) +
r=2

∑
j=1

vijy+j (tn; r), i = 1, . . . , r, (25)

where

Y−
1 (y(tn; r)) = u11y−

1 (tn; r) + u12y−
2 (tn; r),

Y+
1 (y(tn; r)) = u11y+1 (tn; r) + u12y+2 (tn; r),

Y−
2 (y(tn; r)) = a21hG1(tn, y(tn; r), z(tn; r)) + u21y−

1 (tn; r) + u22y−
2 (tn; r),

Y+
2 (y(tn; r)) = a21hF1(tn, y(tn; r), z(tn; r)) + u21y+1 (tn; r) + u22y+2 (tn; r), (26)

Y−
3 (y(tn; r)) = a31hG1(tn, y(tn; r), z(tn; r)) + a32hG2(tn, y(tn; r), z(tn; r))

+ u31y−
1 (tn; r) + u32y−

2 (tn; r),

Y+
3 (y(tn; r)) = a31hF1(tn, y(tn; r), z(tn; r)) + a32hF2(tn, y(tn; r), z(tn; r))

+ u31y+1 (tn; r) + u32y+2 (tn; r),

where F1, F2, F3, G1,G2 and G3 are same as (22).

7. Fuzzy Runge-Kutta Method for Fuzzy Volterra Integro-Differential Equations

In this section, we will develop the fuzzy version of third-order RK method to solve the FVIDEs.
The RK method is combined with suitable integration methods to deal with the integral part. It is
appropriate to apply the composite Simpson’s rule and Lagrange’s method in Section 5 similarly. The
coefficients (see [22]) for RK method is represented in Table 2. The general form of RK method for
solving Equation (7) is given by

yn+1 = yn + h
s

∑
i=1

Biki, 1 ≤ n ≤ N − 1, (27)
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where

k1 = f (xn, yn),

ki = f (xn + Cih, yn + h
i−1

∑
j=1

Aijkj), i = 2, 3, . . . , s. (28)

Table 2. Coefficients of third-order RK method.

C1 = 0
C2 = 1

2 A21 = 1
2

C3 = 1 A31 = −1 A32 = 2
B1 = 1

6 B2 = 2
3 B3 = 1

6

The formulae of a third-order RK method for FVIDEs based on type (i)-differentiability is given
as follows:

y−(tn+1; r) = y−(tn; r) + hF(tn, (y(tn; r))), (29)

y+(tn+1; r) = y+(tn; r) + hG(tn, (y(tn; r))), (30)

while for type (ii)-differentiability is given as:

y−(tn+1; r) = y−(tn; r) + hG(tn, (y(tn; r))), (31)

y+(tn+1; r) = y+(tn; r) + hF(tn, (y(tn; r))), (32)

where

F(tn, (y(tn; r))) =
{

B1k−
1 (y(tn; r)) + B2k−

2 y((tn; r)) + B3k−
3 (y(tn; r))

}
,

G(tn, (y(tn; r))) =
{

B1k+1 ((y(tn; r)) + B2k+2 (y(tn; r)) + B3k+3 (y(tn; r))
}

, (33)

where

k−
1 (y(tn; r)) = min

{
f (t, u, v)|u ∈ [y−(tn; r), y+(tn; r)], v ∈ [z−

1 (y(tn; r)), z+1 (y(tn; r))]
}

,

k+1 (y(tn; r)) = max
{

f (t, u, v)|u ∈ [y−(tn; r), y+(tn; r)], v ∈ [z−
1 (y(tn; r)), z+1 (y(tn; r))]

}
,

k−
2 (y(tn; r)) = min

{
f (t + C2h, u, v)|u ∈ [w−

1 (tn; r), w+
1 (tn; r)], v ∈ [z−

2 (y(tn; r)), z+2 (y(tn; r))]
}

,

k+2 (y(tn; r)) = max
{

f (t + C2h, u, v)|u ∈ [w−
1 (tn; r), w+

1 (tn; r)], v ∈ [z−
2 (y(tn; r)), z+2 (y(tn; r))]

}
,

k−
3 (y(tn; r)) = min

{
f (t + C3h, u, v)|u ∈ [w−

2 (tn; r), w+
2 (tn; r)], v ∈ [z−

3 (y(tn; r)), z+3 (y(tn; r))]
}

,

k+3 (y(tn; r)) = max
{

f (t + C3h, u, v)|u ∈ [w−
2 (tn; r), w+

2 (tn; r)], v ∈ [z−
3 (y(tn; r)), z+3 (y(tn; r))]

}
,

(34)

such that
w−

1 (tn; r) = y−(tn; r) + hA21k−
1 ,

w+
1 (tn; r) = y+(tn; r) + hA21k+1 ,

w−
2 (tn; r) = y−(tn; r) + h(A31k−

1 + A32k−
2 ),

w+
2 (tn; r) = y+(tn; r) + h(A31k+1 + A32k+2 ),

(35)

77



Symmetry 2019, 11, 381

and

z−
1 (y(tn)) =

∫ tn

0
K−(t, s)y(s; r)ds,

z+1 (y(tn)) =
∫ tn

0
K+(t, s)y(s; r)ds,

z−
2 (y(tn)) =

∫ tn

0
K−(t, s)y(s; r)ds +

∫ tn+C2

tn
K−(t, s)y(s)ds,

z+2 (y(tn)) =
∫ tn

0
K+(t, s)y(s; r)ds +

∫ tn+C2

tn
K+(t, s)y(s)ds,

z−
3 (y(tn)) =

∫ tn+1

0
K−(t, s)y(s)ds,

z+3 (y(tn)) =
∫ tn+1

0
K+(t, s)y(s)ds.

(36)

8. Numerical Results

We tested the fuzzy GLM to illustrate the efficiency of the method. Comparison is made between
fuzzy versions of GLM and the RK method, Variational iteration method and homotopy perturbation
method. The efficiency of method is shown in terms of error which is estimated by E(t; r) = |y(t; r)−
Y(t; r)| and E(t; r) = |y(t; r)− Y(t; r)|. List of abbreviations used in the tabulated results are as follows:

r r-level set of fuzzy numbers,
Ỹ− Left bound of exact solution,
Ỹ+ Right bound of exact solution,
y− Left bound of approximate solution,
y+ Right bound of approximate solution,
E− Left bound of error computed (|y− − Ỹ−|),
E+ Right bound of error computed (|y+ − Ỹ+|),
GLM Third-order general linear method from this paper,
RK Third-order Runge-Kutta method from Section 7,
VIM Variational iteration method from [15],
HAM Homotopy perturbation method from [15].

8.1. Problem 1

Consider the following FVIDEs (see [15])

y′(t) = C
1

12t
(36 − 5t4) +

∫ t

0
(t2 + s2)y(s; r)ds,

C = [(r5 + 2r)t3, (6 − 3r3)t3], y(0) = [0, 0], 0 ≤ s ≤ t ≤ 1.

The equivalent system of ODEs based on (i)-differentiability:

(y−)′(t; r) =
1
12

rt2(r4 + 2)(36 − 5t4) +
∫ t

0
(t2 + s2)y−(s; r)ds, y−(0; r) = 0,

(y+)′(t; r) =
1
4

t2(r3 − 2)(5t4 − 36) +
∫ t

0
(t2 + s2)y+(s; r)ds, y+(0; r) = 0.

Exact solutions :

Ỹ−(t; r) = (r5 + 2r)t3,

Ỹ+(t; r) = (6 − 3r3)t3.
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For Problem 1, the graphical results of GLM together with exact solutions are shown in Figure 1.
The comparison of numerical results of GLM with existing methods is given in Table 3 and Figure 2.

Table 3. Comparison between GLM and existing methods for solving Problem 1.

GLM RK VIM HPM

r E−(t = 0.5; r) E−(t = 1; r) E−(t = 0.5; r) E−(t = 1; r) E−(t = 0.5; r) E−(t = 0.5; r)

0.0 0 0 0 0 0 0
0.1 9.956810(−11) 1.209550(−9) 4.823713(−10) 7.462263(−9) 7.6675(−11) 2.5125(−6)
0.2 1.992855(−10) 2.420914(−9) 9.654662(−10) 1.493572(−8) 1.5347(−10) 5.0288(−6)
0.3 2.998988(−10) 3.643163(−9) 1.452902(−9) 2.247632(−8) 2.3095(−10) 7.5676(−6)
0.4 4.033500(−10) 4.899886(−9) 1.954086(−9) 3.022960(−8) 3.1061(−10) 1.0178(−5)
0.5 5.133730(−10) 6.236430(−9) 2.487103(−9) 3.847537(−8) 3.9534(−10) 1.2954(−5)
0.6 6.360880(−10) 7.727180(−9) 3.081621(−9) 4.767250(−8) 4.8984(−10) 1.6051(−5)
0.7 7.806100(−10) 9.482820(−8) 3.781770(−9) 5.850381(−8) 6.0113(−10) 1.9698(−5)
0.8 9.596280(−10) 1.165754(−8) 4.649055(−9) 7.192064(−8) 7.3899(−10) 2.4215(−5)
0.9 1.190025(−9) 1.445635(−8) 5.765231(−9) 8.918787(−8) 9.1641(−10) 3.0029(−5)
1.0 1.493445(−9) 1.814234(−8) 7.235207(−9) 1.119283(−7) 1.1501(−9) 3.7686(−5)
r E+(t = 0.5; r) E+(t = 1; r) E+(t = 0.5; r) E+(t = 1; r) E+(t = 0.5; r) E+(t = 0.5; r)

0.0 2.986892(−9) 3.628465(−8) 1.447042(−8) 2.238567(−7) 2.3001(−9) 7.5371(−5)
0.1 2.985401(−9) 3.626651(−8) 1.446318(−8) 2.237446(−7) 2.2990(−9) 7.5333(−5)
0.2 2.974945(−9) 3.613950(−8) 1.441254(−8) 2.229612(−7) 2.2909(−9) 7.5070(−5)
0.3 2.946571(−9) 3.579484(−8) 1.427506(−8) 2.208346(−7) 2.2691(−9) 7.4354(−5)
0.4 2.891310(−9) 3.512354(−8) 1.400736(−8) 2.166932(−7) 2.2265(−9) 7.2959(−5)
0.5 2.800214(−9) 3.401690(−8) 1.356601(−8) 2.098656(−7) 2.1564(−9) 7.0660(−5)
0.6 2.664307(−9) 3.236592(−8) 1.290761(−8) 1.996801(−7) 2.0517(−9) 6.7231(−5)
0.7 2.474641(−9) 3.006184(−8) 1.198874(−8) 1.854652(−7) 1.9057(−9) 6.2444(−5)
0.8 2.222250(−9) 2.699583(−8) 1.076599(−8) 1.665493(−7) 1.7113(−9) 5.6076(−5)
0.9 1.898170(−9) 2.305891(−8) 9.195954(−8) 1.422609(−7) 1.4617(−9) 4.7899(−5)
1.0 1.493445(−9) 1.814234(−8) 7.235207(−8) 1.119283(−7) 1.1501(−9) 3.7686(−5)

(a) (b)

Figure 1. (a) Approximate solution of GLM (circle) and exact solution (line) at t = 1.0; (b) 3D-plot of
GLM for Problem 1.
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(a) (b)

Figure 2. (a) Graph of Log (Error) versus r at t = 0.5 for left bound of solutions; (b) Graph of Log
(Error) versus r at t = 0.5 for right bound of solutions for Problem 1.

8.2. Problem 2

Consider the following FVIDEs (see [12])

y′(t) = C +
∫ t

0
y(s; r)ds,

C = [r − 1, 1 − r], y(0) = [0, 0], 0 ≤ s ≤ t ≤ 1.

The equivalent system of ODEs based on (i)-differentiability:

(y−)′(t; r) = (r − 1) +
∫ t

0
y−(s; r)ds, y−(0; r) = 0,

(y+)′(t; r) = (1 − r) +
∫ t

0
y+(s; r)ds, y+(0; r) = 0.

Exact solutions :

Ỹ−(t; r) = (r − 1) sinh(t),

Ỹ+(t; r) = (1 − r) sinh(t).

For Problem 2, the graph of approximate solutions and 3D-plot of GLM are represented in Figure 3.
Table 4 and Figure 4, show the numerical results using GLM compared with RK method.

(a) (b)

Figure 3. (a) Approximate solution of GLM (circle) and exact solution (line) at t = 1.0; (b) 3D-plot of
GLM for Problem 2.
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Table 4. Comparison between GLM and RK for solving Problem 2.

GLM RK

r E−(t = 0.5; r) E−(t = 1; r) E−(t = 0.5; r) E−(t = 1; r)

0.0 2.069650(−10) 8.391900(−10) 1.431575(−9) 6.462170(−9)
0.1 1.862700(−10) 7.552900(−10) 1.288422(−9) 5.815940(−9)
0.2 1.655720(−10) 6.713560(−10) 1.145253(−9) 5.169731(−9)
0.3 1.655720(−10) 5.874450(−10) 1.145253(−9) 4.523523(−9)
0.4 1.241780(−10) 5.035170(−10) 8.589440(−10) 3.877302(−9)
0.5 1.034820(−10) 4.195950(−10) 7.157840(−10) 3.231079(−9)
0.6 8.278600(−11) 3.356810(−10) 5.726270(−10) 2.584868(−9)
0.7 6.208900(−11) 2.517620(−10) 4.294700(−10) 1.938651(−9)
0.8 4.139400(−11) 1.678420(−10) 2.863150(−10) 1.292426(−9)
0.9 2.069650(−11) 8.391900(−10) 1.431575(−10) 6.462170(−9)
1.0 0 0 0 0
r E+(t = 0.5; r) E+(t = 1; r) E+(t = 0.5; r) E+(t = 1; r)

0.0 2.069650(−10) 8.391900(−10) 1.431575(−9) 6.462170(−9)
0.1 1.862700(−10) 7.552900(−10) 1.288422(−9) 5.815940(−9)
0.2 1.655720(−10) 6.713560(−10) 1.145253(−9) 5.169731(−9)
0.3 1.448800(−10) 5.874450(−10) 1.002105(−9) 4.523523(−9)
0.4 1.241780(−10) 5.035170(−10) 8.589440(−10) 3.877302(−9)
0.5 1.034820(−10) 4.195950(−10) 7.157840(−10) 3.231079(−9)
0.6 8.278600(−11) 3.356810(−10) 5.726270(−10) 2.584868(−9)
0.7 6.208900(−11) 2.517620(−10) 4.294700(−10) 1.938651(−9)
0.8 4.139400(−11) 1.678420(−10) 2.863150(−10) 1.292426(−9)
0.9 2.069650(−11) 8.391900(−10) 1.431575(−10) 6.462170(−9)
1.0 0 0 0 0

Figure 4. Graph of Log (Error) versus r at t = 0.5 for left bound of solutions and right bound of
solutions for Problem 2.

8.3. Problem 3

Consider the following FVIDEs (see [23])

y′(t) = C +
∫ t

0
(−y(s))ds,

C = [2(r − 2) sin(t), 2(2 − 3r) sin(t)], y(0) = [3r − 2, 2 − r], 0 ≤ t ≤ 1.
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The equivalent system of ODEs based on (i)-differentiability:

(y−)′(t; r) = 2(r − 2) sin(t) +
∫ 1

0
(−1)y+(s; r)ds, y−(0; r) = 3r − 2,

(y+)′(t; r) = 2(2 − 3r) sin(t) +
∫ 1

0
(−1)y−(s; r)ds, y+(0; r) = 2 − r.

Exact solutions based on (i)-differentiability:

Ỹ−(t; r) = −rt sin(t) + (2 − r) cos(t) + 2(r − 1)(exp(t) + exp(−t)),

Ỹ+(t; r) = −rt sin(t) + (3r − 2) cos(t) + 2(1 − r)(exp(t) + exp(−t)).

The equivalent system of ODEs based on (ii)-differentiability:

(y−)′(t; r) = 2(2 − 3r) sin(t) +
∫ 1

0
(−1)y−(s; r)ds, y−(0; r) = 3r − 2,

(y+)′(t; r) = 2(r − 2) sin(t) +
∫ 1

0
(−1)y+(s; r)ds, y+(0; r) = 2 − r.

Exact solutions based on (ii)-differentiability:

Ỹ−(t; r) = (3r − 2)(cos(t)− t sin(t)),

Ỹ+(t; r) = (2 − r)(cos(t)− t sin(t)).

For Problem 3, the graph of approximate solution compared with exact solution is given in
Figure 5. Also the numerical results of GLM are compared with RK method using the both types of
differentiabilities. The comparison of obtained results based on type (i)-differentiability are presented
in Table 5 and Figure 6 whereas the results obtained based on type (ii)-differentiability are given in
Table 6 and Figure 7. 3D-plots of GLM based on types (i) and (ii)-differentiability are shown in Figure 8.

(a) (b)

Figure 5. (a) Approximate solution of GLM (circle) and exact solution (line) at t = 1.0 using type
(i)-differentiability; (b) Approximate solution of GLM (circle) and exact solution (line) at t = 1.0 using
type (ii)-differentiability for Problem 3.
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Table 5. Comparison between GLM and RK for solving Problem 3 based on (i)-differentiability.

GLM RK

r E−(t = 0.5; r) E−(t = 1; r) E−(t = 0.5; r) E−(t = 1; r)

0.0 9.591260(−9) 1.703350(−8) 3.884529(−8) 8.745231(−8)
0.1 8.252610(−9) 1.499912(−8) 3.333684(−8) 7.665465(−8)
0.2 6.913930(−9) 1.296471(−8) 2.782840(−8) 6.585705(−8)
0.3 5.575350(−9) 1.093031(−8) 2.231994(−8) 5.505935(−8)
0.4 4.236740(−9) 8.895910(−9) 1.681141(−8) 4.426157(−8)
0.5 2.898090(−9) 6.861520(−9) 1.130299(−8) 3.346385(−8)
0.6 1.559467(−9) 4.827130(−9) 5.794547(−9) 2.266616(−8)
0.7 2.208310(−10) 2.792740(−9) 2.860890(−10) 1.186848(−8)
0.8 1.117786(−9) 7.583400(−9) 5.222359(−9) 1.070790(−8)
0.9 2.456414(−9) 1.276027(−9) 1.073082(−8) 9.726932(−8)
1.0 3.795042(−9) 3.310421(−9) 1.623928(−8) 2.052464(−8)
r E+(t = 0.5; r) E+(t = 1; r) E+(t = 0.5; r) E+(t = 1; r)

0.0 9.591260(−9) 1.703350(−8) 3.884529(−8) 8.745231(−8)
0.1 9.011600(−9) 1.566117(−8) 3.658467(−8) 8.075957(−8)
0.2 8.431990(−9) 1.428888(−8) 3.432415(−8) 7.406693(−8)
0.3 7.852400(−9) 1.291656(−8) 3.206350(−8) 6.737409(−8)
0.4 7.272740(−9) 1.154423(−8) 2.980293(−8) 6.068132(−8)
0.5 6.693130(−9) 1.017195(−8) 2.754225(−8) 5.398850(−8)
0.6 6.113500(−9) 8.799650(−9) 2.528165(−8) 4.729569(−8)
0.7 5.533890(−9) 7.427330(−9) 2.302113(−8) 4.060305(−8)
0.8 4.954250(−9) 6.054989(−9) 2.076049(−8) 3.391018(−8)
0.9 4.374664(−9) 4.682732(−9) 1.849986(−8) 2.721740(−8)
1.0 3.795042(−9) 3.310421(−9) 1.623928(−8) 2.052464(−8)

(a) (b)

Figure 6. (a) Graph of Log (Error) versus r at t = 0.5 for left bound of solutions using type
(i)-differentiability; (b) Graph of Log (Error) versus r at t = 0.5 for right bound of solutions using type
(i)-differentiability for Problem 3.
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Table 6. Comparison between GLM and RK for solving Problem 3 based on (ii)-differentiability.

GLM RK

r E−(t = 0.5; r) E−(t = 1; r) E−(t = 0.5; r) E−(t = 1; r)

0.0 7.590100(−9) 6.620856(−9) 3.247856(−8) 4.104928(−8)
0.1 6.451570(−9) 5.627722(−9) 2.760677(−8) 3.489188(−8)
0.2 5.313055(−9) 4.634590(−9) 2.273503(−8) 2.873452(−8)
0.3 4.174528(−9) 3.641453(−9) 1.786324(−8) 2.257713(−8)
0.4 3.036036(−9) 2.648343(−9) 1.299143(−8) 1.641972(−8)
0.5 1.897518(−9) 1.655208(−9) 8.119643(−9) 1.026232(−8)
0.6 7.590100(−10) 6.620856(−10) 3.247856(−9) 4.104928(−9)
0.7 3.795042(−10) 3.310421(−10) 1.623928(−9) 2.052464(−9)
0.8 1.518015(−9) 1.324166(−9) 6.495721(−9) 8.209863(−8)
0.9 2.656530(−9) 2.317297(−9) 1.136750(−8) 1.436725(−8)
1.0 3.795042(−9) 3.310421(−9) 1.623928(−8) 2.052464(−8)
r E+(t = 0.5; r) E+(t = 1; r) E+(t = 0.5; r) E+(t = 1; r)

0.0 7.590100(−9) 6.620856(−9) 3.247856(−8) 4.104928(−8)
0.1 7.210590(−9) 6.289804(−9) 3.085463(−8) 3.899682(−8)
0.2 6.831070(−9) 5.958752(−9) 2.923064(−8) 3.694430(−8)
0.3 6.451570(−9) 5.627722(−9) 2.760677(−8) 3.489188(−8)
0.4 6.072060(−9) 5.296667(−9) 2.598287(−8) 3.283943(−8)
0.5 5.692550(−9) 4.965625(−9) 2.435890(−8) 3.078694(−8)
0.6 5.313055(−9) 4.634590(−9) 2.273503(−8) 2.873452(−8)
0.7 4.933553(−9) 4.303548(−9) 2.111106(−8) 2.668203(−8)
0.8 4.554036(−9) 3.972496(−9) 1.948713(−8) 2.462956(−8)
0.9 4.174528(−9) 3.641453(−9) 1.786324(−8) 2.257713(−8)
1.0 3.795042(−9) 3.310421(−9) 1.623928(−8) 2.052464(−8)

(a) (b)

Figure 7. (a) Graph of Log (Error) versus r at t = 0.5 for left bound of solutions using type
(ii)-differentiability; (b) Graph of Log (Error) versus r at t = 0.5 for right bound of solutions using type
(ii)-differentiability for Problem 3.
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(a) (b)

Figure 8. (a) 3D-plot of GLM using type (i)-differentiability for Problem 3; (b) 3D-plot of GLM using
type (ii)-differentiability for Problem 3.

9. Discussion and Conclusions

Using the fuzzy GLM and fuzzy RK derived in this paper, the three FVIDEs given in Problems
1–3 are solved and the numerical results are shown. In addition, the obtained numerical results are
compared with two other existing methods, variational iteration method and homotopy perturbation
method, for Problem 1 at t = 0.5.

For Problem 1, in Table 3, it is observed that the left bound of errors at t = 0.5 obtained by the
fuzzy GLM is competitive with the fuzzy RK for r = 0.2 , 0.9 , 1.0. At t = 1, the left bound errors from
the fuzzy GLM is comparable with fuzzy RK when r = 0.1 , 0.7 , 0.8 , 0.9. However, for the rest of errors
fuzzy GLM achieved better accuracy compared to fuzzy RK. Moreover, the errors for the right bound
of fuzzy GLM at both t = 0.5 and t = 1 are found to be one decimal place better than the fuzzy RK
method. Meanwhile, the results acquired by GLM are almost the same with the results acquired by
VIM. In comparison between GLM and HPM, GLM clearly outperformed the HPM.

For Problem 2, in Table 4, the fuzzy GLM is competitive with the fuzzy RK only when r = 0.4
and r = 0.5, though for the rest of r-levels the fuzzy GLM outperformed the fuzzy RK again by one
decimal place better. For Problem 3, both types of differentiability are applied to solve this problem. In
Table 5 by using type (i)-differentiability, there are some competitive results between the fuzzy GLM
and fuzzy RK. However, in Table 6 by using type (ii)-differentiability, for almost all r-levels the fuzzy
GLM gave more accurate results than the fuzzy RK.

Graphical illustrations of approximated solutions by fuzzy GLM in comparison with the exact
solutions and 3D-plots of GLM for solving FVIDEs are presented in Figures 1, 3, 5 and 8. The graphs
shown that the GLM performed the accurate results. Moreover, in Figure 5b the approximate solutions
of GLM based on type (ii)-differentiability showed smaller bound compared to the solutions based on
type (i)-differentiability in Figure 5a. Considering that there exists a negative function in Problem 3,
therefore the (ii)-differentiability approach is preferred. Graphs of comparison in terms of errors at
t = 0.5 between fuzzy GLM and other methods are showed as well. The fuzzy GLM is seen competitive
with the VIM in Figure 2 meanwhile from Figures 4, 6, and 7, the fuzzy GLM is the more accurate
method than HPM and RK3.

In conclusion, the fuzzy GLM combined with Simpson’s II method and Lagrange interpolation
polynomials is an efficient numerical method for solving FVIDEs.
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1. Introduction

We denote by A (U) the class of functions which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} ,

where C is the complex plane. Let A be the class of analytic functions having the following
normalized form:

f (z) = z +
∞

∑
n=2

anzn (∀ z ∈ U) (1)

in the open unit disk U, centered at the origin and normalized by the conditions given by

f (0) = 0 and f ′ (0) = 1.

In addition, let S ⊂ A be the class of functions which are univalent in U. The class of starlike
functions in U will be denoted by S∗, which consists of normalized functions f ∈ A that satisfy the
following inequality:

�
(

z f ′ (z)
f (z)

)
> 0, (∀ z ∈ U) . (2)
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If two functions f and g are analytic in U, we say that the function f is subordinate to g and write
in the form:

f ≺ g or f (z) ≺ g (z) ,

if there exists a Schwarz function w which is analytic in U, with

w (0) = 0 and |w (z)| < 1,

such that
f (z) = g

(
w (z)

)
.

In particular, if the function g is univalent in U, then it follows that (cf., e.g., [1]; see also [2])

f (z) ≺ g(z) (z ∈ U) ⇒ f (0) = g(0) and f (U) ⊂ g(U).

Moreover, for two analytic functions f and g given by

f (z) = z +
∞

∑
n=2

anzn (∀ z ∈ U)

and

g(z) = z +
∞

∑
n=2

bnzn (∀ z ∈ U) ,

the convolution (or the Hadamard product) of f and g is defined as follows:

f (z) ∗ g(z) = z +
∞

∑
n=2

anbnzn.

We next denote by P the class of analytic functions p which are normalized by

p (z) = 1 +
∞

∑
n=1

pnzn, (3)

such that
�
(

p (z)
)
> 0 (z ∈ U).

We now recall some essential definitions and concept details of the basic or quantum (q-) calculus,
which are used in this paper. We suppose throughout the paper that 0 < q < 1 and that

N = {1, 2, 3, · · · } = N0 \ {0} (N0 = {0, 1, 2, 3, · · · }).

Definition 1. Let q ∈ (0, 1) and define the q-number [λ]q by

[λ]q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − qλ

1 − q
(λ ∈ C)

n−1
∑

k=0
qk = 1 + q + q2 + · · ·+ qn−1 (λ = n ∈ N).
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Definition 2. Let q ∈ (0, 1) and define the q-factorial [n]q! by

[n]q! =

⎧⎪⎪⎨⎪⎪⎩
1 (n = 0)

n−1
∏

k=1
[k]q (n ∈ N).

Definition 3. Let q ∈ (0, 1) and define the generalized q-Pochhammer symbol [λ]q,n by

[λ]q,n =

⎧⎪⎪⎨⎪⎪⎩
1 (n = 0)

n
∏

k=0
[λ + k]q (n ∈ N).

Definition 4. For ω > 0, let the q-gamma function Γq(ω) be defined by

Γq (ω + 1) = [ω]q Γq (ω) and Γq (1) := 1.

Definition 5. (see [3,4]) The q-derivative (or the q-difference) operator Dq of a function f in a given subset of
C is defined by

(
Dq f

)
(z) =

⎧⎪⎪⎨⎪⎪⎩
f (z)− f (qz)
(1 − q) z

(z 	= 0)

f ′ (0) (z = 0) ,

(4)

provided that f ′ (0) exists.

We note from Definition 5 that

lim
q→1−

(
Dq f

)
(z) = lim

q→1−
f (qz)− f (z)
(1 − q) z

= f ′ (z) ,

for a differentiable function f in a given subset of C. It is readily deduced from (1) and (4) that

(
Dq f

)
(z) = 1 +

∞

∑
n=2

[n]q anzn−1. (5)

The operator Dq plays a vital role in the investigation and study of numerous subclasses of the
class of analytic functions of the form given in Definition 5. A q-extension of the class of starlike
functions was first introduced in [5] by using the q-derivative operator (see Definition 6 below).
A background of the usage of the q-calculus in the context of Geometric Funciton Theory was actually
provided and the basic (or q-) hypergeometric functions were first used in Geometric Function Theory
by Srivastava (see, for details, [6]). Some recent investigations associated with the q-derivative operator
Dq in analytic function theory can be found in [7–13] and the references cited therein.

Definition 6. (see [5]) A function f ∈ A (U) is said to belong to the class S∗
q if

f (0) = f ′ (0)− 1 = 0 (6)

and ∣∣∣∣ z
f (z)

(
Dq f

)
(z)− 1

1 − q

∣∣∣∣ � 1
1 − q

(∀ z ∈ U) . (7)

The notation S∗
q was first used by Sahoo et al. (see [14]).
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It is readily observed that, as q → 1−, the closed disk given∣∣∣∣w − 1
1 − q

∣∣∣∣ � 1
1 − q

becomes the right-half plane and the class S∗
q reduces to S∗. Equivalently, by using the principle of

subordination between analytic functions, we can rewrite the conditions in (6) and (7) as follows
(see [15]):

z
f (z)

(
Dq f

)
(z) ≺ p̂

(
p̂ =

1 + z
1 − qz

)
.

Definition 7. (see [16]) For a function f ∈ A (U) , the Ruscheweyh-type q-derivative operator is
defined as follows:

Rδ
q f (z) = φ (q, δ + 1; z) ∗ f (z) = z +

∞

∑
n=2

ψn−1anzn (z ∈ U; δ > −1) , (8)

where

φ (q, δ + 1; z) = z +
∞

∑
n=2

ψn−1zn (9)

and

ψn−1 =
Γq (δ + n)

[n − 1]q!Γq (δ + 1)
=

[n + 1]n−1,q

[n − 1]q!
. (10)

From (8) it can be seen that

R0
q f (z) = f (z) and R1

q f (z) = zDq f (z) ,

Rm
q f (z) =

zDm
q f (z)

(
zm−1 f (z)

)
[m]q!

(m ∈ N),

lim
q→1−

φ (q, δ + 1; z) =
z

(1 − z)δ+1

and
lim

q→1−
Rδ

q f (z) = f (z) ∗ z

(1 − z)δ+1 .

This shows that, in case of q → 1−, the Ruscheweyh-type q-derivative operator reduces
to the Ruscheweyh derivative operator Dδ f (z) (see [17]). From (8) the following identity can
easily be derived:

zDqRδ
q f (z) =

(
1 +

[δ]q

qδ

)
Rδ+1

q f (z)−
[δ]q

qδ
Rδ

q f (z) . (11)

If q → 1−, then

z
(
Rδ f (z)

)′
= (1 + δ)Rδ+1 f (z)− δRδ f (z) .

Now, by using the Ruscheweyh-type q-derivative operator, we define the following class of
q-starlike functions.

Definition 8. For f ∈ A (U) , we say that f belongs to the class RS∗
q (δ) if the following inequality holds true:∣∣∣∣∣ zDqRδ

q f (z)
f (z)

− 1
1 − q

∣∣∣∣∣ � 1
1 − q

(z ∈ U; δ > −1)
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or, equivalently, we have (see [15])
zDqRδ

q f (z)
f (z)

≺ 1 + z
1 − qz

(12)

by using the principle of subordination.

Let n � 0 and j � 1. The jth Hankel determinant is defined as follows:

Hj (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+j−1
an+1 . .
. . .
. . .
. . .
an+j−1 . . . . an+2(j−1)

∣∣∣∣∣∣∣∣∣∣∣∣
The above Hankel determinant has been studied by several authors. In particular, sharp upper

bounds on H2 (2) were obtained by several authors (see, for example, [18–21]) for various classes of
normalized analytic functions. It is well-known that the Fekete-Szegö functional

∣∣a3 − a2
2

∣∣ = H2 (1).
This functional is further generalized as

∣∣a3 − μa2
2

∣∣ for some real or complex μ. In fact, Fekete and Szegö
gave sharp estimates of

∣∣a3 − μa2
2

∣∣ for real μ and f ∈ S , the class of normalized univalent functions
in U. It is also known that the functional

∣∣a2a4 − a2
3

∣∣ is equivalent to H2 (2). Babalola [22] studied the
Hankel determinant H3 (1) for some subclasses of analytic functions. In the present investigation, our
focus is on the Hankel determinant H3 (1) for the above-defined function class RS∗

q (δ) .

2. A Set of Lemmas

Each of the following lemmas will be needed in our present investigation.

Lemma 1. (see [23]) Let
p(z) = 1 + c1z + c2z2 + · · ·

be in the class P of functions with positive real part in U. Then, for any complex number υ,

∣∣∣c2 − υc2
1

∣∣∣ �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−4υ + 2 (υ � 0)

2 (0 � υ � 1)

4υ − 2 (υ � 1) .

(13)

When υ < 0 or υ > 1, the equality holds true in (13) if and only if

p(z) =
1 + z
1 − z

or one of its rotations. If 0 < υ < 1, then the equality holds true in (13) if and only if

p(z) =
1 + z2

1 − z2

or one of its rotations. If υ = 0, the equality holds true in (13) if and only if

p(z) =
(

1 + ρ

2

)
1 + z
1 − z

+

(
1 − ρ

2

)
1 − z
1 + z

(0 � ρ � 1)

or one of its rotations. If υ = 1, then the equality in (13) holds true if p(z) is a reciprocal of one of the functions
such that the equality holds true in the case when υ = 0.
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Lemma 2. (see [24,25]) Let
p(z) = 1 + p1z + p2z2 + · · ·

be in the class P of functions with positive real part in U. Then

2p2 = p2
1 + x

(
4 − p2

1

)
for some x, |x| � 1 and

4p3 = p3
1 + 2

(
4 − p2

1

)
p1x −

(
4 − p2

1

)
p1x2 + 2

(
4 − p2

1

) (
1 − |x|2

)
z

for some z (|z| � 1).

Lemma 3. (see [26]) Let
p(z) = 1 + p1z + p2z2 + · · ·

be in the class P of functions positive real part in U. Then

|pk| � 2 (k ∈ N)

and the inequality is sharp.

3. Main Results

In this section, we will prove our main results. Throughout our discussion, we assume that

q ∈ (0, 1) and δ > −1.

Our first main result is stated as follows.

Theorem 1. Let f ∈ RS∗
q (δ) be of the form (1). Then

∣∣∣a3 − μa2
2

∣∣∣ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + q + q2)ψ2

1 − μ (1 + q)2 ψ2

q2ψ2ψ2
1

(
μ <

(
q2 + 1

)
ψ2

1

(1 + q)2 ψ2

)

1
qψ2

((
q2 + 1

)
ψ2

1

(1 + q)2 ψ2
� μ � ψ2

1
ψ2

)

μ (1 + q)2 ψ2 −
(
1 + q + q2)ψ2

1

q2ψ2ψ2
1

(
μ >

ψ2
1

ψ2

)
,

where ψn−1 is given by (10).
It is also asserted that, for (

q2 + 1
)

ψ2
1

(1 + q)2 ψ2
� μ �

(
1 + q + q2)ψ2

1

(1 + q)2 ψ2
,

|a3 − μa2
2|+

(
μ −

(
q2 + 1

)
ψ2

1

(1 + q)2 ψ2

)
|a2|2 ≤ 1

qψ2

and that , for (
1 + q + q2)ψ2

1

(1 + q)2 ψ2
� μ � ψ2

1
ψ2

,
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|a3 − μa2
2|+

(
ψ2

1 − μψ2

ψ2

)
|a2|2 � 1

qψ2
.

Proof. If f ∈ RS∗
q (δ), then it follows from (12) that

zDqRδ
q f (z)

f (z)
≺ φ (z) , (14)

where
φ (z) =

1 + z
1 − qz

.

We define a function p(z) by

p (z) =
1 + w (z)
1 − w (z)

= 1 + p1z + p2z2 + p3z3 + · · · .

It is clear that p ∈ P . From the above equation, we have

w (z) =
p (z)− 1
p (z) + 1

.

From (14), we find that
zDqRδ

q f (z)
f (z)

= φ
(
w (z)

)
,

together with

φ (w (z)) =
2p (z)

(1 − q) p (z) + 1 + q
.

Now

2p (z)
(1 − q) p (z) + 1 + q

= 1 +
1
2
(1 + q)p1z +

{
1
2
(q + 1)p2 − 1

4
(1 − q2)p2

1

}
z2

+

{
1
2
(1 + q)p3 − 1

2
(1 − q2)p1 p2 +

1
8
(1 + q)(1 − q)2 p3

1

}
z3

+

{
1
2
(1 + q) p4 =

1
4

(
1 − q2

)
p2

2 − 1
2

(
1 − q2

)
p1 p3

+
3
8
(1 + q)(q − 1)2 p2

1 p2 +
1
16

(1 + q)(1 − q)3 p4
1

}
z4 + · · · .

Similarly, we get

zDqRδ
q f (z)

Rδ
q f (z)

= 1 + qa2ψ1z +
{(

q + q2)ψ2a3 − qψ2
1a2

2
}

z2 +

{ (
q + q2 + q3)ψ3a4

−
(
2q + q2)ψ1ψ2a2a3 + qψ3

1a3
2

}
z3 +

{ (
q + q2 + q3 + q4)ψ5a5

−
(
2q + q2 + q3)ψ2ψ3a2a4 −

(
q + q2)ψ2

2a2
3

+
(
3q + q2)ψ2

1ψ2a2
2a3 − qψ4

1a4
2

}
z4 + · · · ,
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Therefore, we have

a2 =
(1 + q)
2qψ1

p1, (15)

a3 =
1

2qψ2
p2 +

(
q2 + 1

)
4q2ψ2

p2
1 (16)

and

a4 =
(1 + q)

2q (1 + q + q2)ψ3
p3 − (1 + q) (q − 2) (2q + 1)

4q2 (1 + q + q2)ψ3
p1 p2

+
(1 + q)

(
q2 + 1

) (
q2 − q + 1

)
8q3 (1 + q + q2)ψ3

p3
1.

(17)

We thus obtain ∣∣∣a3 − μa2
2

∣∣∣ = 1
2qψ2

∣∣∣∣∣p2 −
(

μ (1 + q)2 ψ2 −
(
1 + q2)ψ2

1

2qψ2
1

)
p2

1

∣∣∣∣∣ . (18)

Finally, by applying Lemma 1 and Equation (13) in conjunction with (18), we obtain the result
asserted by Theorem 1.

We now state and prove Theorem 2 below.

Theorem 2. Let f ∈ RS∗
q (δ) be of the form (1). Then

∣∣∣a2a4 − a2
3

∣∣∣ � 1
q2ψ2

2
.

Proof. From (15)–(17), we obtain

a2a4 − a2
3 =

(
(1 + q)2

4q2 (1 + q + q2)ψ1ψ3

)
p1 p3 −

(
(1 + q)2 (q − 2) (2q + 1)

8q3 (1 + q + q2)ψ1ψ3
+

(
q2 + 1

)
4q3ψ2

2

)
p2

1 p

−
(

1
4q2ψ2

2

)
p2

2 +

(
−
(
q2 + 1

)2

16q4ψ2
2

+
(1 + q)2 (q2 + 1

) (
q2 − q + 1

)
16q3 (1 + q + q2)ψ1ψ3

)
p4

1.

By using Lemma 2, we have

a2a4 − a2
3 =

(
(1 + q)2 (q2 + 1

) (
q2 − q + 1

)
16q3 (1 + q + q2)ψ1ψ3

−
(
q2 + 1

)2

16q4ψ2
2

)
p4

1

+

(
(1 + q)2

16q2 (1 + q + q2)ψ1ψ3

)
p1

{
p3

1 + 2p1

(
4 − p2

1

)
x

−p1

(
4 − p2

1

)
x2 + 2

(
4 − p2

1

) (
1 − |x|2

)
z
}
+

((
q2 + 1

)
8q3ψ2

2

· (1 + q)2 (q − 2) (2q + 1)
16q3 (1 + q + q2)ψ1ψ3

)
p2

1

{(
p2

1 +
(

4 − p2
1

)
x
)}

−
(

1
16q2ψ2

2

){
p4

1 +
(

4 − p2
1

)2
x2 + 2p2

1

(
4 − p2

1

)
x
}

.
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Now, taking the moduli and replacing |x| by ρ and p1 by p, we have∣∣∣a2a4 − a2
3

∣∣∣ � 1
Λ (q)

[
ω (q) p4 + 2q (1 + q)2 ψ2

2 p
(

4 − p2
)

+ Ω (q)
(

4 − p2
)

p2ρ +
(

q (q + 1)2 ψ2
2 p2 + q

(
4 − p2

)
·
(

1 + q + q2
)

ψ1ψ3 − 2q (1 + q)2 ψ2
2 p
) (

4 − p2
)

ρ2
]

= F(p, ρ),

(19)

where
Λ (q) = 16q3

(
1 + q + q2

)
ψ1ψ3ψ2

2,

ω (q) =
∣∣∣(3 + 3q − q3 + q4

)
(1 + q)2 ψ2

2 −
(

1 + 3q + 2q2 + 2q3 + q4
)

·
(

1 + q + q2
)

ψ1ψ3

∣∣∣
and

Ω (q) =
∣∣∣(1 + q)2

(
2q2 − 5q − 2

)
ψ2

2 + 2q
(

q2 + 2
) (

1 + q + q2
)

ψ1ψ3

∣∣∣ .

Upon differentiating both sides (19) with respect to ρ, we have

∂F(p, ρ)

∂ρ
=

(
1

Λ (q)

) [
Ω (q)

(
4 − p2

)
p2+ 2

(
q (q + 1)2 ψ2

2 p2 + q
(

4 − p2
)

·
(

1 + q + q2
)

ψ1ψ3 − 2q (1 + q)2 ψ2
2 p
) (

4 − p2
)

ρ
]

.

It is clear that
∂F(p, ρ)

∂ρ
> 0,

which show that F(p, ρ) is an increasing function of ρ on the closed interval [0, 1] . This implies that the
maximum value occurs at ρ = 1. This implies that

max{F(p, ρ)} = F(p, 1) =: G(p).

We now observe that

G(p) =
(

1
Λ (q)

) [(
ω (q)− Ω (q)− q (q + 1)2 ψ2

2 +
(

q + q2 + q3
)

ψ1ψ3

)
p4

+
(

4Ω (q) + 4q (q + 1)2 ψ2
2 − 8

(
q + q2 + q3

)
ψ1ψ3

)
p2

+ 16
(

q + q2 + q3
)

ψ1ψ3

= G (p) .

(20)

By differentiating both sides of (20) with respect to p, we have

G′(p) =
(

1
Λ (q)

) [
4
(

ω (q)− Ω (q)− q (q + 1)2 ψ2
2 +

(
q + q2 + q3

)
ψ1ψ3

)
p3

+2
(

4Ω (q) + 4q (q + 1)2 ψ2
2 − 8

(
q + q2 + q3

)
ψ1ψ3

)
p
]

.
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Differentiating the above equation once again with respect to p, we get

G′′(p) =
(

1
Λ (q)

) [
12

(
ω (q)− Ω (q)− q (q + 1)2 ψ2

2 +
(

q + q2 + q3
)

ψ1ψ3

)
p2

+2
(

4Ω (q) + 4q (q + 1)2 ψ2
2 − 8

(
q + q2 + q3

)
ψ1ψ3

)]
.

For p = 0, this shows that the maximum value of (G(p)) occurs at p = 0. Hence, we obtain∣∣∣a2a4 − a2
3

∣∣∣ � 1
q2ψ2

2
.

The proof of Theorem 2 is thus completed.

If, in Theorem 2, we let q −→ 1− and put δ = 1, then we are led to the following known result.

Corollary 1. (see [18]) Let f ∈ S∗. Then ∣∣∣a2a4 − a2
3

∣∣∣ � 1,

and the inequality is sharp.

Theorem 3. Let f ∈ RS∗
q (δ). Then

|a2a3 − a4| �
(1 + q) κ (q)

ψ1ψ2ψ3 (q2 + q3 + q4)
,

where

κ (q) =
∣∣∣∣(1 + q + q2

)2
ψ3 −

(
q4 − 3q + 6q2 + q + 1

)
ψ1ψ2

∣∣∣∣ . (21)

Proof. Using the values given in (15) and (16) we have

a2a3 − a4 =

(
(1 + q)

(
q2 + 1

)
8q3ψ1ψ2

− (1 + q)
(
q2 + 1

) (
q2 − q + 1

)
8ψ3 (q2 + q3 + q4)

)
p3

1

+

(
(1 + q)

4q2ψ1ψ2
− (q − 2) (2q + 1) (1 + q)

4ψ3 (q2 + q3 + q4)

)
p1 p2

−
(

(1 + q)
2 (q + q2 + q3)ψ3

)
p3.

(22)

We now use Lemma 2 and assume that p1 � 2. In addition, by Lemma 3, we let p1 = p and
assume without restriction that p ∈ [0, 2] . Then, by taking the moduli and applying the trigonometric
inequality on (22) with ρ = |x| , we obtain

|a2a3 − a4| �
(

(1 + q)
8 (q3 + q4 + q5)ψ1ψ2ψ3

) [
κ (q) p3 + η (q) p(4 − p2)ρ

+2q2ψ1ψ2(4 − p2) + q2ψ1ψ2 (p − 2) (4 − p2)ρ2
]

=: F(ρ),

where
η (q) =

∣∣∣(q + q2 + q3
)

ψ3 +
(

2q3 − q2 − 2q
)

ψ1ψ2

∣∣∣
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and κ (q) is given by (21). Differentiating F(ρ) with respect to ρ, we have

F′(ρ) =
(

(1 + q)
8 (q3 + q4 + q5)ψ1ψ2ψ3

) [
η (q) p(4 − p2) + 2q2ψ1ψ2 (p − 2) (4 − p2)ρ

]
> 0.

This implies that F(ρ) is an increasing function of ρ on the closed interval [0, 1]. Hence, we have

F(ρ) � F(1) (∀ ρ ∈ [0, 1]),

that is,

F(ρ) �
(

(1 + q)
8 (q3 + q4 + q5)ψ1ψ2ψ3

) [(
κ (q)− η (q)− q2ψ1ψ2

)
p3

+
(

4η (q) + 4q2ψ1ψ2

)
p
]

=: G(p).

Since p ∈ [0, 2] , p = 2 is a point of maximum. We thus obtain

G (p) � (1 + q) κ (q)
(q3 + q4 + q5)ψ1ψ2ψ3

,

which corresponds to ρ = 1 and p = 2 and it is the desired upper bound.

For δ = 1 and q → 1−, we obtain the following special case of Theorem 3.

Corollary 2. (see [22]) Let f ∈ S∗. Then

|a2a3 − a4| � 2.

Finally, we prove Theorem 4 below.

Theorem 4. Let f ∈ RS∗
q (δ). Then

H3(1) �
[(

1 + q + q2)
q4ψ3

2
+

κ (q) κ (q)

q5 (1 + q + q2)
2

ψ1ψ2ψ2
3

+
τ (q)

q5 (1 + q + q2 + q3) (1 + q + q2)ψ2ψ4

]
,

where
κ (q) = (1 + q)2

(
q4 − 3q3 + 6q2 + q + 1

)
, (23)

τ (q) = (1 + q)
(

4q7 + 2q6 + 6q5 + 7q4 + 13q3 − q − 1
)

(24)

and κ (q) is given by (21).

Proof. Since
H3(1) � |a3|

∣∣∣a2a4 − a2
3

∣∣∣+ |a4| |a2a3 − a4|+ |a5|
∣∣∣a3 − a2

2

∣∣∣ ,

by using Lemma 3, we have

|a4| �
(1 + q)

(
1 + q + 6q2 − 3q3 + q4)

q3 (1 + q + q2)ψ3
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and

|a5| �
τ (q)

q4 (1 + q + q2 + q3) (1 + q + q2)ψ4
,

where τ (q) is given by (24). Now, by applying Theorems 1–3, we have the required result asserted by
Theorem 4.

4. Conclusions

By making use of the basic or quantum (q-) calculus, we have introduced a Ruscheweyh-type
q-derivative operator. This Ruscheweyh-type q-derivative operator is then applied to define a certain
subclass of q-starlike functions in the open unit disk U. We have successfully derived the upper bound
of the third Hankel determinant for this family of q-starlike functions which are associated with the
Ruscheweyh-type q-derivative operator. Our main results are stated and proved as Theorems 1–4.
These general results are motivated essentially by their several special cases and consequences, some
of which are pointed out in this presentation.
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Abstract: In this work, the natural transform decomposition method (NTDM) is applied to solve the
linear and nonlinear fractional telegraph equations. This method is a combined form of the natural
transform and the Adomian decomposition methods. In addition, we prove the convergence of our
method. Finally, three examples have been employed to illustrate the preciseness and effectiveness of
the proposed method.
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1. Introduction

The fractional calculus (non-integer) plays an important role in applied mathematics and other
fields such as science, physics and engineering. It describes the smallest details of natural phenomena,
which is better than using a calculus integer. In [1] the fractional telegraph equation is obtained from
the classical telegraph equation by replacing the second-order distance derivative with the fractional
derivative (0 < α ≤ 2) given to it. The telegraph equation describes the signal propagation of an
electrical signal in transmission cable lines in general. Recently, many researchers and engineers
have done excellent work to solve the fractional telegraph equation by different methods, such as the
Laplace transform method [2], Laplace transform variational iteration method [3], double Laplace
transform method [4], variational iteration method [5], Adomian decomposition method [6], Mixture of
a new integral transform and homotopy perturbation method (HPM) [7], homotopy analysis method
(HAM) [8], Chebyshev tau method [9], and the method of separating variables [10]. The natural
transform Adomian decomposition method (NTDM) is a combination of the natural transform method
and Adomian decomposition method. The main aim of this article is to use the (NTDM) to obtain the
approximate solution of linear and nonlinear fractional telegraph equations. The natural transform
Adomian decomposition method is a sturdy mathematical method for solving linear and nonlinear
fractional telegraph equation and is an amelioration of the existing methods.

2. Preliminaries

Definition 1 ([11]). The Adomian decomposition method is defined as

An =
1
n!

dn

dλn

[
F

(
n

∑
i=1

ψiλ
i

)]
λ=0

, n = 0, 1, 2, ... (1)

where the function F (ψ) is a nonlinear term and λ a formal parameter.
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Definition 2 ([12]). The natural transform of a function f (t) > 0 and f (t) = 0 for t < 0 is defined by

N
+[ f (t)] = R(s, u) =

1
u

∫ ∞

0
e

−st
u f (t)dt; s, u > 0 (2)

where s and u are the transform variables.

Definition 3 ([12,13]). The inverse natural transform of a function is defined by

N−[R(s, u)] = f (t) = 1
2πi

∫ c+i∞
c−i∞ e

st
u R(s, u)ds

Definition 4 ([14]). The natural transform of ∂α f (x,t)
∂tα w.r.t (t) can be calculated as

N
+[

∂α f (x, t)
∂tα

] =
sα

uα
R(s, u)−

n−1

∑
k=0

sα−k−1

uα−k

[
∂α f (x, 0)

∂tα

]
(3)

Definition 5 ([14]). The natural transform of Mittag-Leffler function Eα,β is defined as follows

N
+[ f (x, t)] =

∫ ∞

0
e−st f (x, ut)dt =

∞

∑
k=0

uk+1Γ(k + β)

sk+1Γ(αk + β)
(4)

Definition 6 ([15]). A two parameter function of the Mittag-Leffler type is defined by the series expansion

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, (α > 0, β > 0) (5)

3. Natural Transform Adomian Decomposition Method Linear and Nonlinear Telegraph
Equations (NTADM)

In this section, we will study two problems as follows:

First Problem: linear fractional telegraph equations

In this part, we derive the main idea of the natural transform decomposition method to find the
general solution for linear fractional telegraph equations.

We consider the following general multiterm fractional telegraph equation

∂αψ(x,t)
∂tα = ∂2ψ(x,t)

∂x2 − ∂ψ(x,t)
∂t − ψ(x, t) + h(x, t),

0 < α ≤ 2 and x, t ≥ 0
(6)

subject to
ψ(x, 0) = f1(x) and ψt(x, 0) = f2(x) (7)

where h(x, t) is given function. The new technique of natural transform Adomian decomposition is
based on the following steps. By applying the definition of natural transform to Equation (6), we get

sα

uα R(x, s, u)− sα−1

uα ψ(x, 0)− sα−2

uα−1 ψt(x, 0) = N+
[

∂2ψ(x,t)
∂x2 − ∂ψ(x,t)

∂t − ψ(x, t) + h(x, t)
]

, (8)

substituting the initial conditions Equation (7) into Equation (8), we obtain

R(x, s, u) = 1
s f1 (x) + u

s2 f2 (x) + uα

sα N
+
[

∂2ψ(x,t)
∂x2 − ∂ψ(x,t)

∂t − ψ(x, t) + h(x, t)
]

. (9)

Now, implementing the inverse natural transform for Equation (9) we obtain the general solution
of Equation (6) as follows:
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ψ(x, t) = Φ(x, t) +N
−1

[
uα

sα
N
+

[
∂2ψ(x, t)

∂x2 − ∂ψ(x, t)
∂t

− ψ(x, t)
]]

, (10)

where

Φ(x, t) = N
−1

[
f1(x) + t f2(x) +

uα

sα
N+ [h(x, t)]

]
, (11)

the natural transform decomposition method defined the solution of ψ(x, t) by the infinite series

ψ(x, t) =
∞

∑
n=0

ψn(x, t). (12)

The solution of Equation (10) is given by

∞

∑
n=0

ψn(x, t) = Φ(x, t) +N
−1

[
uα

sα
N
+

[
∞

∑
n=0

∂2ψn(x, t)
∂x2 −

∞

∑
n=0

∂ψn(x, t)
∂t

−
∞

∑
n=0

ψn(x, t)

]]
. (13)

Here we assume that the inverse natural transform of each term in the right side of Equation (9)
exists. The initial term

ψ0(x, t) = Φ(x, t), (14)

consequently, the first few components can be written as

ψ1(x, t) = N−1
[

uα

sα N
+
[

∂2ψ0(x,t)
∂x2 − ∂ψ0(x,t)

∂t − ψ0(x, t)
]]

ψ2(x, t) = N−1
[

uα

sα N
+
[

∂2ψ1(x,t)
∂x2 − ∂ψ1(x,t)

∂t − ψ1(x, t)
]]

ψ3(x, t) = N−1
[

uα

sα N
+
[

∂2ψ2(x,t)
∂x2 − ∂ψ2(x,t)

∂t − ψ2(x, t)
]]

.

.

.

(15)

then we have

ψn+1(x, t) = N
−1

[
uα

sα
N
+

[
∂2ψn(x, t)

∂x2 − ∂ψn(x, t)
∂t

− ψn(x, t)
]]

, n ≥ 0 (16)

Second Problem Nonlinear fractional telegraph equation:

We consider the general form of nonlinear fractional telegraph equation:

∂αψ(x,t)
∂tα =

∂2ψ(x,t)
∂x2 − ∂ψ(x,t)

∂t − Nψ(x, t) + h(x, t),

0 < α ≤ 2 and x, t ≥ 0
(17)

with the initial conditions
ψ(x, 0) = g1(x) and ψt(x, 0) = g2(x), (18)

where N is a nonlinear, h(x, t) is a source term. By applying the definition of natural transform for
Equation (17), we have

sα

uα R(x, s, u)− sα−1

uα ψ(x, 0)− sα−2

uα−1 ψt(x, 0) = N+
[

∂2ψ(x,t)
∂x2 − ∂ψ(x,t)

∂t − Nψ(x, t) + h(x, t)
]

, (19)
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by substituting initial conditions Equation (18) into Equation (19), we obtain

R(x, s, u) =
1
s

g1(x) +
u
s2 g2(x) +

uα

sα
N
+

[
∂2ψ(x, t)

∂x2 − ∂ψ(x, t)
∂t

− Nψ(x, t) + h(x, t)
]

. (20)

Now, implementing the inverse natural transform for Equation (20), we obtain the general solution
of Equation (17) in the form of,

ψ(x, t) = Φ(x, t) +N
−1

[
uα

sα
N
+

[
∂2ψ(x, t)

∂t2 − ∂ψ(x, t)
∂t

− Nψ(x, t)
]]

, (21)

where

Φ(x, t) = N
−1

[
g1(x) + tg2(x) +

uα

sα
N
+ [h(x, t)]

]
, (22)

here we assume that the inverse natural transform of each term in the right side of Equation (22) exists.
The natural transform decomposition method consists of calculating the solution in a series form

ψ(x, t) =
∞

∑
n=0

ψn(x, t), (23)

the nonlinear term Nψ(x, t) becomes

Nψ(x, t) =
∞

∑
n=0

An, (24)

where An defined by Equation (1). By substituting Equations (23) and (24) into Equation (21) we get

∞

∑
n=0

ψn(x, t) = Φ(x, t) +N
−1

[
uα

sα
N
+

[
∞

∑
n=0

∂2ψn(x, t)
∂x2 −

∞

∑
n=0

∂ψn(x, t)
∂t

−
∞

∑
n=0

An

]]
, (25)

by using the recursive relation
ψ0(x, t) = Φ(x, t) (26)

consequently, the first few components can be written as

ψ1(x, t) = N−1
[

uα

sα N
+
[

∂2ψ0(x,t)
∂x2 − ∂ψ0(x,t)

∂t − A0

]]
ψ2(x, t) = N−1

[
uα

sα N
+1

[
∂2ψ1(x,t)

∂x2 − ∂ψ1(x,t)
∂t − A1

]]
ψ3(x, t) = N−1

[
uα

sα N
+
[

∂2ψ2(x,t)
∂x2 − ∂ψ2(x,t)

∂t − A2

]]
,

.

.

.

(27)

then we have

ψn+1(x, t) = N
−1

[
uα

pα
N
+

[
∂2ψn(x, t)

∂t2 +
∂ψn(x, t)

∂t
+ An

]]
, n ≥ 0 (28)

the solution ψn(x, t) can be written as convergent series

ψ(x, t) =
∞

∑
n=0

ψn(x, t). (29)
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4. Convergence Analysis

In this section, the sufficient condition that guarantees existence of a unique solution is introduced
and we discuss the convergence of the solution.

In next theorem we follow [16]

Theorem 1. (Uniqueness theorem): Equation (28) has a unique solution whenever 0 < ε < 1 where

ε = (L1+L2+L3)tα+1

(α−1)!

Proof of Theorem 1. Let E = (C [I] , ‖.‖) be the Banach space of all continuous functions on I = [0, T]
with the norm ‖.‖, we define a mapping F : E → E where

ψn+1(x, t) = Φ(x, t) +N
−1

[
uα

sα
N
+ [L [ψn(x, t)] + M [ψn(x, t)] + N [ψn(x, t)]]

]
, n ≥ 0

where L [ψ(x, t)] ≡ ∂2ψ(x,t)
∂x2 and M [ψ(x, t)] ≡ ∂ψ(x,t)

∂t . Now suppose M [ψ(x, t)] and L [ψ(x, t)] is also

Lipschitzian with
∣∣∣Mψ − M

�
ψ
∣∣∣ < L1

∣∣∣ψ −
�
ψ
∣∣∣and

∣∣∣Lψ − L
�
ψ
∣∣∣ < L2

∣∣∣ψ −
�
ψ
∣∣∣ where L1 and L2 is Lipschitz

constant respectively and ψ,
�
ψ is different values of the function.

∥∥∥Fψ − F
�
ψ
∥∥∥=max

t∈I

∣∣∣∣∣∣∣∣
N−1

[
uα

sα N
+ [L [ψ(x, t)] + M [ψ(x, t)] + N [ψ(x, t)]]

]
−N−1

[
uα

sα N
+
[

L
[�

ψ(x, t)
]
+ M

[�
ψ(x, t)

]
+ N

[�
ψ(x, t)

]]]
∣∣∣∣∣∣∣∣ ,

≤ max
t∈I

∣∣∣∣∣∣∣∣∣
N−1

[
uα

pα N
+
[

L [ψ(x, t)]− L
[�

ψ(x, t)
]]]

+N−1
[

uα

sα N
+
[

M [ψ(x, t)]− M
[�

ψ(x, t)
]]]

+N−1
[

uα

sα N
+
[

N [ψ(x, t)]− N
[�

ψ(x, t)
]]]

∣∣∣∣∣∣∣∣∣ ,

≤ max
t∈I

⎡⎢⎢⎢⎣
L1N

−1
[

uα

sα N
+
∣∣∣ψ(x, t)−

�
ψ(x, t)

∣∣∣]
+L2N

−1
[

uα

sα N
+
∣∣∣ψ(x, t)−

�
ψ(x, t)

∣∣∣]
+L3N

−1
[

uα

sα N
+
∣∣∣ψ(x, t)−

�
ψ(x, t)

∣∣∣]
⎤⎥⎥⎥⎦ ,

≤ max
t∈I

(L1 + L2 + L3)
[
N−1

[
uα

sα N
+
∣∣∣ψ(x, t)−

�
ψ(x, t)

∣∣∣]] ,

≤ (L1 + L2 + L3)
[
N−1

[
uα

sα N
+
∥∥∥ψ(x, t)−

�
ψ(x, t)

∥∥∥]] ,

= (L1+L2+L3)t(α−1)

(α−1)!

∥∥∥ψ(x, t)−
�
ψ(x, t)

∥∥∥ .

Under the condition 0 < ε < 1, the mapping is contraction. Therefore, by Banach fixed point theorem
for contraction, there exists a unique solution to Equation (29). This ends the proof of Theorem 1.

Theorem 2. (Convergence Theorem): The solution of Equations (6) and (18) in general forum
will be convergence.

Proof of Theorem 2. Let Sn be the nth partial sum, i.e., Sn = ∑n
i=0 ψi(x, t). We shall prove that {Sn} is

a Cauchy sequence in Banach space E. By using a new formulation of Adomian polynomials we get
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R(Sn) =
�
An + ∑n−1

r=0

�
Ar

N(Sn) =
�
An + ∑n−1

c=0

�
Ac

‖Sn − Sm‖ = max
t∈I

|Sn − Sm| = max
t∈I

∣∣∣∑n
i=m+1

�
ψ i(x, t)

∣∣∣ , p = 1, 2, 3, ...

≤ max
t∈I

∣∣∣∣∣∣∣∣∣
N−1

[
uα

sα N
+
[
∑n

i=m+1 L [ψn−1(x, t)]
]]

+N−1
[

uα

sα N
+
[
∑n

i=m+1 M [ψn−1(x, t)]
]]

+N−1
[

uα

sα N
+
[
∑n

i=m+1 An−1(x, t)
]]

∣∣∣∣∣∣∣∣∣ ,

= max
t∈I

∣∣∣∣∣∣∣∣∣
N−1

[
uα

sα N
+
[
∑n−1

i=m L [ψn(x, t)]
]]

+N−1
[

uα

sα N
+
[
∑n−1

i=m M [ψn(x, t)]
]]

+N−1
[

uα

sα N
+
[
∑n

i=m+1 An(x, t)
]]

∣∣∣∣∣∣∣∣∣ ,

≤ max
t∈I

∣∣∣∣∣∣∣∣∣
N−1

[
uα

sα N
+
[
∑n−1

i=m L(Sn−1)− L(Sm−1)
]]

+N−1
[

uα

sα N
+
[
∑n−1

i=m M(Sn−1)− M(Sm−1)
]]

+N−1
[

uα

sα N
+
[
∑n

i=m+1 N(Sn−1)− N(Sm−1)
]]

∣∣∣∣∣∣∣∣∣ ,

≤ max
t∈I

∣∣∣∣∣∣∣∣∣
N−1

[
uα

sα N
+ [L(Sn−1)− L(Sm−1)]

]
+N−1

[
uα

sα N
+ [M(Sn−1)− R(Sm−1)]

]
+N−1

[
uα

sα N
+ [N(Sn−1)− N(Sm−1)]

]
∣∣∣∣∣∣∣∣∣ ,

≤ L1 max
t∈I

N−1
∣∣∣[ uα

sα N
+ [(Sn−1)− (Sm−1)]

]∣∣∣ ,

+L2 max
t∈I

N−1
∣∣∣[ uα

sα N
+ [(Sn−1)− (Sm−1)]

]∣∣∣ ,

+L3 max
t∈I

N−1
∣∣∣[ uα

sα N
+ [(Sn−1)− (Sm−1)]

]∣∣∣ .

=
(L1 + L2 + L3)t(α−1)

(α − 1)!
‖Sn−1 + Sm−1‖

Let n = m + 1; then

‖Sm+1 − Sm‖ ≤ ε ‖Sm − Sm−1‖ ≤ ε2 ‖Sm−1 − Sm−2‖ ≤ ... ≤ εm ‖S1 − S0‖ .

where ε = (L1+L2+L3)t(α−1)

(α−1)! similarly, we have, from the triangle inequality we have

‖Sn − Sm‖ ≤ ‖Sm+1 − Sm‖+ ‖Sm+2 − Sm+1‖+ ... + ‖Sn − Sn−1‖ ,

≤
[
εm + εm+1 + ... + εn−1

]
≤ ‖S1 + S0‖ ,

≤ εm(
1 − εn−m

ε
) ‖ψ1‖ ,

since 0 < ε < 1 we have (1 − εn−m) < 1: then,

‖Sn − Sm‖ ≤ εm

1 − ε
max
t∈I

‖ψ1‖ .

However, |ψ1| < ∞ (since ψ(x, t) is bounded) so, as m → ∞ then ‖Sn − Sm‖ → 0, hence {Sn} is a
Cauchy sequence in E so, the series ∑∞

n=0 ψn converges and the proof is complete.
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Theorem 3. (Error estimate:) The maximum absolute truncation error of the series solution
Equation (28) to Equation (6) is estimated to be:

max
t∈I

∣∣∣∣∣ψ(x, t)−
m

∑
n=1

ψn(x, t)

∣∣∣∣∣ ≤ εm

1 − ε
max
t∈I

‖ψ1‖ ,

Proof of Theorem 3. From Equation (28) and Theorem 2 we have

|Sn − Sm| ≤ εm

1 − ε
max
t∈I

‖ψ1‖ ,

as n → ∞ then Sn → ψ(x, t) so we have

‖ψ(x, t)− Sm‖ ≤ εm

1 − ε
max
t∈I

‖ψ1(x, t)‖ ,

finally, the maximum absolute truncation error in the interval I is

max
t∈I

∣∣∣∣∣ψ(x, t)−
m

∑
n=1

ψn(x, t)

∣∣∣∣∣ ≤ max
t∈I

εm

1 − ε
|ψ1(x, t)| = εm

1 − ε
‖ψ1(x, t)‖ .

Thus, completing the proof of Theorem (3).

5. Numerical Examples

In this section, we demonstrate the applicability of the previous method by the following examples.

Example 1. Consider the following space-fractional homogenous telegraph equation:

∂αψ(x,t)
∂tα =

∂2ψ(x,t)
∂x2 − ∂ψ(x,t)

∂t − ψ(x, t),

x, t ≥ 0 and 0 < α ≤ 2
(30)

with the initial conditions
ψ(x, 0) = e−x and ψt(x, 0) = −e−x. (31)

Solution 1

Applying natural transform for Equation (30) w.r.t (t) on both sides, we get

sα

uα
R(x, s, u)− sα−1

uα
ψ(x, 0)− sα−2

uα−1 ψt(x, 0) = N
+

[
∂2ψ(x, t)

∂x2 − ∂ψ(x, t)
∂t

− ψ(x, t)
]

, (32)

simplify and substitute the condition Equation (31), we get

R(x, s, u) =
1
s

ex − u
s2 ex +

uα

sα
N
+

[
∂2ψ(x, t)

∂x2 − ∂ψ(x, t)
∂t

− ψ(x, t)
]

, (33)

using the inverse natural transform for Equation (33), we have

ψ(x, t) = ex − tex +N
−1

[
uα

sα
N
+

[
∂2ψ(x, t)

∂x2 − ∂ψ(x, t)
∂t

− ψ(x, t)
]]

, (34)
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the correction function for Equation (34), is given by

∞

∑
n=0

ψn+1(x, t) = e−x − te−x +N
−1

[
uα

sα
N
+

[
∞

∑
n=0

∂2ψn(x, t)
∂x2 −

∞

∑
n=0

∂ψn(x, t)
∂t

−
∞

∑
n=0

ψn(x, t)

]]
, (35)

the initial term
ψ0(x, t) = ex − tex, (36)

then we have

ψn+1(x, t) = N
−1

[
uα

sα
N
+

[
∞

∑
n=0

∂2ψn(x, t)
∂x2 −

∞

∑
n=0

∂ψn(x, t)
∂t

−
∞

∑
n=0

ψn(x, t)

]]
, n ≥ 0 (37)

the first 3rd terms is given by
ψ1(x, t) = tα

Γ(α+1) ex,

ψ2(x, t) = − t2α−1

Γ(2α)
ex,

ψ3(x, t) = t3α−2

Γ(3α−1) ex,

(38)

then general form is successive approximation is given by

ψn(x, t) = ex
(

1 − t +
tα

Γ(α + 1)
− t2α−1

Γ(2α)
+

t3α−2

Γ(3α − 1)
− ...

)
, (39)

ψn(x, t) = ex

[
1 +

∞

∑
k=0

(−1)k+1

[
tkα−k+1

Γ(kα − k + 2)

]]
, (40)

when α = 2 we get
ψ(x, t) = ex−t. (41)

Example 2. Consider the following space-fractional non-homogenous telegraph equation:

∂αψ(x,t)
∂tα =

∂2ψ(x,t)
∂x2 − ∂ψ(x,t)

∂t − ψ(x, t) + x2 + t − 1,

x, t ≥ 0 and 0 < α ≤ 2
(42)

with the initial conditions
ψ(x, 0) = x2 and ψt(x, 0) = 1. (43)

Solution 2

Applying natural transform for both sides of Equation (42), we have

sα

uα R(x, s, u)− sα−1

uα ψ(x, 0)− sα−2

uα−1 ψt(x, 0) = N+
[

∂2ψ(x,t)
∂x2 − ∂ψ(x,t)

∂t − ψ(x, t)
]
+N+

[
x2 + t − 1

]
, (44)

by simplifying and substitute the conditions, we obtain

R(x, s, u) =
1
s

x2 +
u
s2 +

uα

sα+1 x2 +
uα+1

sα+2 − uα

sα+1 +
uα

sα
N
+

[
∂2ψ(x, t)

∂t2 − ∂ψ(x, t)
∂t

− ψ(x, t)
]

. (45)

On using inverse natural transform Equation (45), we have

ψ(x, t) = x2 + t + tα

Γ(α+1) x2 + tα+1

Γ(α+2) − tα

Γ(α+1) +N−
[

uα

sα N
+
[

∂2ψ(x,t)
∂x2 − ∂ψ(x,t)

∂t − ψ(x, t)
]]

, (46)
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therefore
∑∞

n=0 ψn(x, t) = x2 + t + tα

Γ(α+1) x2 + tα+1

Γ(α+2) − tα

Γ(α+1)

+N−
[

uα

sα N
+
[
∑∞

n=0
∂2ψn(x,t)

∂x2 − ∑∞
n=0

∂ψn(x,t)
∂t − ∑∞

n=0 ψn(x, t)
]]

,

(47)

the initial term

ψ0(x, t) = x2+t +
tα

Γ(α + 1)
x2 +

tα+1

Γ(α + 2)
− tα

Γ(α + 1)
, (48)

then we have

∞

∑
n=0

ψn+1(x, t) = N
−1

[
uα

sα
N
+

[
∞

∑
n=0

∂2ψn(x, t)
∂x2 −

∞

∑
n=0

∂ψn(x, t)
∂t

−
∞

∑
n=0

ψn(x, t)

]]
, n ≥ 0 (49)

Now the components of the series solution are given by

ψ1(x, t) = tα

Γ(α+1) − tα

Γ(α+1) x2 − tα+1

Γ(α+2) + 2 t2α

Γ(2α+1)

− t2α+1

Γ(2α+2) + t2α−1

Γ(2α)
− t2α

Γ(2α+1) x2 − t2α−1

Γ(2α)
x2,

ψ2(x, t) = −2 t2α

Γ(2α+1) +
t2α+1

Γ(2α+2) − t2α−1

Γ(2α)
+ t2α

Γ(2α+1) x2

+ t2α−1

Γ(2α)
x2 − 5 t3α−1

Γ(3α+2) − 3 t3α

Γ(3α+1) + 2 t3α−1

Γ(3α)
x2

− t3α−2

Γ(3α−1) +
t3α+1

Γ(3α+2) +
t3α

Γ(3α+1) x2 + t3α−2

Γ(3α−1) x2,

ψ3(x, t) = 5 t3α−1

Γ(3α+2) + 3 t3α

Γ(3α+1) − 2 t3α−1

Γ(3α)
x2 + t3α−2

Γ(3α−1) − t3α+1

Γ(3α+2)

− t3α

Γ(3α+1) x2 − t3α−2

Γ(3α−1) x2 + t4α

Γ(4α+1) − t4α

Γ(4α+1) x2 + 7 t4α−1

Γ(4α)
− 3 t4α−1

Γ(4α)
x2

−2 t4α+1

Γ(4α)
+ 5 t4α−1

Γ(4α)
+ 8 t4α−2

Γ(4α−1) − 3 t4α−2

Γ(4α−1) x2 + t4α−3

Γ(4α−2) − t4α−3

Γ(4α−2) x2,

(50)

Substituting Equations (48) and (50) into Equation (47) gives the solution in a series form by
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∞

∑
n=0

ψn(x, t) = ψ0(x, t) + ψ1(x, t) + ψ2(x, t) + ...

ψ(x, t) = x2+t +
tα

Γ(α + 1)
x2 +

tα+1

Γ(α + 2)
− tα

Γ(α + 1)

+
tα

Γ(α + 1)
− tα

Γ(α + 1)
x2 − tα+1

Γ(α + 2)
+ 2

t2α

Γ(2α + 1)

− t2α+1

Γ(2α + 2)
+

t2α−1

Γ(2α)
− t2α

Γ(2α + 1)
x2 − t2α−1

Γ(2α)
x2

−2
t2α

Γ(2α + 1)
+

t2α+1

Γ(2α + 2)
− t2α−1

Γ(2α)
+

t2α

Γ(2α + 1)
x2

+
t2α−1

Γ(2α)
x2 − 5

t3α−1

Γ(3α + 2)
− 3

t3α

Γ(3α + 1)
+ 2

t3α−1

Γ(3α)
x2

− t3α−2

Γ(3α − 1)
+

t3α+1

Γ(3α + 2)
+

t3α

Γ(3α + 1)
x2 +

t3α−2

Γ(3α − 1)
x2

+5
t3α−1

Γ(3α + 2)
+ 3

t3α

Γ(3α + 1)
− 2

t3α−1

Γ(3α)
x2 +

t3α−2

Γ(3α − 1)
− t3α+1

Γ(3α + 2)

− t3α

Γ(3α + 1)
x2 − t3α−2

Γ(3α − 1)
x2 +

t4α

Γ(4α + 1)
− t4α

Γ(4α + 1)
x2 + 7

t4α−1

Γ(4α)
− 3

t4α−1

Γ(4α)
x2

−2
t4α+1

Γ(4α)
+ 5

t4α−1

Γ(4α)
+ 8

t4α−2

Γ(4α − 1)
− 3

t4α−2

Γ(4α − 1)
x2 +

t4α−3

Γ(4α − 2)
− t4α−3

Γ(4α − 2)
x2

at α = 2, we obtain the exact solution of standard telegraph equation

ψ(x, t) = t + x2 (51)

Example 3. Consider the following space-fractional nonlinear telegraph equation:

∂αψ(x,t)
∂tα =

∂2ψ(x,t)
∂x2 +

∂ψ(x,t)
∂t − ψ2(x, t) + xψ(x, t)ψx(x, t),

x, t ≥ 0 and 0 < α ≤ 2
(52)

with the initial conditions
ψ(x, 0) = x and ψt(x, 0) = x. (53)

Solution 3

By taking natural transform for Equation (52), we have

sα

uα R(x, s, u)− sα−1

uα ψ(x, 0)− sα−2

uα−1 ψt(x, 0) = N+
[

∂ψ2(x,t)
∂x2 +

∂ψ(x,t)
∂t − ψ2(x, t) + xψ(x, t)ψx(x, t)

]
, (54)

arrangement and substitute the initial condition, we get

R(x, s, u) = 1
s x + u

s2 x +
[

uα

sα N
+
[

∂ψ2(x,t)
∂x2 + ∂ψ(x,t)

∂t − ψ2(x, t) + xψ(x, t)ψx(x, t)
]]

, (55)

applying the inverse natural transform for Equation (55), we have

ψ(x, t) = x + tx + N−
[

uα

sα N
+
[

∂ψ2(x,t)
∂x2 + ∂ψ(x,t)

∂t − ψ2(x, t) + xψ(x, t)ψx(x, t)
]]

, (56)

hence

∑∞
n=0 ψn+1(x, t) = (x + tx) +N−

[
uα

sα N
+
[
∑∞

n=0
∂2ψn(x,t)

∂x2 + ∑∞
n=0

∂ψn(x,t)
∂t − ∑∞

n=0 An(x, t) + x ∑∞
n=0 Bn(x, t)

]]
, (57)
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the initial term
ψ0(x, t) = (x + tx) . (58)

Now the components of the series solution are given by

ψ1(x, t) = N
−
[

uα

sα
N
+

[
∂2ψ0(x, t)

∂x2 +
∂ψ0(x, t)

∂t
− A0(x, t) + xB0(x, t)

]]
, (59)

ψ1(x, t) =
(

tα

Γ(α+1) x
)

,

ψ2(x, t) =
(

tα+1

Γ(α+2) x
)

,

ψ3(x, t) =
(

tα+2

Γ(α+3) x
)

.

(60)

Since
ψn(x, t) = ψ0(x, t) + ψ1(x, t) + ψ2(x, t) + ψ3(x, t) + ... (61)

ψ(x, t) = x + tx +
tα

Γ (α + 1)
x +

tα+1

Γ (α + 2)
x +

tα+2

Γ (α + 3)
x + ... (62)

by substituting α = 2 in Equation (62), we obtain the exact solution of standard telegraph equation in
the following form:

ψ(x, t) = xet (63)

6. Numerical Result

In this section, we shall illustrate the accuracy and efficiency of the (NTDM) by comparing the
approximate and exact solution.

Figure 1 confirm the accuracy and efficiency of the natural transform and Adomian decomposition
method and discuss the behavior of exact solution and approximate solutions Equation (30) obtained by
(NTDM) for the special case α = 2 for example (1). We see that Table 1 illustrated the absolute error by
computing ψ = |ψ − ψ10| where ψ is the exact solution and ψ10 is approximate solution of Equation (30)
obtained by truncating the respective solution series Equation (40) at ψ10. Approximate solutions
converge very swiftly to the exact solutions in only 10th order approximations i.e., approximate
solutions are nearly identical to the exact solutions. The accuracy of the result can be amelioration by
generating more terms of the approximate solutions.

Figure 2 shows the exact solution and the approximate solution Equation (30) obtained by natural
transform and Adomian decomposition method when α decreasing then the ψ decreasing.

Table 2 discuss the solution of Example 1 by choosing different values of t = {0, 0.5, 1, 1.5, 2} and
the values of ψ(x, t) decreasing when t increasing for different values of α = 1.99, 1.98 and 1.97.

Figure 3 shows when setting α = 2 in the nth approximations and canceling noise terms yields
the exact solution ψ = |ψ − ψ10| as n → ∞. The analytical solution for the exact solution and the
approximate solution Equation (42) obtained by natural transform and Adomian decomposition
method. In addition, the exact solution is presented graphically in Figure 3.

The exact and approximate solutions of Equation (52) are presented graphically in Figure 4, the
approximate solution is given at α = 1.99, 1.98 and 1.97. The value of the solution satisfies Equation (52)
see in Table 3 for the values α = 1.99, 1.98 and 1.97.
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Figure 1. The Exact and Approximate Solutions of ψ(x, t) for Example 1 for α = 2.

Table 1. Exact and Approximate Solution of ψ(x, t) for Example 1.

t Exact Solution Approximate Sol ψ = |ψ − ψ10|
0.0 1.648721270700128 1.648721270700128 0.0
0.5 1.0 1.000000000040401 4.040101586 e−11
1.0 0.606530659712633 0.606530742852590 8.313995659 e−8
1.5 0.367879441171442 0.367886690723836 7.249552393 e−6
2.0 0.223130160148429 0.223303762933655 1.569783692 e−4

Table 2. Approximate Solution of ψ(x, t) for Example 1.

t α = 1.99 α = 1.98 α = 1.97

0.0 1.648721270700128 1.648721270700128 1.648721270700128
0.5 1.002243362235993 1.004498274095028 1.006764389796932
1.0 0.609569757949665 0.612585971492061 0.615579284214978
1.5 0.369222108754806 0.371788163947318 0.370522335669580
2.0 0.221291547575669 0.219269844467107 0.217240584657229

Figure 2. The Exact Solutions and Approximate Solutions of ψ(x, t) for Example 1 for different value for α.
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Figure 3. The exact solution of ψ(x, t) for Example 2.

Table 3. Approximate solution of ψ(x, t) for Example 3.

t Exact Solution α = 1.95 α = 1.90 α = 1.85

0.0 0.5 0.5 0.5 1.5
5.0 0.824360635350064 0.830817752645242 0.837755999175080 0.845202109327201
1.0 1.359140914229523 1.378259288907402 1.398076433466764 1.418592017094073
1.5 2.240844535169032 2.276244404149126 2.312171661003479 2.348587393416824
2.0 3.694528049465325 3.748855797997422 3.803171995755493 3.857406067787722

Figure 4. The approximate solutions of ψ(x, t) for Example 3 for α = 1.95, α = 1.90, α = 1.85 and
exact solution.

7. Conclusions

We have successfully applied the natural transform and Adomian decomposition method to
obtain the approximate solutions of the fractional telegraph equation. The (NTDM) give us small
error and high convergence. As seen in Tables 1–3, errors are very small, and sometimes deflate as
shown in Table 3. These techniques lead us to say that the method is accurate and efficient according
to theoretical analysis and examples 3 and 4 the exact solution and approximate solution of ψ(x, t) are
equal at α = 2 the absolute error equal zero.
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Abstract: In this article, we establish some new difference equations for the family of λ-generalized
Hurwitz–Lerch zeta functions. These difference equations proved worthwhile to study these newly
defined functions in terms of simpler functions. Several authors investigated such functions and their
analytic properties, but no work has been reported for an estimation of their values. We perform some
numerical computations to evaluate these functions for different values of the involved parameters.
It is shown that the direct evaluation of involved integrals is not possible for the large values of
parameter s; nevertheless, using our new difference equations, we can evaluate these functions for
the large values of s. It is worth mentioning that for the small values of this parameter, our results
are 100% accurate with the directly computed results using their integral representation. Difference
equations so obtained are also useful for the computation of some new integrals of products of
λ-generalized Hurwitz–Lerch zeta functions and verified to be consistent with the existing results.
A derivative property of Mellin transforms proved fundamental to present this investigation.

Keywords: analytic number theory; λ-generalized Hurwitz–Lerch zeta functions; derivative
properties; recurrence relations; integral representations; Mellin transform

1. Introduction

In this paper, we practice the customary symbolizations:

N := {1, 2, · · · }; N0 := N ∪ {0}; Z− := {−1, −2, · · · }; Z−
0 := Z− ∪ {0}, (1)

where Z− is the set of integers. The involved symbols R, R+, and C represent the set of real, positive
real, and complex numbers, consistently.

The Hurwitz–Lerch zeta function has always been a topic of motivation for several researchers
due to its impact in analytic number theory and other applied sciences. Recently, Srivastava presented
a considerably new universal family of Hurwitz–Lerch zeta functions defined by [1] (p. 1487,
Equation (1.14)):

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp ,μ1,...,,μq

(z, s, a; b, λ)

= 1
Γ(s)

∫ ∞
0 ts−1 exp

(
−at − b

tλ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . ,(μp, σp)

; ze−t

]
dt;

(min[R(a), R(s)] > 0; R(b) � 0; λ � 0)

(2)
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so that, evidently, one can get the subsequent connection with the extended Hurwitz–Lerch zeta

functions Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp ,μ1,...,,μq

(z, s, a) defined by the authors of [2] (p. 503, Equation (6.2)) (see also
References [3,4]):

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp ,μ1,...,,μq

(z, s, a; 0, λ) = Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp ,μ1,...,,μq

(z, s, a) = ebΦ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp ,μ1,...,,μq

(z, s, a; b, 0). (3)

In the above Equation (2), pΨ∗
q where (p, q ∈ N0) is the standard Fox–Wright function defined by

the authors of [4] (p. 2219, Equation (1)) (see also References [3] (p. 516, Equation (1)) and [2] (p. 493,
Equation (2.1)):

pΨ∗
q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1,σ1), . . . , (μq,σq)

; z

]
=

∞

∑
χ=0

([
λp
])

ρpχ([
μq

])
σqχ

zχ

χ!
. (4)

Pochhammer symbols
([

λp
])

ρpn := [λ1]ρpn · · ·
[
λp
]

ρpn symbolize the shifted factorial defined
in terms of the basic Gamma function as follows:

(λ )ρ =
Γ(λ+ ρ )

Γ(λ)
=

{
1 (ρ = 0, λ ∈ C\{0})

λ(λ+ 1) . . . (λ+ χ− 1) (ρ = χ ∈ N; λ ∈ C),
(5)

Δ :=
q

∑
j=1

σj −
p

∑
j=1

ρj and ∇ : =

⎛⎝ p

∏
j=1

ρ
−ρj
j

⎞⎠.

⎛⎝ q

∏
j=1

σ
σj
j

⎞⎠.

The series given by Equation (4) converges in the entire complex z-plane for Δ > −1; and if
Δ = 0, the series (Equation (4)) converges only for |z| < ∇. For more detailed discussion of such
functions, we refer the interested reader to also see References [5–9].

The analysis of Srivastava’s λ-generalized Hurwitz–Lerch zeta functions and its different forms
have attracted noteworthy concern, and many papers have subsequently appeared on this subject.
Jankov et al. [10] and Srivastava et al. [3] discussed some inequalities for different cases of λ-generalized
Hurwitz–Lerch zeta functions. Srivastava et al. [11] introduced a nonlinear operator related with the
λ-generalized Hurwitz–Lerch zeta functions to analyze the inclusion properties of definite subclass of
special type of meromorphic functions. Srivastava and Gaboury [12] deliberated on new expansion
formulas for such functions (see, for details, References [13,14]; see also the further thoroughly
associated studies cited in each of these publications). Luo and Raina [4] discussed some new
inequalities involving Srivastava’s λ-generalized Hurwitz–Lerch zeta functions and obtained the
following series representation [4] (p. 2221, Equation (6)):

Φ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s, a; b, λ) = 1

λΓ(s)

∞

∑
χ=0

([λp])ρpχ

([μq])σqχ
Z

s
λ
1
λ

(a + χ)λb zχ
χ!(χ+a)s ,(

λj ∈ R(j = 1, .., p) and μj ∈ R\Z − 0 (j = 1, . . . , q); ρj > 0(j, . . . , p);σj > 0(j = 1, . . . , q); 1 + Δ ≥ 0
)

.

(6)

Srivastava beautifully described important results about the zeta and related functions in
an expository article [15]. Choi et al. [16] further discussed these functions by introducing one
more variable. Srivastava et al. [17] presented an innovative integral transform connected with the
λ-extended Hurwitz–Lerch zeta function. More recently, Tassaddiq [18] obtained a new representation
for this family of the λ-generalized Hurwitz–Lerch zeta functions in terms of complex delta functions
such that the definition of these functions is formalized over the space of entire test functions denoted
by Z. The author also listed and discussed all the possible special cases of Srivastava’s λ-generalized
Hurwitz–Lerch zeta functions [18] (p. 4) in the form of a table. For the purposes of our present investigation,
this table is given on the next page. For any use of the special cases of the generalized Hurwitz–Lerch zeta
functions, the reader is referred to this table. For more detailed study of zeta and related functions, we refer
the interested reader to References [19–40] and further bibliography cited therein.
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In this research, our focus is to establish some new difference equations for the family of
λ-generalized Hurwitz–Lerch zeta functions and its special cases by following the approach of
Tassaddiq and Qadir [33]. From the above discussion and Table 1, we can notice that several authors
presented and studied worthwhile generalizations of the Hurwitz–Lerch zeta functions. They obtained
various analytic formulas, integral, and series representations. However, as we deeply study Riemann
zeta functions, we know their values, their graphs, and several other important aspects. We could
not develop this approach for these generalizations. Bayad and Chiki [43] obtained reduction and
duality formulas of the generalized Hurwitz–Lerch zeta functions. Their results contain the earlier
obtained results of Choi [47]. These reduction formulas were concerned with the reduction of one
parameter that represent the generalized Hurwitz–Lerch zeta Φ∗

μ(z, s, a) and Hurwitz zeta functions
ζ∗

μ(s, a) in terms of Hurwitz–Lerch zeta Φ(z, s, a) and Hurwitz zeta ζ(s, a) functions, respectively.
The difference equations presented here have the advantage of reducing the generalized Hurwitz–Lerch
zeta Φ∗

μ(z, s, a) and the generalized Hurwitz zeta functions ζ∗
μ(s, a) in terms of basic polylogarithm

Lis(z) and zeta functions ζ(s), respectively. That means we have reduced one more parameter and our
results are simple enough to evaluate these functions for different values of the involved parameters.
By following the approach developed in this paper, we can initiate a deeper analysis of these functions
that will enhance their applications. The Riemann hypothesis is a well-known unsolved problem
in analytic number theory [22]. It states that “all the non-trivial zeros of the zeta function exist on
the real line s = 1

2 ”. These zeros seem to be complex conjugates and hence symmetric on this line.
The integrals of the zeta function and its generalizations are vital in the study of Riemann hypothesis
and for the investigation of zeta functions themselves. The study of distributions in statistical
inference and reliability theory [1,48,49] also involves such integrals. Difference equations obtained
in this investigation are worthwhile to evaluate integrals of products of the family of λ-generalized
Hurwitz–Lerch zeta functions that are consistent with the existing results.

The plan of the paper as follows: We present some new difference equations involving the
λ-generalized Hurwitz–Lerch zeta functions in Section 2 and obtain similar results for other related
functions. We discuss some applications of these difference equations in Section 3 by evaluating some
special cases of the function. Based upon the results of Section 2, we evaluate new integrals of products
of these functions in Section 4. We conclude our results in the last Section 5 by highlighting some
future directions of this work.

Throughout this investigation, conditions on the parameters will be considered standard as given
in Equations (1)–(6) and Table 1 unless otherwise stated.

2. Results

New Difference Equation of the λ-Generalized Hurwitz–Lerch Zeta Functions

Theorem 1. Prove that λ-Generalized Hurwitz–Lerch zeta functions satisfy the following relation:

Γ(s)Φ
λ1,...,λp,μ1,...,,μq

(λ1+ρ1,...,λpρp,μ1+σ1,...,μq+σq)
(z, s, a + 1; b, λ) =

(μ1)σ1
.....(μq)σq

z.(λ1)ρ1
.....(λp)ρp

⎡⎢⎣ bλΓ(s − λ− 1)Φ
(ρ1,...,ρpσ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s − λ− 1, a, b) + Γ(s)[

Φ
(ρ1,...,ρpσ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s − 1, a; b, λ)− aΦ

(ρ1,...,ρpσ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s, a; b, λ)]

⎤⎥⎦.
(7)

Proof: Consider the function:

f(t) = exp
(
−at − b

tλ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1,σ1), . . . , (μq,σq)

; ze−t

]
(8)
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and differentiate Equation (8) to get:

d
dt

[
exp

(
−at − b

tλ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1,σ1), . . . , (μq,σq)

; ze−t

]]
=

−a.exp
(
−at − b

tλ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1,σ1), . . . , (μq,σq)

; ze−t

]

+bλ
exp

(
−at− b

tλ

)
tλ+1 pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1,σ1), . . . , (μq,σq)

; ze−t

]

−z
(λ1)ρ1

.....(λp)ρp
(μ1)σ1

.....(μq)q
exp

(
−(a + 1)t − b

tλ

)
pΨ∗

q

[
(λ1 + ρ1, ρ1), . . . ,

(
λp + ρp, ρp

)
(μ1 + σ1,σ1), . . . , (μq + σq,σq)

; ze−t

]
(9)

so that:

f′(t) = exp
(
−at − b

tλ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1,σ1), . . . , (μq,σq)

ze−t

][
−a + bλ

tλ+1

]
−z

(λ1)ρ1
.....(λp)ρp

(μ1)σ1
.....(μq)q

exp
(
−(a + 1)t − b

tλ

)
pΨ∗

q

[
(λ1 + ρ1, ρ1), . . . ,

(
λp + ρp, ρp

)
(μ1 + σ1,σ1), . . . , (μq + σq,σq)

; ze−t

]
,

(10)

where we have used the usual differentiation and the derivative property, which is obtained on the
same lines as given by Reference [1] (p. 1492, Equation (3.1)):

d
dt

[
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1,σ1), . . . , (μq,σq)

; ze−t

]]
=

−ze−t
(λ1)ρ1

.....(λp)ρp
(μ1)σ1

.....(μq)q
pΨ∗

q

[
(λ1 + ρ1, ρ1), . . . ,

(
λp + ρp, ρp

)
(μ1 + σ1,σ1), . . . , (μq + σq,σq)

; ze−t

]
.

(11)

Taking Mellin transform on both sides of Equation (8) and using the defining integral
representation as given in Equation (2), we can write:

Γ(s)Φ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s, a; b, λ) = M

[
exp

(
−at − b

tλ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1,σ1), . . . , (μp,σp)

ze−t

]
; s

]
. (12)

Using the derivative property of Mellin transform given by, see [50] (Chapter 10):

M
[

u′(y); τ
]
= −(τ− 1)M[u(y); τ− 1] (13)

we obtain the following equation:

Γ(s)
[

aΦ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s, a; b, λ)− Φ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s − 1, a; b, λ)] =

bλΓ(s − λ− 1)Φ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s − λ− 1, a, b)

−
(λ1)ρ1

.....(λp)ρp
(μ1)σ1

.....(μq)q
zΓ(s)Φ

λ1,...,λp,μ1,...,,μq

(λ1+ρ1,...,λpρp,μ1+σ1,...,μq+σq)
(z, s, a + 1; b, λ)

(14)

which leads to:

(λ1)ρ1
.....(λp)ρp

(μ1)σ1
.....(μq)q

zΓ(s)Φ
λ1,...,λp,μ1,...,,μq

(λ1+ρ1,...,λpρp,μ1+σ1,...,μq+σq)
(z, s, a + 1; b, λ) =

bλΓ(s − λ− 1)Φ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s − λ− 1, a, b)

+Γ(s)
[

Φ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s − 1, a; b, λ)− aΦ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s, a; b, λ)] .

(15)
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After some simple modifications, one can arrive at the required result of Equation (7). �

Remark 1. We can obtain similar results for other related functions as listed in Table 1 by considering different
parameter values in the resulting corollaries.

Corollary 1. λ-Generalized Extended Fermi–Dirac functions have the following representation:

Γ(s)Θ
(ρ1,...,ρp,σ1,...,σq)

λ1+ρ1,...,λp+ρp,μ1+σ1,...,,μqσq
(x, s, a + 1; b, λ) =

ex·(μ1)σ1
.....(μq)σq

(λ1)ρ1
.....(λp)ρp

⎡⎢⎣ Γ(s)
[

aΘ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s, a; b, λ)− Θ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s − 1, a; b, λ)

]
−bλΓ(s − λ− 1)Θ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s − λ− 1, a, b, λ)

⎤⎥⎦ (16)

and λ-Generalized Extended Bose–Einstein functions have the following representation:

Γ(s)Ψ
(ρ1,...,ρp,σ1,...,σq)

λ1+ρ1,...,λp+ρp,μ1+σ1,...,,μq+σq
(x, s, a + 1; b, λ)

=
ex.(μ1)σ1

.....(μq)σq
(λ1)ρ1

.....(λp)ρp

[
bλΓ(s − λ− 1)Ψ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s − λ− 1, a, b, λ)

+ Γ(s)
[

Ψ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s − 1, a; b, λ)− aΨ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s, a; b, λ)

]]
.

(17)

Proof. The results follow directly from Equation (7) upon replacing z −→ ±e−x and using the parallel
case given in row 2 and column 2 of Table 1. �

Corollary 2. λ-Generalized Fermi–Dirac functions have the following representation:

Γ(s)Θ
(ρ1,...,ρp,σ1,...,σq)

λ1+ρ1,...,λp+ρp,μ1+σ1,...,,μq+σq
(x, s, 2; b, λ)

=
ex.(μ1)σ1

.....(μq)σq
(λ1)ρ1

.....(λp)ρp

⎡⎢⎣ bλΓ(s − λ− 1)F
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s − λ− 1, b, λ)

+Γ(s)
[

F
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s − 1; b, λ)− F

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s; b, λ)

]
⎤⎥⎦ (18)

and λ-Generalized Bose–Einstein functions have the following representation:

Γ(s)Ψ
(ρ1,...,ρp,σ1,...,σq)

λ1+ρ1,...,λp+ρp,μ1+σ1,...,,μq+σq
(x, s, 2; b, λ)

=
ex.(μ1)σ1

.....(μq)σq
(λ1)ρ1

.....(λp)ρp

[
bλΓ(s − λ− 1)B

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s − λ− 1, b, λ)

+ Γ(s)
[

B
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s − 1; b, λ)− B

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(x, s; b, λ)

]]
.

(19)

Proof. The results follow directly from Equation (7) upon replacing z −→ ±e−x ; a −→ 1 and taking
the item from Table 1 corresponding to these parameter values. �

Corollary 3. λ-Generalized Polylogarithm functions have the following representation:

Γ(s)Li
(ρ1,...,ρp,σ1,...,σq)

λ1+ρ1,...,λp+ρp,μ1+σ1,...,,μq+σq
(z, s, 2; b, λ)

=
(μ1)σ1

.....(μq)σq
z.(λ1)ρ1

.....(λp)ρp

⎡⎢⎣ bλΓ(s − λ− 1)Li
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s − λ− 1, b, λ)

+Γ(s)
[

Li
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s − 1; b, λ)− Li

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s; b, λ)

]
⎤⎥⎦.

(20)
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Proof. The result follows directly from Equation (7) upon replacing a −→ 1 and considering the
specific case of these parameter values from Table 1. �

Corollary 4. λ-Generalized Hurwitz zeta functions have the following representation:

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)

λ1+ρ1,...,λp+ρp,μ1+σ1,...,,μq+σq
(s, a + 1; b, λ)

=
(μ1)σ1

.....(μq)σq
(λ1)ρ1

.....(λp)ρp

[
bλΓ(s − λ− 1)ζ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(s − λ− 1, a; b, λ)

+ Γ(s)
[
ζ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(s − 1, a; b, λ)− aζ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(s, a; b, λ)

]]
.

(21)

Proof. The result follows directly from Equation (7) upon replacing z −→ 1 and in view of the defined
item from Table 1 dependable on these parameter values. �

Corollary 5. λ-Generalized Riemann zeta functions have the following representation:

ζ
(ρ1,...,ρp,σ1,...,σq)

λ1+ρ1,...,λp+ρp,μ1+σ1,...,,μq+σq
(s, 2; b, λ)

=
(μ1)σ1

.....(μq)σq
(λ1)ρ1

.....(λp)ρp

⎡⎢⎣ bλΓ(s − λ− 1)ζ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(s − λ− 1; b, λ)

+Γ(s)
[
ζ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(s − 1; b, λ)− ζ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(s; b, λ)

]
⎤⎥⎦.

(22)

Proof. The result follows directly from Equation (7) upon replacing z −→ 1; a −→ 1 and with reference
to the definite element from Table 1 stable with these parameter values. �

Remark 2. We can get similar representations for other special cases of these functions by considering different
parameter variations in view of Table 1 column-wise.

Note that by taking b = 0 in the above results, we can get the following formulae for unified

extended Hurwitz–Lerch zeta functions Φ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s, a; 0, λ):

Φ
(ρ1,...,ρp,σ1,...,σq)

λ1+ρ1,...,λp+ρp,μ1+σ1,...,,μq+σq
(z, s, a + 1)

=
(μ1)σ1

.....(μq)σq
z.(λ1)ρ1

.....(λp)ρp

[
Φ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s − 1, a)− aΦ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s, a)

]
.

(23)

Next, by selecting p − 1 = q = 0; λ1 = μ 	= 0; 1 = ρ1, in the above results, we can get the
following result for unified Hurwitz–Lerch zeta functions Φ∗

μ(z, s, a):

∫ ∞

0

ts−1e−(a+1)t

(1 − ze−t)μ+1 dt = Γ(s)Φ∗
μ+1(z, s, a + 1) =

Γ(s)
μz

[
Φ∗

μ(z, s − 1, a)− aΦ∗
μ(z, s, a)

]
. (24)

Next, we note that by taking μ = 1, we get for Hurwitz–Lerch zeta functions:

∫ ∞

0

ts−1e−(a+1)t

(1 − ze−t)2 dt = Γ(s)Φ∗
2(z, s, a + 1) =

Γ(s)[Φ(z, s − 1, a)− aΦ(z, s, a)]
z

. (25)

If we consider the same parameter values as above but with b 	= 0, then we can find the following
new results for the extended Riemann and Hurwitz zeta functions:
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μzΓ(s)Θλ
μ+1(z, s, a + 1, b)

= bλΓ(s − λ − 1)Θλ
μ(z, s − λ − 1, a, b)

+ Γ(s)
[
Θλ

μ(z, s − 1, a, b)− aΘλ
μ(z, s, a, b)

] (26)

∫ ∞
0

ts−1e−(a+1)t− b
t

(1−ze−t)2 dt = Γ(s)Φ∗
2(z, s, a + 1; b, 1)

= bΓ(s−2)
z Φb(z, s − 2, a) + Γ(s)

z [Φb(z, s − 1, a)− aΦb(z, s, a)]
(27)

∫ ∞

0

ts−1e−2t− b
t

(1 − e−t)2 dt = Γ(s)ζ∗
2(s, 2; b, 1) = bΓ(s − 2)ζb(s − 2) + Γ(s)[ζb(s − 1)− ζb(s)]. (28)

3. Some applications of the difference equation

In this section, we consider some interesting special cases of difference equations. On one side,
these are useful to know the values of generalized Hurwitz zeta functions Φ∗

μ(z, s, a) in terms of
zeta functions, and on the other, they lead to the computation of some elementary integrals that are
nontrivial to obtain for small values of μ = 2, 3, 4, 5 and the large values of s.

Taking μ = 2 and a −→ a + 1 in Equation (24), we get:∫ ∞
0

ts−1e−(a+2)t

(1−ze−t)3 dt = Γ(s)Φ∗
3(z, s, a + 2) = Γ(s)

1.2.z [Φ
∗
2(z, s − 1, a + 1)− (a + 1)Φ∗

2(z, s, a + 1)]. (29)

Next, making use of Equation (25) on the right-hand side of the above Equation (29) leads to the
following form of Φ∗

3(z, s, a + 2) in terms of the Hurwitz–Lerch zeta function:

∫ ∞
0

ts−1e−(a+2)t

(1−ze−t)3 dt = Γ(s)
1.2.z2 [Φ(z, s − 2, a)− aΦ(z, s − 1, a)− (a + 1)Φ(z, s − 1, a) + a(a + 1)Φ(z, s, a)]

= Γ(s)
1.2.z2 [Φ(z, s − 2, a)− (2a + 1)Φ(z, s − 1, a) + a(a + 1)Φ(z, s, a)].

(30)

Now we consider some interesting special cases of the above Equation (30).
For z = 1, it leads to the following representation in terms of the Hurwitz zeta function:

∫ ∞

0

ts−1e−(a+2)t

(1 − e−t)3 dt =
Γ(s)
1.2

[ζ(s − 2, a)− (2a + 1)ζ(s − 1, a) + a(a + 1)ζ(s, a)]; (31)

∫ ∞

0

ts−1e−(a+2)t

(1 − e−t)3 dt =
Γ(s)
1.2

[ζ(s − 2, a)− (2a + 1)ζ(s − 1, a) + a(a + 1)ζ(s, a)]. (32)

For a = 1, we get the following representation in terms of the polylogarithm function:

∫ ∞

0

ts−1e−3t

(1 − ze−t)3 dt =
Γ(s)

1.2.z3 [Lis−2(z)− 3Lis−1(z) + 2Lis(z)]. (33)

For a = 1, z = 1, it leads to the following relation in terms of the zeta function:

∫ ∞

0

ts−1e−3t

(1 − e−t)3 dt =
Γ(s)
1.2

[2ζ(s) + ζ(s − 2)− 3ζ(s − 1)]; (s 	= 1, 2, 3). (34)

For s = 4 in Equation (34), we get the following integral:

∫ ∞

0

t3e−3t

(1 − e−t)3 dt =
Γ(4)
1.2

[2ζ(4) + ζ(2)− 3ζ(3)]. (35)

Similarly, by considering different values of s, we can produce the following Tables 2 and 3 of
values. These computations show that Mathematica is unable to compute the involved integral on
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a commonly available computer for the large values of s, but it can be done using these new difference
equations. For small values of s, our results are 100% accurate with the direct computed results

Table 2. Computation of
∫ ∞

0
ts−1e−3t

(1−e−t)3 dt.

s Direct Evaluation by Mathematica Using difference Equation (34)

4 0.610229 0.610229

30 4.29669 × 1016 4.29669 × 1016

40 1.67783 × 1027 1.67783 × 1027

45 8.998 × 1032 8.998 × 1032

46 1.3497 × 1034 1.3497 × 1034

48 3.24227 × 1036 3.24227 × 1036

48.5 1.29353 × 1037 1.29353 × 1037

48.9 3.92781 × 1037 3.92781 × 1037

49 5.18762 × 1037 5.18762 × 1037

52 2.40071 × 1041 2.40071 × 1041

56 2.426 × 1046 2.426 × 1046

160 Unable to compute 1.349 × 10206

220 Unable to compute 1.121 × 10314

400 Unable to compute 2.269 × 10675

Putting μ = 3, a −→ a + 2 in Equation (24), we get:∫ ∞
0

ts−1e−(a+3)t

(1−ze−t)3+1 dt = Γ(s)Φ∗
3+1(z, s, a + 3)

= Γ(s)
3.z [Φ∗

3(z, s − 1, a + 2)− (a + 2)Φ∗
3(z, s, a + 2)].

(36)

Next, combining the above two results (Equations (30) and (36)), we get the following
representation in terms of the Hurwitz–Lerch zeta function∫ ∞

0
ts−1e−(a+3)t

(1−ze−t)4 dt

= Γ(s)
1.2.3.z3

[
Φ (z, s − 3, a)− 3(a + 1)Φ(z, s − 2, a) +

(
3a2 + 6a + 2

)
Φ(z, s − 1, a)

−a(a + 1)(a + 2)Φ(z, s, a)

]
.

(37)

Some interesting special cases: For z = 1, it leads to the following representation in terms of the
Hurwitz zeta function: ∫ ∞

0
ts−1e−(a+3)t

(1−e−t)4 dt = Γ(s)ζ∗
4(s, a + 3)

= Γ(s)
1.2.3

[
ζ(s − 3, a)− 3(a + 1)ζ(s − 2, a) +

(
3a2 + 6a + 2

)
ζ(s − 1, a)

−a(a + 1)(a + 2)ζ(s, a)

]
.

(38)

For a = 1, we get the following representation in terms of the polylogarithm function:∫ ∞
0

ts−1e−4t

(1−ze−t)4 dt = Γ(s)Φ∗
4(z, s, 4)

= Γ(s)
1.2.3.z4 [Lis−3(z)− 6Lis−2(z) + 11Lis−1(z)− 6Lis(z)].

(39)

For a = 1, z = 1, it leads to the following relation in terms of the zeta function:
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∫ ∞
0

ts−1e−4t

(1−e−t)4 dt = Γ(s)ζ∗
4(s, 4)

= Γ(s)
1.2.3

[
ζ(s − 3)− 6ζ(s − 2) + 11ζ(s − 1)− 6ζ(s)

]
; (s 	= 1, 2, 3, 4).

(40)

For s = 5, we have: ∫ ∞
0

t4e−4t

(1−e−t)4 dt = Γ(5)ζ∗
4(4, 4)

= Γ(5)
1.2.3

[
ζ(2)− 6ζ(3) + 11ζ(4)− 6ζ(5)

]
.

(41)

Table 3. Computation of
∫ ∞

0
ts−1e−4t

(1−e−t)4 dt.

s Direct Evaluation by Mathematica By using difference Equation (40)

90 1.07719 × 1082 1.07719 × 1082

100 5.8077 × 1095 5.8077 × 1095

140 Unable to compute 1.78191 × 10156

160 Unable to compute 1.37955 × 10186

Similarly, putting μ = 4, a −→ a + 3 in Equation (24), we get:∫ ∞
0

ts−1e−(a+4)t

(1−ze−t)4+1 dt = Γ(s)Φ∗
4+1(z, s, a + 4)

= Γ(s)
4.z

[
Φ∗

4(z, s − 1, a + 3)− (a + 3)Φ∗
4(z, s, a + 3)

]
.

(42)

Next, combining the above two results (Equations (38) and (42)), we get:∫ ∞
0

ts−1e−(a+4)t

(1−ze−t)5 dt

= Γ(s)
1.2.3.4.z4

[
Φ(z, s − 3, a) +

(
6a2 + 18a + 11

)
Φ(z, s − 2, a)

−
(
4a3 + 18a2 + 22a + 6

)
Φ(z, s − 2, a) + a(a + 1)(a + 2)(a + 3)Φ(z, s, a)

]
.

(43)

Some interesting special cases:
For z = 1: ∫ ∞

0
ts−1e−(a+4)t

(1−e−t)5 dt = Γ(s)ζ∗
5(s, a + 4)

= Γ(s)
1.2.3.4

[
ζ(s − 4, a)− 2(2a + 3)ζ(s − 3, a) +

(
6a2 + 18a + 11

)
ζ(s − 2, a)

−
(
4a3 + 18a2 + 22a + 6

)
ζ(s − 2, a) + a(a + 1)(a + 2)(a + 3)ζ(s, a)

]
.

(44)

For a = 1: ∫ ∞
0

ts−1e−5t

(1−ze−t)5 dt = Γ(s)Φ∗
5(z, s, 5)

= Γ(s)
1.2.3.4.z5

[
Lis−4(z)− 10Lis−3(z) + 37Lis−2(z)

−50Lis−2(z) + 24Lis(z)

]
.

(45)

For a = 1, z = 1: ∫ ∞
0

ts−1e−5t

(1−e−t)5 dt = Γ(s)ζ∗
5(s, 5)

= Γ(s)
1.2.3.4

[
ζ(s − 4)− 10ζ(s − 3) + 37ζ(s − 2)

−50ζ(s − 2) + 24ζ(s)

]
; (s 	= 1, 2, 3, 4, 5).

(46)

Now put s = 6: ∫ ∞
0

t5e−5t

(1−e−t)5 dt = Γ(6)ζ∗
5(6, 5)

= Γ(6)
1.2.3.4

[
ζ(2)− 10ζ(3) + 37ζ(4)

−50ζ(5) + 24ζ(6)

]
.

(47)
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Continuing in this way, by putting μ = 5, a −→ a + 4 in Equation (24), we get:∫ ∞
0

ts−1e−(a+5)t

(1−ze−t)5+1 dt = Γ(s)Φ∗
5+1(z, s, a + 5)

= Γ(s)
5.z [Φ∗

5(z, s − 1, a + 4)− (a + 4)Φ∗
5(z, s, a + 4)].

(48)

Next, combining the above two results of Equations (43) and (48), we can get Φ∗
6(z, s, a + 4) in

terms of Hurwitz–Lerch zeta functions. Similarly, for nonzero values of z, for example, z = 0.3; a = 1;
μ = 3 in Equation (33) we have:

∫ ∞

0

(
e−3 tt4)(

1 − 3 e−t

10

)3 dt = 0.125061 (49)

Γ(5)(Li3(0.3)− 3 Li4(0.3) + 2 Li5(0.3))

2 (0.3)3 = 0.125061 (50)

and so on and so forth.

4. Integrals of products of the family of λ-Generalized Hurwitz–Lerch zeta functions

By means of the basic Parseval’s identity of Mellin transform [50] (Chapter 10) and difference
equations obtained in Section 2, we can get the following integral formulae in view of Equation (2) and
column 3 of Table 1. For example, for the generalized Hurwitz–Lerch zeta functions Θλ

μ(z, s, a, b):

1
2πi

∫ c+i∞

c−i∞
Γ(s)Γ(w − s)Θλ

μ(z, s, a, b)Θλ
δ (z, w − s, a, b) =

∫ ∞

0

tw−1e−2at− 2b
tλ

(1 − ze−t)μ+δ
dt (51)

that leads to the following by simply replacing μ −→ μ + δ − 1 in Equation (26):

Γ(ω)Θλ
μ+δ(z, ω, 2a, 2b) =

1
z(μ − 1 + δ)

⎡⎢⎣ 2bλΓ(ω − λ − 1)Θλ
μ−1+δ(z, ω − λ − 1, 2a − 1, 2b)

+Γ(ω)Θλ
μ−1+δ(z, ω − 1, 2a − 1, 2b)

−(2a − 1)Γ(ω)Θλ
μ−1+δ(z, w, 2a − 1, 2b)

⎤⎥⎦. (52)

Therefore, we get the following new integral formulae for other related cases given in column 3
of Table 1 and Equations (51) and (52):

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Θλ

μ(z, s, a, b)Θλ
δ(z, w − s, a, b) =

∫ ∞
0

tw−1e
−2at− 2b

tλ

(1+e−xe−t)μ+δ dt

= ex

μ−1+δ

[
Γ(ω)

[
(2a − 1)Θλ

μ−1+δ(x, w, 2a − 1, 2b)− Θλ
μ−1+δ(x,ω− 1, 2a − 1, 2b)

]
−2bλΓ(ω− λ− 1)Θλ

μ−1+δ(x,ω− λ− 1, 2a − 1, 2b)

] (53)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Fλ

μ(x, s, b)Fλ
δ(x, w − s, b) =

∫ ∞
0

tw−1e
−2t− 2b

tλ

(1+e−xe−t)μ+δ dt

= ex

μ−1+δ

[
Γ(ω)

[
Fλ
μ−1+δ(x, w, 2b)− Fλ

μ−1+δ(x,ω− 1, 2b)
]

−2bλΓ(ω− λ− 1)Fλ
μ−1+δ(x,ω− λ− 1, 2b)

] (54)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Ψλ

μ(z, s, a, b)Ψλ
δ(z, w − s, a, b) =

∫ ∞
0

tw−1e
−2at− 2b

tλ

(1−e−xe−t)μ+δ dt

= ex

μ−1+δ

[
2bλΓ(ω− λ− 1)Ψλ

μ−1+δ(x,ω− λ− 1, 2a − 1, 2b)

+Γ(ω)
[
Ψλ

μ−1+δ(x,ω− 1, 2a − 1, 2b)
]
− (2a − 1)Ψλ

μ−1+δ(x, w, 2a − 1, 2b)

] (55)
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1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Bλ

μ(x, s, b)Bλ
δ(x, w − s, b) =

∫ ∞
0

tw−1e
−2t− 2b

tλ

(1−e−xe−t)μ+δ dt

= ex

μ−1+δ

[
2bλΓ(ω− λ− 1)Bλ

μ−1+δ(x,ω− λ− 1, 2b)

+Γ(ω)
[
Bλ
μ−1+δ(x,ω− 1, 2b)− Bλ

μ−1+δ(x, w, 2b)
] ] (56)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Liλμ(z, s, b)Liλδ(z, w − s, b) =

∫ ∞
0

tw−1e
−2t− 2b

tλ

(1−ze−t)μ+δ dt

= 1
(μ−1+δ)z

[
2bλΓ(ω− λ− 1)Liλμ−1+δ(x,ω− λ− 1, 2b)

+Γ(ω)
[
Liλμ−1+δ(x,ω− 1, 2b)− Liλμ−1+δ(x, w, 2b)

] ] (57)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)ζλμ(s, a; b)ζλδ(w − s, a; b) =

∫ ∞
0

tw−1e
−2at− 2b

tλ

(1−e−t)μ+δ dt

= 1
(μ−1+δ)

[
2bλΓ(ω− λ− 1)ζλμ−1+δ(ω− λ− 1, 2a − 1, 2b)

+Γ(ω)
[
ζλμ−1+δ(w − 1, 2a − 1, 2b)− (2a − 1)ζλμ−1+δ(w, 2a − 1, 2b)

] ] (58)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)ζλμ(s; b)ζλδ(w − s; b) =

∫ ∞
0

tw−1e
−2t− 2b

tλ

(1−e−t)μ+δ dt

= 1
(μ−1+δ)

[
2bλΓ(ω− λ− 1)ζλμ−1+δ(ω− λ− 1, 2b)

+Γ(ω)
[
ζλμ−1+δ(w − 1, 2b)− ζλμ−1+δ(w, 2b)

] ] . (59)

Next, for b = 0, we can get the following new formulae in view of column 8 of Table 1 and
Equation (53):

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Φ∗

μ(z, s, a) Φ∗
δ(z, w − s, a) =

∫ ∞
0

tw−1e−2at

(1−ze−t)μ+δ dt

= Γ(ω)
(μ−1+δ)z

[
Φ∗

μ−1+δ (z, ω − 1, 2a − 1)− (2a − 1)Φ∗
μ−1+δ(z, w, 2a − 1)

] (60)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Θ∗

μ(x, s, a)Θ∗
δ(x, w − s, a) =

∫ ∞
0

tw−1e−2at

(1+e−xe−t)μ+δ dt

= exΓ(ω)
μ−1+δ

[
(2a − 1)Θ∗

μ−1+δ(x, w, 2a − 1)− Θ∗
μ−1+δ(x, ω − 1, 2a − 1)

] (61)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)F∗

μ(x, s)F∗
δ(x, w − s) =

∫ ∞
0

tw−1e−2t

(1+e−xe−t)μ+δ dt

= exΓ(ω)
μ−1+δ

[
F∗

μ−1+δ(x, w)− F∗
μ−1+δ(x, ω − 1)

] (62)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Ψ∗

μ(x, s, a)Ψ∗
δ(x, w − s, a) =

∫ ∞
0

tw−1e−2at

(1−e−xe−t)μ+δ dt

= exΓ(ω)
μ−1+δ

[
Ψ∗

μ−1+δ(x, ω − 1, 2a − 1)− (2a − 1)Ψ∗
μ−1+δ(x, w, 2a − 1)

] (63)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)B∗

μ(x, s)B∗
δ(x, w − s) =

∫ ∞
0

tw−1e−2t

(1−e−xe−t)μ+δ dt

= exΓ(ω)
μ−1+δ

[
B∗

μ−1+δ(x, ω − 1)− B∗
μ−1+δ(x, w)

] (64)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Li∗μ(z, s) Li∗δ(z, w − s) =

∫ ∞
0

tw−1e−2t

(1−ze−t)μ+δ dt

= Γ(ω)
(μ−1+δ)z

[
Li∗μ−1+δ (z, ω − 1)− Li∗μ−1+δ(z, w)

] (65)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)ζ∗

μ(s, a) ζ∗
δ(w − s, a)ds =

∫ ∞
0

tw−1e−2at

(1−e−t)μ+δ dt

= Γ(ω)
(μ−1+δ)

[
ζ∗

μ−1+δ (ω − 1, a)− (2a − 1)ζ∗
μ−1+δ(w, a)

] (66)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)ζ∗

μ(s) ζ
∗
δ(w − s)ds =

∫ ∞
0

tw−1e−2t

(1−e−t)μ+δ dt

= Γ(ω)
(μ−1+δ)

[
ζ∗

μ−1+δ (ω − 1)− ζ∗
μ−1+δ(w)

] . (67)
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Next, if we consider δ = μ = λ = 1; b 	= 0 in Equation (53), we can obtain the following new
integral formulae in view of column 6 of Table 1:

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Φb(z, s, a) Φb(z, w − s, a)ds =

∫ ∞
0

tw−1e−2at− 2b
t

(1−ze−t)2 dt

= 2bΓ(ω−2)Φ2b(z,ω−2,2a−1)+Γ(ω)[Φ2b(z,ω−1,2a−1)−(2a−1)Φ2b(z,w,2a−1)]
z

(68)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Lib(z, s) Lib(z, w − s)ds =

∫ ∞
0

tw−1e−2t− 2b
t

(1−ze−t)2 dt

= 2bΓ(ω−2)Li2b(z,ω−2)+Γ(ω)[Li2b(z,ω−1)−Li2b(z,w)]
z

(69)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)ζb(s, a) ζb(w − s, a)ds =

∫ ∞
0

tw−1e−2at− 2b
t

(1−e−t)2 dt

= 2bΓ(ω − 2)ζ2b(ω − 2, 2a − 1) + Γ(ω)[ζ2b(ω − 1, 2a − 1)− (2a − 1)ζ2b(w, 2a − 1)]
(70)

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)ζb(s) ζb(w − s)ds =

∫ ∞
0

tw−1e−2t− 2b
t

(1−e−t)2 dt

= 2bΓ(ω − 2)ζ2b(ω − 2) + Γ(ω)[ζ2b(ω − 1)− ζ2b(w)]
. (71)

Similarly, by considering the different parameter values consistent with the results obtained
in Section 2, one can obtain more integral formulae for the family of zeta and associated functions.
One model is the following by means of Theorem 1:

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Φ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s, a, b; λ)Φ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, w − s, a, b; λ)ds

=
(μ1)σ1

.....(μq)σq
z(λ1)ρ1

.....(λp)ρp

⎡⎢⎢⎢⎢⎣
2bλΦ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
Γ(w − λ− 1)(z, w − λ− 1, 2a − 1, 2b)

+Γ(ω)

⎡⎣ Φ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, w − 1, 2a − 1; 2b, λ)−

(2a − 1)Φ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, w, 2a − 1; 2b, λ)

⎤⎦
⎤⎥⎥⎥⎥⎦

(72)

and for b = 0, it leads to:

1
2πi

∫ c+i∞
c−i∞ Γ(s)Γ(w − s)Φ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, s, a)Φ

(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, w − s, a)ds

=
Γ(ω)(μ1)σ1

.....(μq)σq
z(λ1)ρ1

.....(λp)ρp

⎡⎣ Φ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, w − 1, 2a − 1; 2b, λ)−

(2a − 1)Φ
(ρ1,...,ρp,σ1,...,σq)

λ1,...,λp,μ1,...,,μq
(z, w, 2a − 1; 2b, λ)

⎤⎦.
(73)

5. Discussion and Future Directions

In this study, we obtained some recurrence relations for the newly defined family of the
λ-generalized Hurwitz–Lerch zeta functions using the familiar Mellin transforms. These relations
proved valuable to acquire new integral formulae involving the family of zeta functions. The outcomes
were also confirmed with the previous obtained results as special cases. It is remarkable that the
recurrence relations obtained in this research work are worthwhile to achieve simple relations such as
Equations (34) and (40) that express special cases of λ-generalized Hurwitz–Lerch zeta functions in
terms of Riemann zeta functions, so that we can evaluate the values of these functions. By following
the method, we can obtain significant new results by considering the further specific values of the
involved parameters. This is useful for the further analysis of these functions by plotting the graphs
and deriving different series and asymptotic representations, etc. This work is in progress and would
be a part of some future research.

λ-generalized Hurwitz–Lerch zeta functions analytically generalize the functions of the zeta
family and offer consideration for some further presumable new members of this family that are
not discussed in the literature. This aspect is most suitable for attaining new consequences from
one key result. Our foremost results produce simultaneously important new results for a class of
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well-studied functions by applying the new difference equations. The Bose–Einstein and Fermi–Dirac
functions are of fundamental importance in quantum statistics that contracts by means of two specific
categories of spin symmetry, that is, fermions and bosons. Fitting together these functions here
with the λ-generalized Hurwitz–Lerch zeta functions yields substantial new identities for them that
provides clues regarding the forthcoming applications of these difference equations in quantum
physics and associated fields. This practice to acquire the outcomes by making use of new difference
equations explores the required simplicity that always inspires hope. We have discussed here the
direct consequences of our results. It is remarked that the method established in this research is in fact
noteworthy for the analysis and study of these higher transcendental functions.
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Abstract: By making use of the concept of basic (or q-) calculus, various families of q-extensions
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different viewpoints and perspectives. In this paper, we first investigate the relationship between
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introduce and study a new subclass of q-starlike functions that involves the Janowski functions.
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1. Introduction

The basic (or q-) calculus is the ordinary classical calculus without the notion of limits, while
q stands for the quantum. The application of the q-calculus was initiated by Jackson [1,2]. Later,
geometrical interpretation of the q-analysis was recognized through studies on quantum groups. It also
suggests a relation between integrable systems and q-analysis. Aral and Gupta [3–5] defined and
studied the q-analogue of the Baskakov-Durrmeyer operator, which is based on the q-analogue of the
beta function. Some other important q-generalizations and q-extensions of complex operators are the
q-Picard and the q-Gauss-Weierstrass singular-integral operators, which are discussed in [6–8].

In Geometric Function Theory, several subclasses of the normalized analytic function class A have
already been analyzed and investigated through various perspectives. The q-calculus provides valuable
tools that have been extensively used in order to examine several subclasses of the normalized analytic
function class A in the open unit disk U. Ismail et al. [9] were the first to use the q-derivative operator
Dq in order to study a certain q-analogue of the class S∗ of starlike functions in U (see Definition 6
below). Mohammed and Darus [10] studied the approximation and geometric properties of these
q-operators in some subclasses of analytic functions in a compact disk. These q-operators are defined
by using the convolution of normalized analytic functions and q-hypergeometric functions, where
several interesting results were obtained (see [11,12]). Certain basic properties of the q-close-to-convex
functions were studied by Raghavendar and Swaminathan [13]. Aral et al. [14] successfully studied
the applications of the q-calculus in operator theory. Kanas and Raducanu [15] used the fractional
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q-calculus operators in investigations of certain classes of functions, which are analytic in the open
unit disk U by using the idea of the canonical domain. The coefficient inequality problems for
q-closed-to-convex functions with respect to Janowski starlike functions were studied recently (see,
for example, [16]). In the year 2016, Wongsaijai and Sukantamala [17] published a paper, in which
they generalized certain subclasses of starlike functions in a systematic way. In fact, they made a very
significant usage of the q-calculus basically in the context of Geometric Function Theory. Moreover,
the generalized basic (or q-) hypergeometric functions were first used in Geometric Function Theory in
a book chapter by Srivastava (see, for details [18], (p. 347 et seq.); see also [19]).

Motivated by the works of Wongsaijai and Sukantamala [17] and other related works cited above
in this paper, we shall consider three new subfamilies of q-starlike functions with respect to Janowski
functions. Several properties and characteristics, for example, sufficient conditions, inclusion results,
distortion theorems, and radius problems, shall be discussed in this investigation. We shall also point
out some relevant connections of our results with the existing results.

We denote by H (U) the class of functions that are analytic in the open unit disk:

U = {z : z ∈ C and |z| < 1} ,

where C is the set of complex numbers. Let A be the subclass of functions f ∈ H (U), which are
represented by the following Taylor-Maclaurin series expansion:

f (z) = z +
∞

∑
n=2

anzn (z ∈ U) (1)

that is, which satisfy the normalization condition given by

f (0) = f ′ (0)− 1 = 0.

Furthermore, let S be the class of functions in A, which are univalent in U.
The familiar class of starlike functions in U will be denoted by S∗, which consists of normalized

functions f ∈ S that satisfy the following conditions:

f ∈ S and �
(

z f ′ (z)
f (z)

)
> 0 (∀ z ∈ U). (2)

For two functions f and g, which are analytic in U, we say that the function f is subordinate to g
and write

f ≺ g or f (z) ≺ g (z) ,

if there exists a Schwarz function w, which is analytic in U with

w (0) = 0 and |w (z)| < 1

such that
f (z) = g

(
w (z)

)
.

In particular, if the function g is univalent in U, then we have the following equivalence
(cf., e.g., [20]; see also [21]):

f (z) ≺ g(z) (z ∈ U) ⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

We next denote by P the class of analytic functions p in U, which are normalized by

p (z) = 1 +
∞

∑
n=1

pnzn, (3)
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such that
�{p (z)} > 0.

In the next section (Section 2), we first give some basic definitions and concept details. Thereafter
we will demonstrate three (presumably new) subclasses of the class S∗

q of q-starlike functions associated
with the Janowski functions.

2. A Set of Definitions

Throughout this paper, we suppose that 0 < q < 1 and that

N = {1, 2, 3, · · · } = N0 \ {0} (N0 := {0, 1, 2, · · · }) .

Definition 1. (See [22]) A given function h with h (0) = 1 is said to belong to the class P [A, B] if and only if

h (z) ≺ 1 + Az
1 + Bz

(−1 � B < A � 1).

The analytic function class P [A, B] was introduced by Janowski [22], who showed that
h (z) ∈ P [A, B] if and only if there exists a function p ∈ P such that

h (z) =
(A + 1) p (z)− (A − 1)
(B + 1) p (z)− (B − 1)

(−1 � B < A � 1).

Definition 2. A function f ∈ S is said to belong to the class S∗ [A, B] if and only if there exists a function
p ∈ P such that

z f ′ (z)
f (z)

=
(A + 1) p (z)− (A − 1)
(B + 1) p (z)− (B − 1)

(−1 � B < A � 1). (4)

Definition 3. Let q ∈ (0, 1), and define the q-number [λ]q by

[λ]q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − qλ

1 − q
(λ ∈ C)

n−1
∑

k=0
qk = 1 + q + q2 + · · ·+ qn−1 (λ = n ∈ N).

Definition 4. Let q ∈ (0, 1), and define the q-factorial [n]q! by

[n]q! =

⎧⎪⎪⎨⎪⎪⎩
1 (n = 0)

n
∏

k=1
[k]q (n ∈ N).

Definition 5. (See [1,2]) The q-derivative (or the q-difference) operator Dq f of a function f is defined, in a given
subset of C, by

(
Dq f

)
(z) =

⎧⎪⎪⎨⎪⎪⎩
f (z)− f (qz)
(1 − q)z

(z 	= 0)

f ′(0) (z = 0),

(5)

provided that f ′(0) exists.
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We note from Definition 5 that

lim
q→1−

(
Dq f

)
(z) = lim

q→1−
f (z)− f (qz)
(1 − q)z

= f ′(z)

for a function f , which is differentiable in a given subset of C. It is readily deduced from (1) and (5) that

(
Dq f

)
(z) = 1 +

∞

∑
n=2

[n]q anzn−1. (6)

Definition 6. (See [9]) A function f ∈ S is said to belong to the class S∗
q of q-starlike functions in U if

f (0) = f ′ (0)− 1 = 0 (7)

and ∣∣∣∣ z
f (z)

(
Dq f

)
(z)− 1

1 − q

∣∣∣∣ � 1
1 − q

(z ∈ U). (8)

We readily observe that, as q → 1−, the closed disk:∣∣∣∣w − 1
1 − q

∣∣∣∣ � 1
1 − q

becomes the right-half complex plane, and the class S∗
q of q-starlike functions in U reduces to the

familiar class S∗ of normalized starlike functions with respect to the origin (z = 0). Equivalently,
by using the principle of subordination between analytic functions, we can rewrite the conditions in
(7) and (8) as follows (see [16]):

z
f (z)

(
Dq f

)
(z) ≺ p̂(z)

(
p̂(z) :=

1 + z
1 − qz

)
. (9)

We now introduce three (presumably new) subclasses of the class S∗
q of q-starlike functions

associated with the Janowski functions in the following way.

Definition 7. A function f ∈ A is said to belong to the class S∗
(q,1) [A, B] if and only if

�

⎛⎜⎜⎝ (B − 1)
zDq f (z)

f (z)
− (A − 1)

(B + 1)
zDq f (z)

f (z)
− (A + 1)

⎞⎟⎟⎠ � 0.

We call S∗
(q,1) [A, B] the class of q-starlike functions of Type 1 associated with the Janowski functions.

Definition 8. A function f ∈ A is said to belong to the class f ∈ S∗
(q,2) [A, B] if and only if

∣∣∣∣∣∣∣∣
(B − 1)

zDq f (z)
f (z)

− (A − 1)

(B + 1)
zDq f (z)

f (z)
− (A + 1)

− 1
1 − q

∣∣∣∣∣∣∣∣ <
1

1 − q
.

We call S∗
(q,2) [A, B] the class of q-starlike functions of Type 2 associated with the Janowski functions.
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Definition 9. A function f ∈ A is said to belong to the class f ∈ S∗
(q,3) [A, B] if and only if

∣∣∣∣∣∣∣∣
(B − 1)

zDq f (z)
f (z)

− (A − 1)

(B + 1)
zDq f (z)

f (z)
− (A + 1)

− 1

∣∣∣∣∣∣∣∣ < 1.

We call S∗
(q,3) [A, B] the class of q-starlike functions of Type 3 associated with the Janowski functions.

Each of the following special cases of the above-defined q-starlike functions:

S∗
(q,1) [A, B] , S∗

(q,2) [A, B] and S∗
(q,3) [A, B]

is worthy of note.

I. If we put
A = 1 − 2α (0 � α < 1) and B = −1

in Definition 7, we get the class S∗
(q,1) (α), which was introduced and studied by Wongsaijai and

Sukantamala (see [17], Definition 1).

II. If we put
A = 1 − 2α (0 � α < 1) and B = −1,

in Definition 8, we are led to the class S∗
(q,2) (α), which was introduced and studied by Wongsaijai and

Sukantamala (see [17], Definition 2).

III. If we put
A = 1 − 2α (0 � α < 1) and B = −1

in Definition 9, we have the class S∗
(q,3) (α), which was introduced and studied by Wongsaijai and

Sukantamala (see [17], Definition 3).

IV. If we put
A = 1 − 2α (0 � α < 1) and B = −1

in Definition 8, we obtain the class S∗
q (α), which was introduced and studied by

Agrawal and Sahoo [23].

V. If we put
A = 1 and B = −1

in Definition 8, we get the class S∗
q introduced and studied by Ismail et al. [9].

VI. In Definition 8, if we let q → 1− and put A = λ and B = 0, then we will arrive at the function
class, studied by Ponnusamy and Singh (see [24]).

Geometrically, for f ∈ S∗
(q,k) [A, B] (k = 1, 2, 3), the quotient:

zDq f (z)
f (z)

lies in the domains Ωj (j = 1, 2, 3) given by
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Ω1 =

{
w : w ∈ C and � (w) >

A − 1
B − 1

}
,

Ω2 =

{
w : w ∈ C and

∣∣∣∣w − 2 + q (A − 1)
(B − 1) q + (B + 3)

∣∣∣∣ < A + 1
(B − 1) q + (B + 3)

}
and

Ω3 =

{
w : w ∈ C and

∣∣∣∣w − 2
B + 3

∣∣∣∣ < A + 1
B + 3

}
,

respectively.
In this paper, many properties and characteristics, for example sufficient conditions, inclusion

results, distortion theorems, and radius problems, are discussed. We also indicate relevant connections
of our results with a number of other related works on this subject.

3. Main Results and Their Demonstration

We first derive the inclusion results for the following generalized q-starlike functions:

S∗
(q,1) [A, B] , S∗

(q,2) [A, B] and S∗
(q,3) [A, B] ,

which are associated with the Janowski functions.

Theorem 1. If −1 � B < A � 1, then

S∗
(q,3) [A, B] ⊂ S∗

(q,2) [A, B] ⊂ S∗
(q,1) [A, B] .

Proof. First of all, we suppose that f ∈ S∗
(q,3) [A, B] . Then, by Definition 9, we have

∣∣∣∣∣∣
(B − 1) zDq f (z)

f (z) − (A − 1)

(B + 1) zDq f (z)
f (z) − (A + 1)

− 1

∣∣∣∣∣∣ < 1,

so that ∣∣∣∣∣∣
(B − 1) zDq f (z)

f (z) − (A − 1)

(B + 1) zDq f (z)
f (z) − (A + 1)

− 1

∣∣∣∣∣∣+ q
1 − q

< 1 +
q

1 − q
. (10)

By using the triangle inequality and Equation (10), we find that∣∣∣∣∣∣
(B − 1) zDq f (z)

f (z) − (A − 1)

(B + 1) zDq f (z)
f (z) − (A + 1)

− 1
1 − q

∣∣∣∣∣∣ < 1
1 − q

. (11)

The last expression in (11) now implies that f ∈ S∗
(q,2) [A, B] , that is, that

S∗
(q,3) [A, B] ⊂ S∗

(q,2) [A, B] .
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Next, we let f ∈ S∗
(q,2) [A, B] , so that

f ∈ S∗
(q,2) [A, B] ⇐⇒

∣∣∣∣∣∣
(B − 1) zDq f (z)

f (z) − (A − 1)

(B + 1) zDq f (z)
f (z) − (A + 1)

− 1
1 − q

∣∣∣∣∣∣ < 1
1 − q

,

by Definition 8.
Since

1
1 − q

>

∣∣∣∣∣∣
(B − 1) zDq f (z)

f (z) − (A − 1)

(B + 1) zDq f (z)
f (z) − (A + 1)

− 1
1 − q

∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1
1 − q

−
(B − 1) zDq f (z)

f (z) − (A − 1)

(B + 1) zDq f (z)
f (z) − (A + 1)

∣∣∣∣∣∣ ,

we have

�

⎛⎝ (B − 1) zDq f (z)
f (z) − (A − 1)

(B + 1) zDq f (z)
f (z) − (A + 1)

⎞⎠ > 0 (z ∈ U).

This last equation now shows that f ∈ S∗
(q,1) [A, B] , that is, that

S∗
(q,2) [A, B] ⊂ S∗

(q,1) [A, B] ,

which completes the proof of Theorem 1.

As a special case of Theorem 1, if we put

A = 1 − 2α (0 � α < 1) and B = −1,

we get the following known result due to Wongsaijai and Sukantamala (see [17]).

Corollary 1. (See [17]) For 0 � α < 1,

S∗
q,3 (α) ⊂ S∗

q,2 (α) ⊂ S∗
q,1 (α) .

Next, we present a remarkable simple characterization of functions in the class S∗
(q,2) [A, B] of

q-starlike functions of Type 2 associated with the Janowski functions.

Theorem 2. Let f ∈ A. Then f ∈ S∗
(q,2) [A, B] if and only if∣∣∣∣ f (qz)

f (z)
− σ

(B − 1) q + (B + 3)

∣∣∣∣ � (A + 1) (1 − q)
(B − 1) q + (B + 3)

,

where
σ = (A − 1) q2 + (B − A + 2) q + B + 1.

Proof. The proof of Theorem 2 can be easily obtained from the fact that

zDq f (z)
f (z)

=

(
1

1 − q

)(
1 − f (qz)

f (z)

)
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and Definition 8 of the class S∗
(q,2) [A, B] of q-starlike functions of Type 2 associated with the

Janowski functions.

Upon setting
A = 1 − 2α and B = −1

in Theorem 2, we get the following known result.

Corollary 2. (See [23]) Let f ∈ A. Then, f ∈ S∗
q (α) if and only if∣∣∣∣ f (qz)

f (z)
− αq

∣∣∣∣ � 1 − α.

Our next result is directly obtained by using Theorem 1 and a known result given in [23].

Theorem 3. The classes

S∗
(q,1) [A, B] , S∗

(q,2) [A, B] and S∗
(q,3) [A, B]

of the generalized q-starlike functions of Type 1, Type 2, and Type 3, respectively, satisfy the following properties:

∩
0<q<1

S∗
(q,1) [A, B] = ∩

0<q<1
S∗
(q,2) [A, B] = S∗ [A, B]

and

∩
0<q<1

S∗
(q,1) [A, B] = ∩

0<q<1
S∗
(q,3) [A, B] ⊂ S∗ [A, B] .

Finally, by means of a coefficient inequality, we give a sufficient condition for the class S∗
(q,3) [A, B]

of generalized q-starlike functions of Type 3, which also provides a corresponding sufficient condition
for the classes S∗

(q,1) [A, B] and S∗
(q,2) [A, B] of Type 1 and Type 2, respectively.

Theorem 4. A function f ∈ A and of the form (1) is in the class S∗
(q,3) [A, B] if it satisfies the following

coefficient inequality:

∞

∑
n=2

(
2q [n − 1]q + [n]q (B + 1) + (A + 1)

)
|an| < |B − A| . (12)

4. Analytic Functions with Negative Coefficients

In this section, we introduce new subclasses of q-starlike functions associated with the Janowski
functions, which involve negative coefficients. Let T be a subset of A consisting of functions with a
negative coefficient, that is,

f (z) = z −
∞

∑
n=2

|an| zn (an � 0). (13)

We also let
T S∗

(q,k) [A, B] := S∗
(q,k) [A, B] ∩ T (k = 1, 2, 3). (14)

Theorem 5. If −1 � B < A � 1, then

T S∗
(q,1) [A, B] = T S∗

(q,2) [A, B] = T S∗
(q,3) [A, B] .
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Proof. In view of Theorem 1, it is sufficient here to show that

T S∗
(q,1) [A, B] ⊂ T S∗

(q,3) [A, B] .

Indeed, if we assume that f ∈ T S∗
(q,1) [A, B] , then we have

�

⎛⎝ (B − 1) zDq f (z)
f (z) − (A − 1)

(B + 1) zDq f (z)
f (z) − (A + 1)

⎞⎠ � 0,

so that

�

⎛⎝ (B − 1) zDq f (z)
f (z) − (A − 1)

(B + 1) zDq f (z)
f (z) − (A + 1)

− 1

⎞⎠ � −1.

After a simple calculation, we thus find that

2
[

f (z)− zDq f (z)
]

(B + 1) zDq f (z)− (A + 1) f (z)
� −1,

that is, that

−
2

∞
∑

n=2

(
[n]q − 1

)
anzn

(A − B) +
∞
∑

n=2

(
[n]q (B + 1)− (A + 1)

)
anzn

� −1,

which can be written as follows:

2
∞
∑

n=2

(
[n]q − 1

)
anzn

(A − B) +
∞
∑

n=2

(
[n]q (B + 1)− (A + 1)

)
anzn

< 1. (15)

The last expression in (15) implies that

2
∞
∑

n=2

(
[n]q − 1

)
anzn

|B − A|+
∞
∑

n=2

(
[n]q (B + 1) + (A + 1)

)
anzn

� 1,

which satisfies (12) . By Theorem 4, the proof of Theorem 5 is completed.

In its special case, when

A = 1 − 2α (0 � α < 1) and B = −1.

Theorem 5 reduces to the following known result.

Corollary 3. (See [17], Theorem 8) If 0 � α < 1, then

T S∗
(q,1) (α) = T S∗

(q,2) (α) = T S∗
(q,3) (α) .

The assertions of Theorem 5 imply that the Type 1, Type 2, and Type 3 generalized q-starlike
functions associated with the Janowski functions are exactly the same. For convenience, therefore,
we state the following distortion theorem by using the notation T S∗

(q,k) [A, B] in which it is tacitly
assumed that k = 1, 2, 3.
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Theorem 6. If f ∈ T S∗
(q,k) [A, B] (k = 1, 2, 3), then

r −
( |B − A|

Λ (2, A, B, q)

)
r2 � | f (z)| � r +

( |B − A|
Λ (2, A, B, q)

)
r2

(
|z| = r (0 < r < 1)

)
,

where
Λ (n, A, B, q) = 2

(
[n]q − 1

)
+ [n]q (B + 1) + (A + 1) (n ∈ N \ {1}). (16)

Proof. We note that the following inequality follows from Theorem 4:

Λ (2, A, B, q)
∞

∑
n=2

|an| �
∞

∑
n=2

Λ (n, A, B, q) |an| < |B − A| ,

which yields

| f (z)| � r +
∞

∑
n=2

|an| rn � r + r2
∞

∑
n=2

|an| � r +
( |B − A|

Λ (2, A, B, q)

)
r2.

Similarly, we have

| f (z)| � r −
∞

∑
n=2

|an| rn � r − r2
∞

∑
n=2

|an| � r −
( |B − A|

Λ (2, A, B, q)

)
r2.

We have thus completed the proof of Theorem 6.

In its special case, when

A = 1 − 2α (0 � α < 1) and B = −1,

if we let q −→ 1−, Theorem 6 reduces to the following known result.

Corollary 4. (See [25]) If f ∈ T S∗ (α) , then

r −
(

1 − α

2 − α

)
r2 � | f (z)| � r +

(
1 − α

2 − α

)
r2 (

|z| = r (0 < r < 1)
)
.

The following result (Theorem 7) can be proven by using arguments similar to those that were
already presented in the proof of Theorem 6, so we choose to omit the details of our proof of Theorem 7.

Theorem 7. If f ∈ T S∗
(q,k) [A, B] (k = 1, 2, 3), then

1 −
(

2 |B − A|
Λ (2, A, B, q)

)
r �

∣∣ f ′ (z)
∣∣ � 1 +

(
2 |B − A|

Λ (2, A, B, q)

)
r

(
|z| = r (0 < r < 1)

)
,

where Λ (n, A, B, q) is given by (16) .

In its special case, when

A = 1 − 2α (0 � α < 1) and B = −1,

if we let q −→ 1−, Theorem 6 reduces to the following known result.
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Corollary 5. (See [25]) If f ∈ T S∗ (α) , then

1 −
(

2 (1 − α)

2 − α

)
r �

∣∣ f ′ (z)
∣∣ � 1 +

(
2 (1 − α)

2 − α

)
r

(
|z| = r (0 < r < 1)

)
.

Remark 1. By using Theorem 4, it is easy to see that the function:

f0 (z) = z − |B − A| − ε

2q [n − 1]q + [n]q (B + 1) + (A + 1)
zn ∈ T S (q,k) [A, B] (17)

where

0 < ε <
n |B − A| − 2q [n − 1]q + [n]q (B + 1) + (A + 1)

n
and

2q [n − 1]q +
(
[n]q (B + 1) + (A + 1)

)
< n (|B − A| − ε) ,

but
f ′0 (z) = 0

at

z0 =

⎡⎣2q [n − 1]q +
(
[n]q (B + 1) + (A + 1)

)
n (|B − A| − ε)

⎤⎦
1

n−1 (
cos

(
2kπ

n − 1

)
+ i sin

(
2kπ

n − 1

))
∈ U.

That is, f0 (z) /∈ S and also f0 (z) /∈ S∗. Therefore, it is interesting to study the radius of univalency and
starlikeness of class T S (q,k) [A, B] .

Theorem 8. Let f ∈ T S (q,k) [A, B] (k = 1, 2, 3). Then, f is univalent and starlike in |z| < r0, where

r0 = min
2≤n≤M0

[
2q [n − 1]q + [n]q (B + 1) + (A + 1)

n |B − A|

] 1
n−1

(18)

and M0 satisfies the following inequality:

M0 > exp
(

1 +
∣∣∣∣ln (1 − q) |B − A|

(B + 3) + (A − 1) (1 − q)

∣∣∣∣) .

Proof. To prove Theorem 8, it is sufficient to show that∣∣ f ′ (z)− 1
∣∣ < 1 (|z| � r0) .

Now, we have ∣∣ f ′ (z)− 1
∣∣ = ∣∣∣∣∣− ∞

∑
n=2

nanzn−1

∣∣∣∣∣ � ∞

∑
n=2

n |an| |z|n−1 .

Thus, ∣∣ f ′ (z)− 1
∣∣ < 1

if
∞

∑
n=2

n |an| |z|n−1 < 1. (19)

In light of Theorem 4, the inequality in (19) will be true if

n |z|n−1 �
2q [n − 1]q +

(
[n]q (B + 1) + (A + 1)

)
|B − A| . (20)
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Solving the inequality in (20) for z, we have

|z| �

⎡⎣2q [n − 1]q +
(
[n]q (B + 1) + (A + 1)

)
n |B − A|

⎤⎦
1

n−1

. (21)

Next, we need to find M0 ∈ N satisfying (18) . Let f : [2, ∞) −→ R+ be the function defined by

f (x) =

[
2q [x − 1]q + [x]q (B + 1) + (A + 1)

x |B − A|

] 1
x−1

(22)

Differentiating on both sides of (22) logarithmically, we have

f ′ (x) =
f (x)

(x − 1)2

[
ln x − (x − 1) (B + 3) (qx ln q)

(B + 3) (1 − qx) + (A − 1) (1 − q)

+ ln
(1 − q) |B − A|

(B + 3) (1 − qx) + (A − 1) (1 − q)
− x − 1

x

]
. (23)

It is easy to see that the second term of (23) is positive. Since

sup
x�2

∣∣∣∣ln (1 − q) |B − A|
(B + 3) (1 − qx) + (A − 1) (1 − q)

∣∣∣∣ = ∣∣∣∣ (1 − q) |B − A|
(B + 3) + (A − 1) (1 − q)

∣∣∣∣
and

sup
x�2

x − 1
x

= 1

then the third and the last term in (23) can be dominated by ln x when x is sufficiently large. This implies
that f is an increasing function on [M0, ∞] , where

M0 > exp
(

1 +
∣∣∣∣ln (1 − q) |B − A|

(B + 3) + (A − 1) (1 − q)

∣∣∣∣) .

Therefore, the radius of univalence can be defined by

r0 = inf
n�2

[
2q [n − 1]q + [n]q (B + 1) + (A + 1)

n |B − A|

] 1
n−1

= min
2�n�M0

[
2q [n − 1]q + [n]q (B + 1) + (A + 1)

n |B − A|

] 1
n−1

(24)

In view of (24) , the proof of our Theorem is now completed.

If, in Theorem 8, we let
B = −1 and A = (1 − 2α)

we are led to the following known result:

Corollary 6. [17] Let f ∈ T Sq. Then, f is univalent and starlike in |z| < r0, where

r0 = min
2�n�M0

[
[n]q − α

n (1 − α)

] 1
n−1

(25)
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and M0 satisfies the following inequality:

M0 > exp
(

1 +
∣∣∣∣ln (1 − q) (1 − α)

q + (1 − q) (1 − α)

∣∣∣∣) .

Now, below, we give an example that validates Theorem 8.

Example 1. Consider the class T S (0.75,k) [0, λ] with λ = 0.99. By Theorem 8, we obtain the radius of
univalency of class T S (0.75,k) [0, λ] , given by

r0 = min
2�n�exp(1+|ln 0.08256880734|)

[
3 [n − 1]q − 0.01

(0.99) n

] 1
n−1

= min
2�n�33

[
3 [n − 1]q − 0.01

(0.99) n

] 1
n−1

= 0.9691405946.

Now, we consider the sharpness example function f0 (z) defined in (17) with n = 2 and ε = 0.001,
that is,

f0 (z) = z − 0.989
5.24

z2.

Obviously, f0 (z) is locally univalent on U0.9691405946 because f ′ (z0) = 0 at z0 = 2.649140540
outside the open disk U0.9691405946. By applying Theorem 8, function f0 (z) is univalent on U0.9691405946.

The next Theorem (Theorem 9) can be derived by working in a similar way as in Theorem 8;
here, we omit the proof.

Theorem 9. Let f ∈ T S (q,k) [A, B] (k = 1, 2, 3). Then f is starlike of order α in |z| < r1, where

r1 = min
2�n�M1

⎡⎣
(

2q [n − 1]q + [n]q (B + 1) + (A + 1)
)
(1 − α)

(n − α) |B − A|

⎤⎦
1

n−1

(26)

and M1 satisfies the following inequality:

M1 > exp
(

1 +
∣∣∣∣ln (1 − q) |B − A|

((B + 3) + (A − 1) (1 − q)) (1 − α)

∣∣∣∣) .

5. Conclusions

In our present investigation, we first defined certain new subclasses of q-starlike functions, which
are associated with the Janowski function. We then discussed many properties and characteristics of
each of these subclasses of q-starlike functions including, for example, sufficient conditions, inclusion
results, distortion theorems, and radius problems. For the motivation and validity of our results, we
have also pointed out relevant connections with those that were given in earlier works.
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1. Introduction

Let A denote the family of complex valued functions f which are holomorphic (analytic) in
E = {z ∈ C : |z| < 1} and are normalized through the conditions f (0) = 0 and f ′(0) = 1. That is,
for f ∈ A, one may have its series form

f (z) = z +
∞

∑
k=2

akzk, z ∈ E. (1)

The class UCV is comprised those univalent functions f (z) by which every circular arc C ⊂ E,
with center at E, is mapped onto the convex arc and such functions are known as uniformly convex
functions. This class was first introduced by Goodman [1]. The interesting analytic condition of class
UCV was given in [2] and is stated as follows:

UCV =

{
f ∈ A : �

{
1 +

z f ′′(z)
f ′(z)

}
>

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣ , z ∈ E

}
.

Kanas et al. [3] further generalized the class UCV by introducing the class of k-uniformly convex
functions, named as k-UCV , k ≥ 0 and the class k-ST of corresponding k-starlike functions. The class
k-UCV is defined as follows:

k-UCV =

{
f ∈ A : �

{
1 +

z f ′′(z)
f ′(z)

}
> k

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣ , z ∈ E

}
.

Symmetry 2019, 11, 287; doi:10.3390/sym11020287 www.mdpi.com/journal/symmetry145
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They, in addition, discussed these classes geometrically and established connections with the
conic domains

Gk =
{

u + iv ; u2 > k2
(
(u − 1)2 + v2

)}
. (2)

It is important to mention that the class k-UCV was studied much earlier with some extra
conditions but without geometrical interpretation. The class k-UCV is defined geometrically in a
way that the common region of E and the disk |D| ≤ k is mapped onto a convex domain by these
univalent functions. Thus, the notion of convexity got the generalized version of k-uniform convexity.
If k = 0, Then, the center D shifts to origin and thus k-UCV takes the form of C, the family of convex
univalent functions.

The domain Gk represents conic regions for certain values of parameter k, that is, it gives an
elliptic region for k > 1, the hyperbolic region (right branch) for 0 < k < 1 and the parabolic region
when k = 1. For more details, see [3–6]. The domain Gk,β, which is generalization of Gk is given as:

Gk,β = (1 − β) Gk + β,

where

β =

⎧⎪⎨⎪⎩
[0, 1) , if k ∈ [0, 1] ,[
0, 1 −

√
k2−1
k

)
, if k > 1.

(3)

For details, see [7]. The function which gives the boundary curves of these conical regions is
denoted by ϕk,β (z) which is holomorphic in E and maps E onto Gk,β such that ϕk,β (z) = 1 and
ϕ′

k,β (0) > 1 and is defined as:

ϕk,β (z)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+(1−2β)z
1−z , k = 0,

1 + 2(1−β)
π2

(
log 1+

√
z

1−√
z

)2
, k = 1,

1 + 2(1−β)
1−k2 sinh2

[(
2
π cos−1 k

)
tan−1 h

√
z
]

, 0 < k < 1,

1 + (1−β)
k2−1 sin

⎡⎢⎣ π
2R(t)

u(z)√
t∫

0

1√
1−x2

√
1−(tx)2

dx

⎤⎥⎦+ 1
k2−1 , k > 1.

(4)

For the detailed study of this function, we refer the readers to see [3,6].
Let k-P (β) denote the family of holomorphic functions q (z) with q (0) = 1 and q (z) ≺ ϕk,β (z)

for z ∈ E, where the notion “≺” denotes the familiar subordinations. It is pertinent to have

k-P (β) ⊂ P
(

k + β

1 + k

)
⊂ P ,

where P is the family of functions with a positive real part. In addition, for q ∈ k-P (0) , we have

|arg q (z)| ≤ λπ

2
,

where
λ =

2
π

tan−1 (1/k) . (5)

Therefore, one may write
q (z) = hλ (z) , h (z) ∈ P .
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Definition 1. Let the function q (z) be holomorphic in E with q (0) = 1. Then, q ∈ k-Pm (β) , if for m ≥ 2,
k ≥ 0, z ∈ E and β is given by Equation (3) , we have

q (z) =
(

m
4
+

1
2

)
q1 (z)−

(
m
4

− 1
2

)
q2 (z) ,

where q1 (z) , q2 (z) ∈ k-P (β) [8] .

Taking k = 0 and β = 0, the class Pm introduced by Pinchuk [9] is obtained. In addition,
k-P2 (β) = k-P (β) , 0-Pm (β) = Pm (β) and 0-P2 (β) = P (β) , where Pm (β) and P (β) were
introduced in [9].

It is noted that k-Pm (β) is a convex set. Noor [8] introduced the classes k-UVm (β) and k-URm (β)

of k-uniformly bounded boundary and radius rotation of order β corresponding to the class k-Pm (β).
Now, we consider the following new subclasses of holomorphic functions.

Definition 2. A function f ∈ A is known to be in k-URm
s (β), k ≥ 0, m ≥ 2 and β is given by Equation (3) , if

2z f ′(z)
f (z)− f (−z)

∈ k-Pm (β) , (z ∈ E) .

Definition 3. A function f ∈ A is known to be in the class k-Bm
s (α, β), α > 0, k ≥ 0, m ≥ 2 and β is given

by Equation (3) , if there exists g ∈ k-URm
s (β) such that

�
{

z f ′(z)
f (z)

(
2 f (z)

g(z)− g (−z)

)α}
> k

∣∣∣∣ z f ′(z)
f (z)

(
2 f (z)

g(z)− g (−z)

)α

− 1
∣∣∣∣ ,

or equivalently
z f ′(z)

f (z)

(
2 f (z)

g(z)− g (−z)

)α

∈ k-P (0) .

It is pertinent to note that, by assigning specific values to parameters α, β, m and k in k-URm
s (β)

and k-Bm
s (α, β) , several well-known subclasses of holomorphic and univalent functions are obtained,

from which some are listed below:

1. 0-URm
s (β) = Rm

s (β) , introduced by Bhargava et al. [10].
2. For m = 2 and α = 0, we obtain the class k-ST s (β), and k-UKs (β) , for details, we refer to [8].
3. 0-UR2

s (0) = S∗
s , for details, see [11].

Throughout the article, we shall consider, unless otherwise stated, that m ≥ 2, α > 0, k ≥ 0 and β

is given by Equation (3) .

2. Preliminary Lemmas

Lemma 1. [12] Let k ∈ [0, ∞) and ϕk,β (z) be defined by Equation (4). If

ϕk,β (z) = 1 + Q1z + Q2z2 + · · · ,

Then,

Q1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2βA2

1−k2 0 ≤ k < 1,

8β
π2 k = 1,

π2 β

4
√

t(k2−1)R2(t)(1+t)
k > 1,

(6)
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and

Q2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(A2+2)
3 Q1 0 ≤ k < 1,

2
3 Q1 k = 1,

4R2(t)(t2+6t+1)−π2

24
√

tR2(t)(1+t)
Q1 k > 1,

(7)

where

A =
2 cos−1 k

π
,

and t ∈ (0, 1) is taken such that k = cosh
(

πR′(t)
R(t)

)
, R(t) is the Legendre’s complete elliptic integral of the

first kind.

To proceed our main results, the following Lemmas proved by Pommerenke [13] and Golusin [14]
are needed.

Lemma 2. Let the holomorphic function p ∈ P . Then [13]

1
2π

2π∫
0

|p (z)|2 dθ ≤ 1 + 3r2

1 − r2 .

Lemma 3. Let the function s1(z) be starlike in E. Then [14],
(i) : there exists ξ with |ξ| = r such that for all z, |z| = r

|z − ξ| |s1(z)| ≤
2r2

1 − r2

(ii)
r

(1 + r)2 ≤ s1(z) ≤ r

(1 − r)2 .

3. Main Results

Theorem 1. Let f ∈ k-URm
s (β). Then, the odd function

φ(z) =
f (z)− f (−z)

2

belongs to k-URm (β).

Proof. Let f ∈ k-URm
s (β) and consider

φ(z) =
f (z)− f (−z)

2
.

Logarithmic differentiation of the above relation yields

φ′(z)
φ(z)

=
f ′(z) + f ′ (−z)
f (z)− f (−z)

,

or, equivalently,
zφ′(z)
φ(z)

=
1
2
[q(z) + q(−z)] ,
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where

q(z) =
2z f ′(z)

f (z)− f (−z)
and q(−z) =

2 (−z) f ′ (−z)
f (−z)− f (z)

.

Because f (z) ∈ k-URm
s (β), then, there exist p1(z), p2(z) ∈ k-P (β) such that

q(z) =
2z f ′(z)

f (z)− f (−z)
=

(
m
4
+

1
2

)
p1(z)−

(
m
4

− 1
2

)
p2(z).

Therefore, we have

zφ′(z)
φ(z)

=

(
m
4
+

1
2

)
p1(z) + p1(−z)

2
−
(

m
4

− 1
2

)
p2(z) + p2(−z)

2
.

Since k-P (β) is a convex set, we have

pi(z) + pi(−z)
2

∈ k-P (β) , i = 1, 2.

Thus, we have that
zφ′(z)
φ(z)

∈ k-Pm (β) , (z ∈ E) ,

and hence φ(z) ∈ k-URm (β) .

When we take m = 2, the following result, proved by Noor [8], is obtained.

Corollary 1. Let f ∈ k-ST s (β). Then,

φ(z) =
1
2
[ f (z)− f (−z)]

belongs to k-ST (β).

Corollary 2. Let f ∈ Rm
s (β). Then,

φ(z) =
1
2
[ f (z)− f (−z)]

belongs to Rm (β).

Theorem 2. If f ∈ k-URm
s (β), then

f ′(z) =
p(z)

2
exp

⎧⎨⎩
z∫

0

1
2ξ

(p (ξ) + p (−ξ)− 2) dξ

⎫⎬⎭ (8)

for some p(z) ∈ k-Pm (β) .

Proof. Let f ∈ k-URm
s (β). Then, by definition, one may have

2z f ′(z)
f (z)− f (−z)

= p(z), p(z) ∈ k-Pm (β) . (9)

Simple computation leads us to

f (z)− f (−z)
z

= exp

⎧⎨⎩
z∫

0

1
2ξ

(p (ξ) + p (−ξ)− 2) dξ

⎫⎬⎭ . (10)
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Using (9) in (10), we can easily obtain (8).

When we take m = 2, the above result takes the following form, proved by Noor [8].

Corollary 3. If f ∈ k-ST s (β), then

f ′(z) =
p(z)

2
exp

⎧⎨⎩
z∫

0

1
2ξ

(p (ξ) + p (−ξ)− 2) dξ

⎫⎬⎭
for p(z) ∈ k-P (β) .

When m = 2, k = 0 and β = 0. Then, we have the following result, proved in [11].

Theorem 3. Let f ∈ k-URm
s (β) be of the form (1). Then,

|a2| ≤
m
8

|Q1| , (11)

where Q1 is given by (6).

Proof. Let f ∈ k-URm
s (β) and let it be of the form (9). Then,

f ′′(z) =
p′(z)

2
exp

⎧⎨⎩
z∫

0

p(ξ) + p(−ξ)− 2
2ξ

dξ

⎫⎬⎭+
p(z)

2

{
f (z)− f (−z)

z

}′
. (12)

From (12), we have f ′′(0) = p′(0)
2 . It is well known that |p′(0)| in the class k-Pm (β) is

|p′(0)| ≤ m
2 |Q1| , where Q1 is given by (6). Thus, we get (11).

Corollary 4. The following disk is contained in the range of every function from k-URm
s (β).

|w| < 8
16 + m |Q1|

,

where Q1 is given by (6).

Proof. According to the Koebe theorem, each omitted value w satisfies

|w| > 1
2 + |a2|

. (13)

Using (13) and Theorem 3, we get the required result.

By using the similar technique as used in [11], we have the following result.

Theorem 4. Let f ∈ k-URm
s (β). Then, for z = reiθ and 0 ≤ θ1 < θ2 ≤ 2π,

θ2∫
θ1

�
(

z f ′(z)
f (z)

)
dθ > − (1 − β1)

(m
2

− 1
)

π,

for

β1 =
β + k
1 + k

. (14)
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Theorem 5. Let f (z) ∈ k-Bm
s (α, β). Then, for z = reiθ ,

θ2∫
θ1

�J (α, f (z))dθ > −
(

α (1 − β1)
(m

2
− 1

)
+ σ

)
π, (15)

where 0 ≤ θ1 < θ2 ≤ 2π, β1 is defined by (14) and

J (α, f (z)) =
(

1 +
z f ′′(z)
f ′(z)

)
+ (α − 1)

z f ′(z)
f (z)

. (16)

Proof. Let
z f ′(z)

f (z)

(
2 f (z)

g(z)− g (−z)

)α

= hσ (z) ,

where h (z) ∈ P ,
(z f ′(z))′

f ′(z)
+ (α − 1)

z f ′(z)
f (z)

=
σzh′(z)

h(z)
+

αzφ′(z)
φ(z)

,

θ2∫
θ1

[
(z f ′(z))′

f ′(z)
+ (α − 1)

z f ′(z)
f (z)

]
dθ = σ

θ2∫
θ1

zh′(z)
h(z)

dθ + α

θ2∫
θ1

zφ′(z)
φ(z)

dθ,

where φ(z) is an odd function of the form

φ(z) =
1
2
[g(z)− g (−z)] .

Since g(z) ∈ k-URm
s (β) and by Theorem 1 φ(z) ∈ k-URm (β) ⊂ Rm (β1), therefore, by using

Theorem 4, we have
θ2∫

θ1

�
(

zφ′(z)
φ(z)

)
dθ > − (1 − β1)

(m
2

− 1
)

π. (17)

In addition, we observe that, for h (z) ∈ P ,

∂

∂θ
arg h

(
reiθ

)
=

∂

∂θ
�
{
−i ln h

(
reiθ

)}
= �

{
reiθh′ (reiθ)

h
(
reiθ

) }
.

Therefore,
θ2∫

θ1

�
{

reiθh′ (reiθ)
h
(
reiθ

) }
dθ = arg h

(
reiθ2

)
− arg h

(
reiθ1

)
,

which takes the form ∣∣∣∣∣∣
θ2∫

θ1

�
{

reiθh′ (reiθ)
h
(
reiθ

) }
dθ

∣∣∣∣∣∣ =
∣∣∣arg h

(
reiθ2

)
− arg h

(
reiθ1

)∣∣∣ .

This implies that

max
h∈P(β)

∣∣∣∣∣∣
θ2∫

θ1

�
(

reiθh′ (reiθ)
h
(
reiθ

) )
dθ

∣∣∣∣∣∣ = max
h∈P(β)

∣∣∣arg h
(

reiθ2
)

− arg h
(

reiθ1
)∣∣∣ . (18)
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Since h (z) ∈ P , thus ∣∣∣∣h (z)− 1 + r2

1 − r2

∣∣∣∣ ≤ 2r
1 − r2 .

Thus, the values h (z) are contained in the circle of Apollonius with diameter end points 1−r
1−r and

1+r
1−r and radius 2r

1−r2 . Thus, the maximum of |arg h(z)| is attained at points where tangent ray from
origin to the circle can be drawn, that is, when

arg h (z) = ± sin−1
(

2r
1 − r2

)
.

Now,

max
h∈P(β)

∣∣∣∣∣∣
θ2∫

θ1

�
(

reiθh′ (reiθ)
h
(
reiθ

) )
dθ

∣∣∣∣∣∣ ≤ 2 sin−1
(

2r
1 − r2

)
.

This implies that

max
h∈P(β)

∣∣∣∣∣∣
θ2∫

θ1

�
(

reiθh′ (reiθ)
h
(
reiθ

) )
dθ

∣∣∣∣∣∣ ≤ π − 2 cos−1
(

2r
1 − r2

)
. (19)

Thus,

θ2∫
θ1

�J (α, f (z))dθ > −
(

α (1 − β1)
(m

2
− 1

)
+ σ

)
π + 2σ cos−1

(
2r

1 − r2

)
,

which gives

θ2∫
θ1

�J (α, f (z))dθ > −
(

α (1 − β1)
(m

2
− 1

)
+ σ

)
π, (r → 1) .

This completes the proof.

For talking k = 0, we obtain the integral representation for the class T m
s (β) .

Corollary 5. Let f ∈ T m
s (β). Then, for z = reiθ ,

θ2∫
θ1

�
(

1 +
z f ′′(z)
f ′(z)

)
dθ > −σπ,

where 0 ≤ θ1 < θ2 ≤ 2π.

Theorem 6. Let f ∈ k-Bm
s (α, β) . Then, for α

2−σ (m + 2) (1 − β1) > 1,

Lr f (z) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C (α, σ, m, β1)M

1−α (r)
(

1
1−r

)α(m
2 +1)(1−β1)−1+σ

, 0 < α ≤ 1,

C (α, σ, m, β1)m
1−α (r)

(
1

1−r

)α(m
2 +1)(1−β1)−1+σ

, α > 1,

where M (r) = max
|z|=r

| f (z)|, m (r) = min
|z|=r

| f (z)| and C (α, σ, m, β1) is a constant depending upon α, σ, m and

β1 only.
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Proof. We know that

Lr f (z) =
2π∫
0

∣∣z f ′ (z)
∣∣ dθ, z = reiθ , 0 < r < 1.

Since f ∈ k-Bm
s (α, β) , thus

z f ′ (z)
f 1−α (z)

(
2

g (z)− g (−z)

)α

= pσ (z) , p (z) ∈ P .

By Theorem 1, we have for g ∈ k-URm
s (β) , the function

φ (z) =
1
2
[g (z)− g (−z)] ∈ k-URm (β) ,

which yields
z f ′ (z) = ( f (z))1−α (φ (z))α pσ (z) .

Therefore, we have

Lr f (z) ≤
2π∫
0

| f (z)|1−α |φ (z)|α |p (z)|σ dθ

≤ M1−α (r)
2π∫
0

|φ (z)|α |p (z)|σ dθ.

Since φ (z) ∈ k-URm (β) ⊂ Rm (β1), we have

φ (z) =
(s1 (z))(

m
4 +

1
2 )

(s2 (z))(
m
4 − 1

2 )
, s1, s2 ∈ k-UR2 (β) .

Since k-UR2 (β) ⊂ S∗ (β1) , so we can write

si (z) = z
(

φi (z)
z

)1−β1

, for i = 1, 2 and φi (z) ∈ S∗.

Thus, for odd functions s1 (z) , s2 (z) ∈ S∗ (β1) , we have

Lr ( f (z)) ≤ M1−α (r)
2π∫
0

|z|β1

∣∣∣∣∣ (φ1 (z))
(1−β1)(m

4 +
1
2 )

(φ2 (z))
(1−β1)(m

4 − 1
2 )

∣∣∣∣∣
α

|p (z)|σ dθ

≤ M1−α (r)
2π∫
0

|(φ1 (z))|α(
m
4 +

1
2 )(1−β1)

|(φ2 (z))|α(
m
4 − 1

2 )(1−β1)
|p (z)|σ dθ

≤ M1−α (r)
2π∫
0

2α(m
2 −1)(1−β1)

rα(m
4 − 1

2 )(1−β1)
|(φ1 (z))|α(

m
4 +

1
2 )(1−β1) |p (z)|σ dθ

=
M1−α (r) 2α(m

2 −1)(1−β1)

rα(m
4 − 1

2 )(1−β1)

2π∫
0

|(φ1 (z))|α(
m
4 +

1
2 )(1−β1) |p (z)|σ dθ.
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Now, by making use of Holder’s inequality, with m1 = 2/2 − σ and m2 = 2/σ such that
(1/m1) + (1/m2) = 1, we have

Lr ( f (z)) ≤ M1−α (r) π 2α(m
2 −1)(1−β1)+1

rα(m
4 − 1

2 )(1−β1)

⎛⎝ 1
2π

2π∫
0

|p (z)|2 dθ

⎞⎠ σ
2

×

⎛⎝ 1
2π

2π∫
0

|φ1 (z)|
α

2−σ (
m
2 +1)(1−β1) dθ

⎞⎠ 2−σ
2

.

By using Lemma 2 and distortion results, we obtain

Lr ( f (z)) ≤ M1−α(r) π 2α( m
2 −1)(1−β1)+1

rα( m
4 − 1

2 )(1−β1)

(
1+3r2

1−r2

) σ
2

(
1

2π

2π∫
0

r
α

2−σ (
m
2 +1)(1−β1)

|1−reiθ |
2α

2−σ (
m
2 +1)(1−β1)

dθ

) 2−σ
2

=
M1−α(r) π 2α( m

2 −1)(1−β1)+1

rα( m
4 − 1

2 )(1−β1)
r

α
2−σ (

m
2 +1)(1−β1)

(
1

2π

2π∫
0

1

|1−reiθ |
2α

2−σ (
m
2 +1)(1−β1)

dθ

) 2−σ
2 (

1+3r2

1−r2

) σ
2 .

This implies that

Lr ( f (z)) ≤ M1−α (r)π
σ
2 2α(m

2 −1)(1−β1)+1+σ

(
1

(1 − r)
2α

2−σ (
m
2 +1)(1−β1)−1

) 2−σ
2 (

1
1 − r

) σ
2

= M1−α (r)π
σ
2 2α(m

2 −1)(1−β1)+1+σ

(
1

1 − r

)( 2−σ
2 )( 2α

2−σ (
m
2 +1)(1−β1)−1) ( 1

1 − r

) σ
2

= C (α, σ, m, β1)M
1−α (r)

(
1

1 − r

)α(m
2 +1)(1−β1)−1+σ

,

where
C (α, σ, m, β1) = π

σ
2 2α(m

2 −1)(1−β1)+1+σ

is a constant depending upon α, σ, m and β1 only. Similarly, for α > 1, we have

Lr ( f (z)) ≤ C (α, σ, m, β1) mα−1 (r)
(

1
1 − r

)α(m
2 +1)(1−β1)−1+σ

.

Theorem 7. Let f ∈ k-Bm
s (α, β) . Then, for n ≥ 2 and α

2−σ (m + 2) (1 − β1) > 1,

|an| ≤

⎧⎪⎨⎪⎩
C1 (α, σ, m, β1) M1−α (n) (n)α(m

2 +1)(1−β1)−2+σ , 0 < α ≤ 1,

C1 (α, σ, m, β1) mα−1 (n) (n)α(m
2 +1)(1−β1)−2+σ , α > 1,

where β1 is given by (14) and m, M are the same as in Theorem 6 and C1 (α, σ, m, β1) is a constant.

Proof. Since z = reiθ , Cauchy theorem gives

nan =
1

2πrn

2π∫
0

z f ′ (z) e−inθdθ,
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which reduces to

|nan| =

∣∣∣∣∣∣ 1
2πrn

2π∫
0

z f ′ (z) e−inθdθ

∣∣∣∣∣∣
≤ 1

2πrn

2π∫
0

∣∣∣z f ′ (z) e−inθ
∣∣∣ dθ.

Therefore,

n |an| ≤
1

2πrn Lr f (z) .

Now, using Theorem 6 for 0 < α ≤ 1, we have

n |an| ≤
1

2πrn C (α, σ, m, β1) M1−α (r)
(

1
1 − r

)α(m
2 +1)(1−β1)−1+σ

.

Putting r = 1 − 1
n , we have

|an| ≤ C1 (α, σ, m, β1) M1−α (r) (n)α(m
2 +1)(1−β1)−2+σ .

Similarly, we obtain the required result for α > 1.

Theorem 8. Let f ∈ k-Bm
s (α, β) . Then, for α

2−σ (m + 2) (1 − β1) > 1,

||an+1| − |an|| ≤

⎧⎪⎨⎪⎩
M1−α (r) C2 (α, σ, m, β1) (n)

α(m
2 +1)(1−β1)+σ−3 , 0 < α ≤ 1,

m1−α (r) C2 (α, σ, m, β1) (n)
α(m

2 +1)(1−β1)+σ−3 , α > 1,

where m (r) = min
|z|=r

| f (z)| , M (r) = max
|z|=r

| f (z)| and C2 (α, σ, m, β1) is a constant depending upon α, σ, m

and β1 only.

Proof. We know that, for ξ ∈ E and n ≥ 1,

|(n + 1) ξan+1 − nan| ≤
1

2πrn+1

2π∫
0

|z − ξ|
∣∣z f ′ (z)

∣∣ dθ, z = reiθ , 0 < r < 1, 0 ≤ θ ≤ 2π.

As f ∈ k-Bm
s (α, β) , thus

z f ′ (z)
f (z)

(
2 f (z)

g (z)− g (−z)

)α

= pσ (z) , p ∈ P .

From Theorem 4, we have

φ (z) =
1
2
[g (z)− g (−z)] ∈ k − URm (β) for g ∈ k − URm

s (β) .

This leads us to
z f ′ (z) = ( f (z))1−α (φ (z))α pσ (z) .
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Thus, for ξ ∈ E and n ≥ 1, we have

|(n + 1) ξan+1 − nan| ≤
M1−α (r)
2πrn+1

2π∫
0

|z − ξ| |φ (z)|α |p (z)|σ dθ.

Since φ (z) ∈ k-URm (β) ⊂ Rm (β1), therefore, for φ1 (z) , φ2 (z) ∈ S∗, we have

|ξan+1 (n + 1)− nan| ≤ M1−α (r)
2πrn+1

2π∫
0

|z|αβ1 |z − ξ|
∣∣∣∣∣ (φ1 (z))

(1−β1)(m
4 +

1
2 )

(φ2 (z))
(1−β1)(m

4 − 1
2 )

∣∣∣∣∣
α

|p (z)|σ dθ

≤ M1−α (r)
2πrn+1

2π∫
0

|z − ξ| |(φ1 (z))|α(1−β1)(m
4 +

1
2 )

|(φ2 (z))|α(1−β1)(m
4 − 1

2 )
|p (z)|σ dθ.

Using Lemma 3(i), we have

|(n + 1) ξan+1 − nan| ≤ 2α( m
2 −1)(1−β1)M1−α(r)

2πrn+1+α( m
4 − 1

2 )(1−β1)

×
2π∫
0

|z − ξ| |(φ1 (z))| |(φ1 (z))|α(1−β1)( m
4 +

1
2 )−1 |p (z)|σdθ.

Now, using Lemma 3(ii), we have

|(n + 1) ξan+1 − nan| ≤ 2α( m
2 −1)(1−β1)M1−α(r)

2πrn−1+α( m
4 − 1

2 )(1−β1)(1−r)

2π∫
0

|(φ1 (z))|α(1−β1)( m
4 +

1
2 )−1 |p (z)|σdθ.

Now, using Cauchy–Schwarz inequality, we have

|(n + 1) ξan+1 − nan| ≤ 2α( m
2 −1)(1−β1)M1−α(r)

rn−1+α( m
4 − 1

2 )(1−β1)(1−r)

(
1

2π

2π∫
0

|p (z)|2 dθ

) σ
2

×
(

1
2π

2π∫
0

|(φ1 (z))|
α(1−β1)(

m
2 +1)−2

2−σ dθ

) 2−σ
2

.

By using Lemma 2 and distortion results, we obtain

|(n + 1) ξan+1 − nan| ≤ 2α( m
2 −1)(1−β1)M1−α(r)

rn−1+α( m
4 − 1

2 )(1−β1)(1−r)

(
1+3r2

1−r2

) σ
2

×
(

1
2π

2π∫
0

r
1

2−σ {α( m
2 +1)(1−β1)−2}

|1−reiθ |
2

2−σ {(α m
2 +1)(1−β1)−2} dθ

) 2−σ
2

≤ C2(α,σ,m,β1)M1−α(r)rα(1−β1)−n

(1−r)1+ σ
2

(
1

(1−reiθ)
2

2−σ {α( m
2 +1)(1−β1)−2}−1

) 2−σ
2

≤ C2(α,σ,m,β1)M1−α(r)
rn−1(1−r)1+ σ

2

(
1

(1−r)α( m
2 +1)(1−β1)+

σ
2 −3

)
≤ C2(α,σ,m,β1)M1−α(r)

rn−1(1−r)α( m
2 +1)(1−β1)+σ−2

,

where C2 (α, σ, m, β1) is a constant. Now, putting |ξ| = n
n+1 , we obtain

n ||an+1| − |an|| ≤
C2 (α, σ, m, β1) M1−α (r)

rn−1 (1 − r)α(m
2 +1)(1−β1)+σ−2

.
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Now, taking r = 1 − 1
n (n → ∞),we have

C2 (α, σ, m, β1)M
1−α (r) (n)α(m

2 +1)(1−β1)+σ−3 , 0 < α ≤ 1.

Similarly for α > 1, we have

||an+1| − |an|| ≤ C2 (α, σ, m, β1) mα−1 (r) (n)α(m
2 +1)(1−β1)+σ−3 .

Thus, the result follows.

Theorem 9. Let f ∈ k-Bm
s (α, β) for α > 0. Then, f (z) is 1

α−convex for |z| < r∗m,

r∗m =
2α

(αm + 2σ − αβ1m) +
√
(αm + 2σ − αβ1m)2 − 4α2 (1 − 2β1)

, α > 0.

Proof. Let
z f ′ (z) = ( f (z))1−α (φ (z))α hσ (z) ,

where g(z)−g(−z)
2 = φ (z) ∈ k-URm (β) ⊂ Rm (β1) and h (z) ∈ P . Differentiating logarithmically,

we obtain
1
α

(
(z f ′(z))′

f ′(z)

)
+

(
1 − 1

α

)
z f ′(z)

f (z)
=

zφ′ (z)
φ (z)

+
σ

α

zh′ (z)
h (z)

.

We can write

�
{

1
α

(
(z f ′(z))′

f ′(z)

)
+

(
1 − 1

α

)
z f ′(z)

f (z)

}
= �

(
zφ′ (z)
φ (z)

)
+

σ

α
�
(

zh′ (z)
h (z)

)
> �

(
zφ′ (z)
φ (z)

)
− σ

α

∣∣∣∣ zh′ (z)
h (z)

∣∣∣∣ .

Now, using the distortion results for the classes Rm (β1) and P , we have

�
{

1
α

(
(z f ′(z))′

f ′(z)

)
+

(
1 − 1

α

)
z f ′(z)

f (z)

}
≥ β1 +

(1 − β1)
(
1 − mr + r2)

1 − r2 − 2σr
α (1 − r2)

=
αβ1

(
1 − r2)+ α (1 − β1)

(
1 − mr + r2)− 2σr

α (1 − r2)

≥ α (1 − 2β1) r2 − (αm + 2σ − αβ1m) r + α

α (1 − r2)
,

taking
α (1 − 2β1) r2 − (αm + 2σ − αβ1m) r + α = 0,

r∗m =
(αm + 2σ − αβ1m)±

√
(αm + 2σ − αβ1m)2 − 4α2 (1 − 2β1)

2α (1 − 2β1)
.

Since 0 ≤ r < 1,

r∗m =
(αm + 2σ − αβ1m)−

√
(αm + 2σ − αβ1m)2 − 4α2 (1 − 2β1)

2α (1 − 2β1)

=
2α

(αm + 2σ − αβ1m) +
√
(αm + 2σ − αβ1m)2 − 4α2 (1 − 2β1)

, α > 0.
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This completes the proof.

4. Conclusions

In this article, we have presented certain analytic functions defined by bounded radius rotations
associated with conic domain. We have investigated many geometric properties like coefficient
estimate, radii problems, arc length, integral representation, inclusion results and growth rate of
coefficients of Taylor’s series representation. By varying the parameters in results, several well-known
results in literature have been shown as special cases.
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Abstract: We investigate the solvability and Ulam stability for a nonlocal nonlinear third-order
integro-multi-point boundary value problem on an arbitrary domain. The nonlinearity in the
third-order ordinary differential equation involves the unknown function together with its first-
and second-order derivatives. Our main results rely on the modern tools of functional analysis
and are well illustrated with the aid of examples. An analogue problem involving non-separated
integro-multi-point boundary conditions is also discussed.
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1. Introduction

Consider a third-order ordinary differential equation of the form:

u′′′(t) = f (t, u(t), u′(t), u′′(t)), a < t < T, a, T ∈ R, (1)

supplemented with the boundary conditions:

∫ T

a
u(s)ds =

m

∑
j=1

γju(σj) +
p

∑
i=1

ξi

∫ ρi+1

ρi

u(s)ds,

∫ T

a
u′(s)ds =

m

∑
j=1

μju′(σj) +
p

∑
i=1

ηi

∫ ρi+1

ρi

u′(s)ds,

∫ T

a
u′′(s)ds =

m

∑
j=1

νju′′(σj) +
p

∑
i=1

ωi

∫ ρi+1

ρi

u′′(s)ds,

(2)

where f : [a, T] × R3 → R is a continuous function, a < σ1 < σ2 < · · · < σm < ρ1 < ρ2 < · · · <
ρp+1 < T, and γj, μj, νj ∈ R+ (j = 1, 2, . . . , m), ξi, ηi, ωi ∈ R+ (i = 1, 2, . . . , p).
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As a second problem, we study Equation (1) with the following type non-separated
boundary conditions:

α1u(a) + α2u(T) =
m

∑
j=1

γju(σj) +
p

∑
i=1

ξi

∫ ρi+1

ρi

u(s)ds,

β1u′(a) + β2u′(T) =
m

∑
j=1

μju′(σj) +
p

∑
i=1

ηi

∫ ρi+1

ρi

u′(s)ds,

δ1u′′(a) + δ2u′′(T) =
m

∑
j=1

νju′′(σj) +
p

∑
i=1

ωi

∫ ρi+1

ρi

u′′(s)ds,

(3)

where αj, β j, δj ∈ R (j = 1, 2), while the rest of parameters are the same as fixed in the problem in
Equations (1) and (2).

The subject of boundary value problems has been an interesting and important area of
investigation in view of its varied application in applied sciences. One can find the examples in
blood flow problems, underground water flow, chemical engineering, thermoelasticity, etc. For a
detailed account of applications, see [1].

Nonlinear third-order ordinary differential equations frequently appear in the study of applied
problems. In [2], the authors studied the existence of solutions for third-order nonlinear boundary
value problems arising in nano-boundary layer fluid flows over stretching surfaces. In the study of
magnetohydrodynamic flow of a second grade nanofluid over a nonlinear stretching sheet, the system
of transformed governing equations involves a nonlinear third-order ordinary equation and is solved
for local behavior of velocity distributions [3]. The investigation of the model of magnetohydrodynamic
flow of second grade nanofluid over a nonlinear stretching sheet is also based on a nonlinear third-order
ordinary differential equation [4].

During the last few decades, boundary value problems involving nonlocal and integral boundary
conditions attracted considerable attention. In contrast to the classical boundary data, nonlocal
boundary conditions help to model physical, chemical or other changes occurring within the given
domain. For the study of heat conduction phenomenon in presence of nonclassical boundary condition,
see [5]. The details on theoretical development of nonlocal boundary value problems can be found in
the articles [6–10] and the references cited therein. On the other hand, integral boundary conditions
play a key role in formulating the real world problems involving arbitrary shaped structures, for
example, blood vessels in fluid flow problems [11–13]. For the recent development of the boundary
value problems involving integral and multi-strip conditions, we refer the reader to the works [14–19].

In heat conduction problems, the concept of nonuniformity can be relaxed by using the boundary
conditions of the form (2), which can accommodate the nonuniformities in form of points or
sub-segments on the heat sources. In fact, the integro-multipoint conditions (2) can be interpreted as
the sum of the values of the unknown function (e.g., temperature) at the nonlocal positions (points
and sub-segments) is proportional to the value of the unknown function over the given domain.
Moreover, in scattering problems, the conditions (2) can be helpful in a situation when the scattering
boundary consists of finitely many sub-strips (finitely many edge-scattering problems). For details
and applications in engineering problems, see [20–23].

In the present work, we derive the existence results for the problem in Equations (1) and (2)
by applying Leray–Schauder nonlinear alternative and Krasnoselskii fixed-point theorem, while the
uniqueness result is obtained with the aid of celebrated Banach fixed point theorem. These results are
presented in Section 3. The Ulam type stability for the problem in Equations (1) and (2) is discussed in
Section 4. In Section 5, we describe the outline for developing the existence theory for the problem in
Equations (1) and (3). Section 2 contains the auxiliary lemmas related to the linear variants of the given
problems, which lay the foundation for establishing the desired results. It is imperative to mention that
the results obtained in this paper are new and yield several new results as special cases for appropriate
choices of the parameters involved in the problems at hand.
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2. Preliminary Result

In this section, we solve linear variants of the problems in Equations (1) and (2), and Equations (1)
and (3).

Lemma 1. For g ∈ C([a, T],R) and Λ 	= 0, the unique solution of the problem consisting of the equation

u′′′(t) = g(t), t ∈ [a, T],

and the boundary condition in Equation (2) is

u(t) =
∫ t

a

(t − s)2

2
g(s)ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
g(s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ μjG1(t)(σj − s) + νjG2(t)

]
g(s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

[ ∫ s

a

(
ξi A1 A2

(s − τ)2

2
+ ηiG1(t)(s − τ) + ωiG2(t)

)
g(τ)dτ

]
ds,

(4)

where

G1(t) = A1

(
A4(t − a)− A5

)
, G2(t) = A3

(
A5 − A4(t − a)

)
− A2

(
A6 − A4

(t − a)2

2

)
, (5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ = A1 A2 A4, A1 =
(

T − a −
p

∑
i=1

ωi(ρi+1 − ρi)−
m

∑
j=1

νj

)
	= 0,

A2 =
(

T − a −
p

∑
i=1

ηi(ρi+1 − ρi)−
m

∑
j=1

μj

)
	= 0,

A3 =
(T − a)2

2
−

p

∑
i=1

ηi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
−

m

∑
j=1

μj(σj − a),

A4 =
(

T − a −
p

∑
i=1

ξi(ρi+1 − ρi)−
m

∑
j=1

γj

)
	= 0,

A5 =
(T − a)2

2
−

p

∑
i=1

ξi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
−

m

∑
j=1

γj(σj − a),

A6 =
(T − a)3

3!
−

p

∑
i=1

ξi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
−

m

∑
j=1

γj
(σj − a)2

2
.

(6)

Proof. Integrating u′′′(t) = g(t) repeatedly from a to t, we get

u(t) = c0 + c1(t − a) + c2
(t − a)2

2
+
∫ t

a

(t − s)2

2
g(s)ds, (7)

where c0, c1 and c2 are arbitrary unknown real constants. Moreover, from Equation (7), we have

u′(t) = c1 + c2(t − a) +
∫ t

a
(t − s)g(s)ds, (8)

u′′(t) = c2 +
∫ t

a
g(s)ds. (9)
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Using the third condition of Equation (2) in Equation (9), we get

c2 =
1

A1

[
−
∫ T

a
(T − s)g(s)ds +

p

∑
i=1

ωi

∫ ρi+1

ρi

∫ s

a
g(τ)dτds +

m

∑
j=1

νj

∫ σj

a
g(s)ds

]
. (10)

Making use of the second condition of Equation (2) in Equation (8) together with
Equation (10) yields

c1 =
1

A2

[
−
∫ T

a

(T − s)2

2
g(s)ds +

p

∑
i=1

ηi

∫ ρi+1

ρi

∫ s

a
(s − τ)g(τ)dτds

+
m

∑
j=1

μj

∫ σj

a
(σj − s)g(s)ds

]
+

A3

A1 A2

[
−
∫ T

a
(T − s)g(s)ds +

p

∑
i=1

ωi

∫ ρi+1

ρi

∫ s

a
g(τ)dτds

+
m

∑
j=1

νj

∫ σj

a
g(s)ds

]
.

(11)

Finally, using the first condition of Equation (2) in Equation (7) together with Equations (10) and (11),
we obtain

c0 =
1
Λ

{(
A3 A5 − A2 A6

)[
−
∫ T

a
(T − s)g(s)ds +

p

∑
i=1

ωi

∫ ρi+1

ρi

∫ s

a
g(τ)dτds

+
m

∑
j=1

νj

∫ σj

a
g(s)ds

]
− A1 A5

[
−
∫ T

a

(T − s)2

2
g(s)ds

+
p

∑
i=1

ηi

∫ ρi+1

ρi

∫ s

a
(s − τ)g(τ)dτds +

m

∑
j=1

μj

∫ σj

a
(σj − s)g(s)ds

]
(12)

+A1 A2

[
−
∫ T

a

(T − s)3

3!
g(s)ds +

p

∑
i=1

ξi

∫ ρi+1

ρi

∫ s

a

(s − τ)2

2
g(τ)dτds

+
m

∑
j=1

γj

∫ σj

a

(σj − s)2

2
g(s)ds

]}
.

In Equations (10)–(12), we have used the notations in Equation (6). Inserting the values of
c0, c1 and c2 in Equation (7) completes the solution to Equation (4). By direct computation, one can
obtain the converse of the Lemma.

Lemma 2. For h ∈ C([a, T],R), the problem consisting of the equation u′′′(t) = h(t), t ∈ [a, T] and
non-separated boundary conditions in Equation (3) is equivalent to the integral equation

u(t) =
∫ t

a

(t − s)2

2
h(s)ds

− 1
Δ

∫ T

a

[
α2ζ1ζ2

(T − s)2

2
+ β2P1(t)(T − s) + δ2P2(t)

]
h(s)ds

+
1
Δ

m

∑
j=1

∫ σj

a

[
γjζ1ζ2

(σj − s)2

2
+ μjP1(t)(σj − s) + νjP2(t)

]
h(s)ds

+
1
Δ

p

∑
i=1

∫ ρi+1

ρi

[ ∫ s

a

(
ξiζ1ζ2

(s − τ)2

2
+ ηiP1(t)(s − τ) + ωiP2(t)

)
h(τ)dτ

]
ds,

(13)
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where

P1(t) = ζ1

(
ζ4(t − a)− ζ5

)
, P2(t) = ζ3

(
ζ5 − ζ4(t − a)

)
− ζ2

(
ζ6 − ζ4

(t − a)2

2

)
, (14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ = ζ1ζ2ζ4, ζ1 =
(

δ1 + δ2 −
p

∑
i=1

ωi(ρi+1 − ρi)−
m

∑
j=1

νj

)
	= 0,

ζ2 =
(

β1 + β2 −
p

∑
i=1

ηi(ρi+1 − ρi)−
m

∑
j=1

μj

)
	= 0,

ζ3 = β2(T − a)−
p

∑
i=1

ηi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
−

m

∑
j=1

μj(σj − a),

ζ4 =
(

α1 + α2 −
p

∑
i=1

ξi(ρi+1 − ρi)−
m

∑
j=1

γj

)
	= 0,

ζ5 = α2(T − a)−
p

∑
i=1

ξi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
−

m

∑
j=1

γj(σj − a),

ζ6 = α2
(T − a)2

2
−

p

∑
i=1

ξi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
−

m

∑
j=1

γj
(σj − a)2

2
.

(15)

Proof. We omit the proof as it runs parallel to that of Lemma 1.

3. Main Results

Let us set f̂ (t) = f (t, u(t), u′(t), u′′(t)) and introduce a fixed point problem equivalent to the
problem in Equations (1) and (2) via Lemma 1 as follows

u = Lu, (16)

where the operator L : H → H is defined by

(Lu)(t) =
∫ t

a

(t − s)2

2
f̂ (s)ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f̂ (s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ μjG1(t)(σj − s) + νjG2(t)

]
f̂ (s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s − τ)2

2
+ ηiG1(t)(s − τ) + ωiG2(t)

]
f̂ (τ)dτds.

(17)

Here, H = {u|u, u′, u′′ ∈ C([a, T],R)} is the Banach space equipped with the norm ‖u‖H =

maxt∈[a,T]

{
|u(t)|+ |u′(t)|+ |u′′(t)|

}
= ‖u‖+ ‖u′‖+ ‖u′′‖. From Equation (17), we have

(Lu)′(t) =
∫ t

a
(t − s) f̂ (s)ds − 1

A1 A2

∫ T

a

[
A1

(T − s)2

2
+ G3(t)(T − s)

]
f̂ (s)ds

+
1

A1 A2

m

∑
j=1

∫ σj

a

[
μj A1(σj − s) + νjG3(t)

]
f̂ (s)ds

+
1

A1 A2

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ηi A1(s − τ) + ωiG3(t)

]
f̂ (τ)dτds,

(18)
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(Lu)′′(t) =
∫ t

a
f̂ (s)ds +

1
A1

[
−
∫ T

a
(T − s) f̂ (s)ds +

m

∑
j=1

∫ σj

a
νj f̂ (s)ds

+
p

∑
i=1

∫ ρi+1

ρi

∫ s

a
ωi f̂ (τ)dτds

]
,

(19)

where
G3(t) = A2(t − a)− A3. (20)

Observe that the existence of the fixed points for the operator in Equation (16) implies the existence
of solutions for the problem in Equations (1) and (2).

For the sake of computational convenience in the forthcoming analysis, we set

Q = Q1 + Q2 + Q3, (21)

where

Q1 =
(T − a)3

3!
+

1
|A4|

[ (T − a)4

4!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)
+

m

∑
j=1

γj
(σj − a)3

3!

]
+

b1

|Λ|
[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

μj
(σj − a)2

2

]
+

b2

|Λ|
[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
,

(22)

Q2 =
(T − a)2

2
+

1
|A2|

[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

μj
(σj − a)2

2

]
+

b3

|A1 A2|
[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
,

(23)

and

Q3 = (T − a) +
1

|A1|
[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
, (24)

where maxt∈[a,T] |G1(t)| = b1, maxt∈[a,T] |G2(t)| = b2 and maxt∈[a,T] |G3(t)| = b3 (G1(t), G2(t) are
given by Equation (5) while G3(t) is defined in Equation (20)).

3.1. Existence of Solutions

In this subsection, we discuss the existence of solutions for the problem in Equations (1) and (2).
In our first result, we make use of Krasnoselskii’s fixed point theorem [24].

Theorem 1. Let f : [a, T]×R3 → R be a continuous function satisfying the conditions:

(H1)
∣∣∣ f (t, u, u′, u′′)− f (t, v, v′, v′′)

∣∣∣ ≤ �
(
|u − v|+ |u′ − v′|+ |u′′ − v′′|

)
, ∀t ∈ [a, T],

� > 0, u, v, u′, v′, u′′, v′′ ∈ R;

(H2) there exist a function ε ∈ C([a, T],R+) with ‖ε‖ = supt∈[a,T] |ε(t)| such that

| f̂ (t)| = | f (t, u, u′, u′′)| ≤ ε(t), ∀(t, u, u′, u′′) ∈ [a, T]×R
3;

(H3) �
(

Q − (T−a)
6

[
6 + 3(T − a) + (T − a)2

])
< 1, where Q is given by Equation (21).

Then, there exists at least one solution for the problem in Equations (1) and (2) on [a, T].

164



Symmetry 2019, 11, 281

Proof. Consider a closed ball Br = {(u, u′, u′′) : ‖u‖H ≤ r, u, u′, u′′ ∈ C([a, T],R)} for fixed
r ≥ Q‖ε‖ and introduce the operators L1 and L2 on Br as follows:

(L1u)(t) =
∫ t

a

(t − s)2

2
f̂ (s)ds,

(L2u)(t) = − 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f̂ (s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ μjG1(t)(σj − s) + νjG2(t)

]
f̂ (s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s − τ)2

2
+ ηiG1(t)(s − τ) + ωiG2(t)

]
f̂ (τ)dτds.

Moreover, we have

(L1u)′(t) =
∫ t

a
(t − s) f̂ (s)ds, (L1u)′′(t) =

∫ t

a
f̂ (s)ds,

(L2u)′(t) = − 1
A1 A2

∫ T

a

[
A1

(T − s)2

2
+ G3(t)(T − s)

]
f̂ (s)ds

+
1

A1 A2

m

∑
j=1

∫ σj

a

[
μj A1(σj − s) + νjG3(t)

]
f̂ (s)ds

+
1

A1 A2

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ηi A1(s − τ) + ωiG3(t)

]
f̂ (τ)dτds,

(L2u)′′(t) =
1

A1

[
−
∫ T

a
(T − s) f̂ (s)ds +

m

∑
j=1

∫ σj

a
νj f̂ (s)ds +

p

∑
i=1

∫ ρi+1

ρi

∫ s

a
ωi f̂ (τ)dτds

]
.

Notice that L = L1 + L2. For u, v ∈ Br, and t ∈ [a, T], we have

‖L1u + L2v‖

= sup
t∈[a,T]

{∣∣∣ ∫ t

a

(t − s)2

2
f (s, u(s), u′(s), u′′(s))ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f (s, v(s), v′(s), v′′(s))ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ μjG1(t)(σj − s) + νjG2(t)

]
f (s, v(s), v′(s), v′′(s))ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s − τ)2

2
+ ηiG1(t)(s − τ) + ωiG2(t)

]
f (τ, v(τ), v′(τ), v′′(τ))dτds

∣∣∣}

≤ ‖ε‖ sup
t∈[a,T]

{ (t − a)3

3!
+

1
|A4|

[ (T − a)4

4!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)
+

m

∑
j=1

γj
(σj − a)3

3!

]

+
|G1(t)|
|Λ|

[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

μj
(σj − a)2

2

]

+
|G2(t)|
|Λ|

[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]}

≤ ‖ε‖Q1,
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where Q1 is given by Equation (22). In a similar manner, it can be shown that

‖(L1u)′ + (L2v)′‖ ≤ ‖ε‖Q2, ‖(L1u)′′ + (L2v)′′‖ ≤ ‖ε‖Q3,

where Q2 and Q3 are, respectively, given by Equations (23) and (24). Consequently, we obtain

‖L1u + L2v‖H ≤ ‖ε‖Q ≤ r,

where we have used (H2) and Equation (21). From the above inequality, it follows that L1u +L2v ∈ Br.
Thus, the first condition of Krasnoselskii’s fixed point theorem [24] is satisfied. Next, we show that L2

is a contraction. For u, v ∈ R, it follows by the assumption (H1) that

‖L2u − L2v‖

≤ sup
t∈[a,T]

{ 1
|Λ|

∫ T

a

[
|A1 A2|

(T − s)3

3!
+ |G1(t)|

(T − s)2

2
+ |G2(t)|(T − s)

]

×
∣∣∣ f (s, u(s), u′(s), u′′(s))− f (s, v(s), v′(s), v′′(s))

∣∣∣ds +
1

|Λ|
m

∑
j=1

∫ σj

a

[
γj|A1 A2|

(σj − s)2

2

+μj|G1(t)|(σj − s) + νj|G2(t)|
]∣∣∣ f (s, u(s), u′(s), u′′(s))− f (s, v(s), v′(s), v′′(s))

∣∣∣ds

+
1

|Λ|
p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi|A1 A2|

(s − τ)2

2
+ ηi|G1(t)|(s − τ) + ωi|G2(t)|

]
×
∣∣∣ f (τ, u(τ), u′(τ), u′′(τ))− f (τ, v(τ), v′(τ), v′′(τ))

∣∣∣dτds
}

≤ �
(
‖u − v‖+ ‖u′ − v′‖+ ‖u′′ − v′′‖

){ 1
|A4|

[ (T − a)4

4!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)

+
m

∑
j=1

γj
(σj − a)3

3!

]
+

b1

|Λ|
[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

μj
(σj − a)2

2

]

+
b2

|Λ|
[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]}

≤ �
(

Q1 − (T − a)3

3!

)
‖ u − v ‖H .

Similarly, we can obtain

‖(L2u)′ − (L2v)′‖ ≤ �
(

Q2 − (T − a)2

2

)
‖ u − v ‖H,

and

‖(L2u)′′ − (L2v)′′‖ ≤ �
(

Q3 − (T − a)
)

‖ u − v ‖H .

Thus, we get

‖L2u − L2v‖H ≤ �
(

Q − (T − a)
6

[
6 + 3(T − a) + (T − a)2

])
‖ u − v ‖H,

which, in view of the condition (H3), implies that L2 is a contraction. Thus, the second hypothesis of
Krasnoselskii’s fixed point theorem [24] is satisfied. Finally, we verify the third and last hypothesis of
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Krasnoselskii’s fixed point theorem [24] that L1 is compact and continuous. Observe that continuity of
f implies that the operator L1 is continuous. In addition, L1 is uniformly bounded on Br as

‖L1u‖H ≤ ‖ε‖
[ (T − a)3

3!
+

(T − a)2

2
+ (T − a)

]
.

Let us fix sup(t,u,u′ ,u′′)∈[a,T]×Br
| f (t, u, u′, u′′)| = f̄ , and take a < t1 < t2 < T. Then,

|(L1u)(t2)− (L1u)(t1)| =
∣∣∣ ∫ t1

a

[ (t2 − s)2

2
− (t1 − s)2

2

]
f̂ (s)ds

+
∫ t2

t1

(t2 − s)2

2
f̂ (s)ds

∣∣∣
≤ f̄

( (t2 − t1)
3

3
+

1
3!

∣∣∣(t2 − a)3 − (t1 − a)3
∣∣∣) → 0 as t2 → t1,

independently of u ∈ Br. In addition, we have

|(L1u)′(t2)− (L1u)′(t1)| =

∣∣∣∣∫ t1

a
[(t2 − s)− (t1 − s)] f̂ (s)ds +

∫ t2

t1

(t2 − s) f̂ (s)ds
∣∣∣∣

≤ f̄
∣∣∣(t2 − t1)(t1 − a) +

(t2 − t1)
2

2

∣∣∣ → 0 as t2 → t1,

independently of u ∈ Br and

|(L1u)′′(t2)− (L1u)′′(t1)| ≤ f̄ (t2 − t1) → 0 as t2 → t1,

independently of u ∈ Br. From the preceding arguments, we deduce that L1 is relatively compact on
Br. Hence, the operator L1 is compact on Br by the Arzelá–Ascoli theorem. Since all the hypotheses
of Krasnoselskii’s fixed point theorem [24] are verified, its conclusion applies to the problem in
Equations (1) and (2).

Remark 1. When the role of the operators L1 and L2 is mutually interchanged, the condition (H3) of Theorem 1

takes the form: � (T−a)
6

[
6 + 3(T − a) + (T − a)2

]
< 1.

In the next result, we make use of Leray–Schauder nonlinear alternative for single valued
maps [25].

Theorem 2. Suppose that f : [a, T]×R3 → R is a continuous function and the following conditions hold:

(H4) | f̂ (t)| = | f (t, u, u′, u′′)| ≤ p(t)Ψ(|u|), ∀(t, u, u′, u′′) ∈ [a, T] × R3, where p ∈ C([a, T],R+),
and Ψ : R+ → R+ is a nondecreasing function;

(H5) there exists a positive constant N satisfying the inequality:

N
‖p‖Ψ(N)Q

> 1,

where Q is defined by Equation (21). Then, the problem in Equations (1) and (2) has at least one solution
on [a, T].

Proof. We verify the hypotheses of Leray–Schauder nonlinear alternative [25] in several steps. We first
show that the operator L : H → H defined by Equation (17) maps bounded sets into bounded sets in
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H. Let us consider a set Br̄ = {(u, u′, u′′) : ‖u‖H ≤ r̄, u, u′, u′′ ∈ C([a, T],R), r̄ > 0} and note that it
is bounded in H. Then, in view of the condition (H4), we get

‖(Lu)‖ = sup
t∈[a,T]

{∣∣∣ ∫ t

a

(t − s)2

2
f̂ (s)ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f̂ (s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ μjG1(t)(σj − s) + νjG2(t)

]
f̂ (s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s − τ)2

2
+ ηiG1(t)(s − τ) + ωiG2(t)

]
f̂ (τ)dτds

∣∣∣}
≤ ‖p‖Ψ(‖u‖H)Q1 ≤ ‖p‖Ψ(r̄)Q1,

where Q1 is given by Equation (22). Similarly, one can establish that

‖(Lu)′‖ ≤ ‖p‖Ψ(r̄)Q2, ‖(Lu)′′‖ ≤ ‖p‖Ψ(r̄)Q3,

where Q2 and Q3 are given by Equations (23) and (24), respectively. In view of the foregoing arguments,
we have

‖(Lu)‖H ≤ ‖p‖Ψ(r̄)Q,

where Q is given by Equation (21). Next, it is verified that the operator L maps bounded sets into
equicontinuous sets in H. Notice that L is continuous in view of the continuity of f̂ (t). Let t1, t2 ∈ [a, T]
with t1 < t2 and u ∈ Br̄. Then, we have

|(Lu)(t2)− (Lu)(t1)|

≤
∣∣∣ ∫ t1

a

[ (t2 − s)2

2
− (t1 − s)2

2

]
f̂ (s)ds +

∫ t2

t1

(t2 − s)2

2
f̂ (s)ds

∣∣∣
+

1
|Λ|

∫ T

a
(t2 − t1)

[
|A1 A4|

(T − s)2

2
+
(
|A3 A4|+

|A2 A4|
2

(t2 + t1)
)
(T − s)

]
f̂ (s)ds

+
1

|Λ|
m

∑
j=1

∫ σj

a
(t2 − t1)

[
μj|A1 A4|(σj − s) + νj

(
|A3 A4|+

|A2 A4|
2

(t2 + t2
1)
)]

| f̂ (s)|ds

+
1

|Λ|
p

∑
i=1

∫ ρi+1

ρi

∫ s

a
(t2 − t1)

[
ηi|A1 A4|(s − τ) + ωi

(
|A3 A4|+

|A2 A4|
2

(t2 + t1)
)]

| f̂ (τ)|dτds

≤ ‖p‖Ψ(r̄)
{ (t2 − t1)

3

3
+

1
3!

∣∣∣(t2 − a)3 − (t1 − a)3
∣∣∣

+
(t2 − t1)

|A2|
[ (T − a)3

3!
+

m

∑
j=1

μj
(σj − a)2

2
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)]

+
1

|Λ|
(
|A3 A4|(t2 − t1) +

|A2 A4|
2

(t2
2 − t2

1)
)[ (T − a)2

2
+

m

∑
j=1

νj(σj − a)

+
p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)]}
→ 0 as (t2 − t1) → 0,
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independently of u ∈ Br̄. Moreover, we have

|(Lu)′(t2)− (Lu)′(t1)| ≤ ‖p‖Ψ(r̄)
{∣∣∣(t2 − t1)(t1 − a) +

(t2 − t1)
2

2

∣∣∣
+
(t2 − t1)

|A1|
[ (T − a)2

2
+

m

∑
j=1

νj(σj − a)

+
p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)]}
→ 0 as (t2 − t1) → 0,

independently of u ∈ Br̄ and

|(Lu)′′(t2)− (Lu)′′(t1)| ≤
∣∣∣ ∫ t2

t1

f̂ (s)ds
∣∣∣

≤ ‖p‖Ψ(r̄)(t2 − t1) → 0 as (t2 − t1) → 0,

independently of u ∈ Br̄. In view of the foregoing arguments, the Arzelá–Ascoli theorem applies
and hence the operator L : H → H is completely continuous. The conclusion of Leray–Schauder
nonlinear alternative [25] is applicable once we establish the boundedness of all solutions to the
equation u = λLu for λ ∈ [0, 1]. Let u be a solution of the problem in Equations (1) and (2). Then,
as before, one can find that

|u(t)| = |λ(Lu)(t)| ≤ ‖p‖Ψ(‖u‖H)Q,

which can alternatively be written in the following form after taking the norm for t ∈ [a, T]:

‖u‖H
‖p‖Ψ(‖u‖H)Q

≤ 1.

By the assumption (H5), we can find a positive number N such that ‖u‖H 	= N. Introduce a set
U = {u ∈ C([a, T],R) : ‖u‖H < N} such that the operator L : U → C([a, T],R) is continuous and
completely continuous. In view of the the choice of U, there does not exist any u ∈ ∂U satisfying
u = λL(u) for some λ ∈ (0, 1). Thus, it follows from the nonlinear alternative of Leray–Schauder
nonlinear alternative [25] that L has a fixed point u ∈ U which corresponds a solution of the problem
in Equations (1) and (2).

3.2. Uniqueness of Solutions

In this subsection, the uniqueness of solutions for the problem in Equations (1) and (2) is
established by means of contraction mapping principle due to Banach.

Theorem 3. Let f : [a, T]×R3 → R be a continuous function satisfying the assumption (H1) with � < Q−1,
where Q is given by Equation (21). Then, there exists a unique solution for the problem in Equations (1) and (2)
on [a, T].

Proof. Let us define a set Bw = {u, u′, u′′ ∈ C([a, T],R) : ‖u‖H ≤ w}, where w ≥
QM

1 − �Q
, sup

t∈[a,T]
| f (t, 0, 0, 0)| = M, and show that LBw ⊂ Bw, where the operator L is defined by
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Equation (17). For any u ∈ Bw, t ∈ [a, T], one can find with the aid of the condition (H1) that
| f̂ (t)| ≤ ‖u‖H + M ≤ �w + M. Then, for u ∈ Bw, we have

‖(Lu)‖ = sup
t∈[a,T]

∣∣∣∣∣
∫ t

a

(t − s)2

2
f̂ (s)ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f̂ (s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ μjG1(t)(σj − s) + νjG2(t)

]
f̂ (s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s − τ)2

2
+ ηiG1(t)(s − τ) + ωiG2(t)

]
f̂ (τ)dτds

∣∣∣∣∣
≤ sup

t∈[a,T]

{ (t − a)3

3!
+

1
|A4|

[ (T − a)4

4!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)
+

m

∑
j=1

γj
(σj − a)3

3!

]

+
|G1(t)|
|Λ|

[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

μj
(σj − a)2

2

]

+
|G2(t)|
|Λ|

[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]}

(�w + M)

≤ Q1(�w + M),

where Q1 is given by Equation (22). In addition,

‖(Lu)′‖ ≤ (�w + M)Q2 and ‖(Lu)′′‖ ≤ (�w + M)Q3,

where Q2 and Q3 are, respectively, given by Equations (23) and (24). Consequently, we have

‖(Lu)‖H ≤ (�w + M)Q ≤ w,

where Q is given by Equation (21). This shows that LBw ⊂ Bw. Next, it is shown that the operator L is
a contraction. For that, let u, v ∈ H. Then, we have

‖Lu − Lv‖ = sup
t∈[0,T]

∣∣∣Lu(t)− Lv(t)
∣∣∣

≤ sup
t∈[a,T]

{ ∫ t

a

(t − s)2

2

∣∣∣ f (s, u(s), u′(s), u′′(s))− f (s, v(s), v′(s), v′′(s))
∣∣∣ds

+
1

|Λ|
∫ T

a

[
|A1 A2|

(T − s)3

3!
+ |G1(t)|

(T − s)2

2
+ |G2(t)|(T − s)

]
×
∣∣∣ f (s, u(s), u′(s), u′′(s))− f (s, v(s), v′(s), v′′(s))

∣∣∣ds

+
1

|Λ|
m

∑
j=1

∫ σj

a

[
γj|A1 A2|

(σj − s)2

2
+ μj|G1(t)|(σj − s) + νj|G2(t)|

]

×
∣∣∣ f (s, u(s), u′(s), u′′(s))− f (s, v(s), v′(s), v′′(s))

∣∣∣ds
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+
1

|Λ|
p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi|A1 A2|

(s − τ)2

2
+ ηi|G1(t)|(s − τ) + ωi|G2(t)|

]
×
∣∣∣ f (τ, u(τ), u′(τ), u′′(τ))− f (τ, v(τ), v′(τ), v′′(τ))

∣∣∣dτds
}

≤ �
(
‖u − v‖+ ‖u′ − v′‖+ ‖u′′ − v′′‖

){ (T − a)3

3!

+
1

|A4|
[ (T − a)4

4!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)
+

m

∑
j=1

γj
(σj − a)3

3!

]

+
b1

|Λ|
[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

μj
(σj − a)2

2

]

+
b2

|Λ|
[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]}

≤ �Q1 ‖ u − v ‖H .

In a similar manner, one can obtain

‖(Lu)′ − (Lv)′‖ ≤ �Q2 ‖ u − v ‖H, ‖(Lu)′′ − (Lv)′′‖ ≤ �Q3 ‖ u − v ‖H .

Consequently, we deduce that

‖Lu − Lv‖H ≤ �Q ‖ u − v ‖H,

which, in view of the given condition (� < Q−1), shows that the operator L is a contraction. Thus,
by the conclusion of Banach contraction mapping principle, the operator L has a unique fixed point,
which implies that the problem in Equations (1) and (2) has a unique solution on [a, T].

3.3. Examples

Here, we illustrate the results obtained in the last subsections with the aid of examples.

Example 1. Consider the following integral multi-point and multi-strip boundary value problem:

u′′′(t) =
1

45
√

t2 + 3
tan−1 u(t) +

1
162

|u′|
(|u′|+ 1)

+
1

270t
|u′′|2

(|u′′|2 + 1)
+ cos(t − 1), t ∈ [1, 4], (25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 4

1
u(s)ds =

4

∑
i=1

ξi

∫ ρi+1

ρi

u(s)ds +
3

∑
j=1

γju(σj),∫ 4

1
u′(s)ds =

4

∑
i=1

ηi

∫ ρi+1

ρi

u′(s)ds +
3

∑
j=1

μju′(σj),∫ 4

1
u′′(s)ds =

4

∑
i=1

ωi

∫ ρi+1

ρi

u′′(s)ds +
3

∑
j=1

νju′′(σj),

(26)

where a = 1, T = 4, m = 3, p = 4, γ1 = 1/2, γ2 = 7/10, γ3 = 9/10, μ1 = 1/4, μ2 = 5/12, μ3 =

7/12, ν1 = 2/5, ν2 = 13/20, ν3 = 9/10, σ1 = 7/4, σ2 = 15/8, σ3 = 16/8, ρ1 = 5/2, ρ2 = 8/3, ρ3 =

17/6, ρ4 = 18/6, ρ5 = 19/6, ξ1 = 3/4, ξ2 = 25/28, ξ3 = 29/28, ξ4 = 33/28, η1 = 2/7, η2 =
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23/56, η3 = 15/28, η4 = 37/56, ω1 = 1/5, ω2 = 2/5, ω3 = 3/5, ω4 = 4/5. Clearly, | f (t, u, u′, u′′)| ≤
π

90
√

t2+3
+ 1

270t +
163
162 and

∣∣∣ f (t, u, u′, u′′)− f (t, v, v′, v′′)
∣∣∣ ≤ �

(
|u − v|+ |u′ − v′|+ |u′′ − v′′|

)
with � = 1/90. Using the given data, it is found that A1 ≈ 0.716667 	= 0, A2 ≈ 1.434524 	= 0, A3 ≈
2.768849, A4 ≈ 0.257143 	= 0, A5 ≈ 1.414087, A6 ≈ 2.512768, and |Λ| ≈ 0.264363 (Λ and Ai (i = 1, . . . , 6)
are defined by Equation (6)), Q1 ≈ 35.810002, Q2 ≈ 18.708093, Q3 ≈ 12.638560 and Q ≈ 67.156655 (Q1, Q2,
Q3 and Q are given by Equations (22), (23), (24) and (21), respectively). Furthermore, we note that all the
conditions of Theorem 1 are satisfied with

�
(

Q − (T − a)
6

[
6 + 3(T − a) + (T − a)2

])
≈ 0.612852 < 1.

Hence, the problem in Equations (25) and (26) has a solution on [1, 4] by Theorem 1.
Since �Q ≈ 0.746185 < 1, therefore the conclusion of Theorem 3 also applies to Equation (26).

Example 2. Consider the third-order ordinary differential equation

u′′′(t) =
1

18
√

t + 24

[ 1
21π

sin(3πu) +
3
4

u′(t) +
|u′′|

|u′′|+ 1

]
, t ∈ [1, 4] (27)

supplemented with the boundary conditions in Equation (26). Evidently,

| f (t, u, u′, u′′)| ≤ 1
18

√
t + 24

( |u|
7

+
3
4
|u′(t)|+ 1

)
.

Let us set Ψ(‖u‖) = ‖u‖
7 + 3

4‖u′‖+ 1, p(t) = 1
18

√
t+24

, (‖p‖ = 1
90 ). The condition (H5) implies that

N > 2.235673. In consequence, it follows by the conclusion of Theorem 2 that the problem (27) and (26) has at
least one solution on [1, 4].

4. Ulam Stability

This section is concerned with the Ulam stability of the problem in Equations (1) and (2) by
considering its equivalent integral equation:

v(t) =
∫ t

a

(t − s)2

2
f̂ (s)ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f̂ (s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ μjG1(t)(σj − s) + νjG2(t)

]
f̂ (s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s − τ)2

2

+ηiG1(t)(s − τ) + ωiG2(t)
]

f̂ (τ)dτds.

(28)

Let us introduce a continuous nonlinear operator χ : H → H given by

χv(t) = v′′′(t)− f̂ (t).
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Definition 1. For each ε > 0 and for each solution v ∈ H, we call the problem in Equations (1) and (2)
Ulam–Hyers stable provided that

‖χv‖ ≤ ε, (29)

and there exists a solution v1 ∈ H of Equation (1) such that ‖v1 − v‖ ≤ �ε1 for positive real numbers � and
ε1(ε).

Definition 2. Let there exist a function κ ∈ C(R+,R+) and a solution v1 ∈ H of Equation (1) with
|v1(t)− v(t)| ≤ κ(ε), t ∈ [a, T] for each solution v ∈ H of Equation (1). Then, the problem in Equations (1)
and (2) is called generalized Ulam–Hyers stable.

Definition 3. The problem in Equations (1) and (2) is said to be Ulam–Hyers–Rassias stable with respect to
ϕ ∈ C([a, T],R+) if

|χv(t)| ≤ εϕ(t), t ∈ [a, T], (30)

and there exists a solution v1 ∈ H of Equation (1) such that

|v1(t)− v(t)| ≤ �ε1 ϕ(t), t ∈ [a, T],

where ε, �, ε1 are the same as defined in Definition 1.

Theorem 4. If (H1) and the condition � < Q−1 (see Theorem 3) are satisfied, then the problem in Equations
(1) and (2) is both Ulam–Hyers and generalized Ulam–Hyers stable.

Proof. Recall that v1 ∈ H is a unique solution of Equation (1) by Theorem 3.6. Let v ∈ H be an other
solution of (1) which satisfies Equation (29). For every solution v ∈ H (given by Equation (28)) of
Equation (1), it is easy to see that χ and L − I are equivalent operators. Therefore, it follows from
Equations (16) and (29) and the fixed point property of the operator L given by Equation (17) that

|v1(t)− v(t)| = |Lv1(t)− Lv(t) + Lv(t)− v(t)| ≤ |Lv1(t)− Lv(t)|+ |Lv(t)− v(t)|
≤ �Q ‖v1 − v‖H + ε,

which, on taking the norm for t ∈ [a, T] and solving for ‖v1 − v‖H, yields

‖v1 − v‖H ≤ ε

1 − �Q
,

where ε > 0 and �Q < 1 (given condition).
Letting ε1 = ε

1−�Q , and � = 1, the Ulam–Hyers stability condition holds true. Furthermore,
one can notice that the generalized Ulam–Hyers stability condition also holds valid if we set κ(ε) =

ε
1−�Q .

Theorem 5. Let the assumptions of Theorem 4 be satisfied and that there exists a function ϕ ∈ C([a, T],R+)

satisfying the condition in Equation (30). Then, the problem in Equations (1) and (2) is Ulam–Hyers–Rassias
stable with respect to ϕ.

Proof. As argued in the proof of Theorem 4, we can get

‖v1 − v‖H ≤ ε1‖ϕ‖,

with ε1 = ε
1−�Q .
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5. Existence Results for the Problem in Equations (1) and (3)

We only outline the idea for obtaining the existence and uniqueness results for the problem in
Equations (1) and (3). In relation to the problem in Equations (1) and (3), we introduce an operator
S : H → H by Lemma 2 as

(Su)(t) =
∫ t

a

(t − s)2

2
f̂ (s)ds

− 1
Δ

∫ T

a

[
α2ζ1ζ2

(T − s)2

2
+ β2P1(t)(T − s) + δ2P2(t)

]
f̂ (s)ds

+
1
Δ

m

∑
j=1

∫ σj

a

[
γjζ1ζ2

(σj − s)2

2
+ μjP1(t)(σj − s) + νjP2(t)

]
f̂ (s)ds

+
1
Δ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξiζ1ζ2

(s − τ)2

2
+ ηiP1(t)(s − τ) + ωiP2(t)

]
f̂ (τ)dτds,

(31)

where

P1(t) = ζ1

(
ζ4(t − a)− ζ5

)
, P2(t) = ζ3

(
ζ5 − ζ4(t − a)

)
− ζ2

(
ζ6 − ζ4

(t − a)2

2

)
,

and ζi(i = 1, . . . , 6) are given by Equation (15).
Moreover, we set

Θ1 =
(T − a)3

3!
+

1
|ζ4|

[
|α2|

(T − a)3

3!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)
+

m

∑
j=1

γj
(σj − a)3

3!

]
+

p1

|Δ|
[
|β2|

(T − a)2

2
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

μj
(σj − a)2

2

]
+

p2

|Δ|
[
|δ2|(T − a) +

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
,

Θ2 =
(T − a)2

2
+

1
|ζ2|

[
|β2|

(T − a)2

2
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

μj
(σj − a)2

2

]
+

p3

|ζ1ζ2|
[
|δ2|(T − a) +

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
,

Θ3 = (T − a) +
1

|ζ1|
[
|δ2|(T − a) +

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
, (32)

where maxt∈[a,T] |P1(t)| = p1, maxt∈[a,T] |P2(t)| = p2 and maxt∈[a,T] |ζ2(t − a)− ζ3| = p3 (P1(t) and
P2(t) are given by Equation (14)). With the aid of the operator S defined by Equation (31) and the
notations in Equation (32), we can obtain the existence results (analog to the ones derived in Section 3)
for the problem in Equations (1) and (3). As an example, we formulate the uniqueness result for the
problem in Equations (1) and (3) as follows.

Theorem 6. Let f : [a, T]×R3 → R be a continuous function satisfying the Lipschitz condition (H1) with
the Lipschitz constant �1 (instead of � in (H1)) such that �1(Θ1 + Θ2 + Θ3) < 1, where Θ1, Θ2 and Θ3 are
given by (32). Then, the problem in Equations (1) and (3) has a unique solution on [a, T].

Now, we present an example illustrating Theorem 6.
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Example 3. Consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′′(t) =
1

210
sin u +

1
4
√

t + 440
u′(t) +

1
168

|u′′|
(|u′′|+ 1)

+ e−t, t ∈ [1, 4],

α1u(a) + α2u(T) =
4

∑
i=1

ξi

∫ ρi+1

ρi

u(s)ds +
3

∑
j=1

γju(σj),

β1u′(a) + β2u′(T) =
4

∑
i=1

ηi

∫ ρi+1

ρi

u′(s)ds +
3

∑
j=1

μju′(σj),

δ1u′′(a) + δ2u′′(T) =
4

∑
i=1

ωi

∫ ρi+1

ρi

u′′(s)ds +
3

∑
j=1

νju′′(σj),

(33)

where α1 = 1/4, α2 = 1/2, β1 = 1/5, β2 = 3/8, δ1 = 1/3, δ2 = 2/3. The other constants are the same
as chosen in example 3.7. Clearly, | f (t, u, u′, u′′) − f (t, v, v′, v′′)| ≤ �1(|u − v| + |u′ − v′| + |u′′ − v′′|),
with �1 = 1/84. Using the given data, we find that |ζ1| ≈ 1.283333 	= 0, |ζ2| ≈ 0.990476 	= 0, |ζ3| ≈
0.606151, |ζ4| ≈ 1.992857 	= 0, |ζ5| ≈ 1.585913, |ζ6| ≈ 0.262769, and |Δ| ≈ 2.533142 (Δ and ζi (i =
1, . . . , 6) are given by Equation (15)), Θ1 ≈ 23.050129, Θ2 ≈ 15.505245, Θ3 ≈ 6.434525 (Θ1, Θ2 and Θ3 are
given by Equation (32)) and �1(Θ1 + Θ2 + Θ3) ≈ 0.535594 < 1. Obviously, all the conditions of Theorem 6
hold and therefore Theorem 6 applies to the problem in Equation (33).

6. Conclusions

We developed the existence theory and Ulam stability for a third-order nonlinear ordinary
differential equation equipped with: (i) nonlocal integral multi-point and multi-strip; and (ii)
non-separated integro-multi-point boundary conditions. The results obtained in this paper are new and
quite general, and lead to several new ones for appropriate choices of the parameters involved in the
problems at hand. For example, letting γj = ρj = νj = 0, ∀j and ξi = ηi = ωi = 0, ∀i in Equation (2),
the results for the problem in Equations (1) and (2), respectively, correspond to the ones for: (i) nonlocal
integral multi-strip boundary conditions; and (ii) nonlocal integral multi-point boundary conditions.
Likewise, by fixing αk = βk = δk = 0, k = 1, 2 in the results of this paper, we obtain the ones for a
third-order differential equation with purely nonlocal multi-point and multi-strip boundary conditions.
Setting γj = ρj = νj = ξi = ηi = ωi = 0, ∀j, i and αk = βk = δk = 1, k = 1, 2, the results obtained
for the problem in Equations (1) and (3) reduce to the ones for anti-periodic boundary conditions. In
the nutshell, the work presented in this paper significantly contributes to the existing literature on
the topic.
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1. Introduction

Throughout this paper, we assume that:

n, p ∈ N, −1 ≤ B < A ≤ 1, α > 0 and β < 1. (1)

Let An(p) denote the class of functions of the form:

f (z) = zp +
∞

∑
k=n+p

akzk (2)

which are analytic in the open unit disk U = {z : |z| < 1}. If f (z) = zp + ∑∞
k=n+p akzk ∈ An(p)

and g(z) = zp + ∑∞
k=n+p bkzk ∈ An(p), then the Hadamard product (or convolution) of f and g is

defined by:

( f ∗ g)(z) = zp +
∞

∑
k=n+p

akbkzk

For:
αj ∈ C (j = 1, 2, · · · , l) and β j ∈ C \ {0, −1, −2, · · · } (j = 1, 2, · · · , m)

the generalized hypergeometric function l Fm(α1, · · · , αl ; β1, · · · , βm; z) is defined by:

l Fm(α1, · · · , αl ; β1, · · · , βm; z) =
∞

∑
k=0

(α1)k · · · (αl)k
(β1)k · · · (βm)k

zk

k!

(l ≤ m + 1; l, m ∈ N0 = N∪ {0}; z ∈ U)

where (x)k is the Pochhammer symbol given by (x)k = x(x + 1) · · · (x + k − 1) for k ∈ N and (x)0 = 1.
Corresponding to the function zp

l Fm(α1, · · · , αl ; β1, · · · , βm; z), the well-known Dziok–Srivastava
operator [1] H(α1, · · · , αl ; β1, · · · , βm) : An(p) → An(p) is defined by:

H(α1, · · · , αl ; β1, · · · , βm) f (z) = (zp
l Fm(α1, · · · , αl ; β1, · · · , βm; z) ∗ f (z)
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(l ≤ m + 1; l, m ∈ N0; z ∈ U)

If f ∈ An(p) is given by (2), then we have:

H(α1, · · · , αl ; β1, · · · , βm) f (z) = zp +
∞

∑
k=n+p

(α1)k · · · (αl)k
(β1)k · · · (βm)k

ak
k!

zk

For convenience, we write:

Hl
m(α1) = H(α1, · · · , αl ; β1, · · · , βm) (l ≤ m + 1; l, m ∈ N0)

It is noteworthy to mention that the Dziok–Srivastava operator is a generalization of certain linear
operators considered in earlier investigations.

Next, we consider the function h(A, B; z) = (1 + Az)/(1 + Bz) for z ∈ U. It is known that the
function h(A, B; z) is the conformal map of U onto a disk, symmetrical with respect to the real axis,
which is centered at the point (1 − AB)/(1 − B2) (B 	= ±1) and with its radius equal to (A − B)/
(1 − B2) (B 	= ±1). Furthermore, the boundary circle of this disk intersects the real axis at the points
(1 − A)/(1 − B) and (1 + A)/(1 + B) with B 	= ±1.

Let P[A, B] denote the class of functions of the form p(z) = 1 + p1z + · · · , which are analytic in U
and satisfy the subordination p(z) ≺ h(A, B; z). It is clear that p ∈ P[A, B] if and only if:∣∣∣∣p(z)− 1 − AB

1 − B2

∣∣∣∣ < A − B
1 − B2 (−1 < B < A ≤ 1; z ∈ U)

and:
Rep(z) >

1 − A
2

(B = −1; z ∈ U)

For two functions f and g analytic in U, f is said to be subordinate to g, written by f (z) ≺
g(z) (z ∈ U), if there exists a Schwarz function w in U such that:

|w(z)| ≤ |z| and f (z) = g(w(z)) (z ∈ U)

Furthermore, if the function g is univalent in U, then:

f (z) ≺ g(z) (z ∈ U) ⇐⇒ f (0) = g(0) and f (U) ⊂ g(U)

Many properties of analytic functions have been investigated by several authors(see [1–11]). In this
paper, we derive certain geometric properties of analytic functions associated with the well-known
Dziok–Srivastava operator.

2. Main Results

Theorem 1. Let f belong to the class An(p). Furthermore, let:

Hl
m(α1) f (z)

zp ∈ P[A, B]. (3)

Then:

Re

{
Hl

m(α1) f (z)
zp + αz(

Hl
m(α1) f (z)

zp )′
}

≤

⎧⎪⎪⎨⎪⎪⎩
1+(A+B+nα(A−B))rn+ABr2n

(1+Brn)2 if Mn(A, B, α, r) ≤ 0, (4)

L2
n−4α2KAKB

4α(A−B)rn−1(1−r2)KB
if Mn(A, B, α, r) ≥ 0, (5)
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where: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
KA = 1 − A2r2n + nArn−1(1 − r2),
KB = 1 − B2r2n + nBrn−1(1 − r2),
Ln = 2α(1 − ABr2n) + nα(A + B)rn−1(1 − r2) + (A − B)rn−1(1 − r2),
Mn(A, B, α, r) = 2αKB(1 + Arn)− Ln(1 + Brn).

(6)

The result is sharp.

Proof. For z = 0, the equality in (4) holds true. Thus, we assume that 0 < |z| = r < 1. From (3), we
can write:

Hl
m(α1) f (z)

zp =
1 + Azn ϕ(z)
1 + Bzn ϕ(z)

(z ∈ U), (7)

where ϕ(z) is analytic and |ϕ(z)| ≤ 1 in U. From (7), we have:

Hl
m(α1) f (z)

zp + αz(
Hl

m(α1) f (z)
zp )′

=
Hl

m(α1) f (z)
zp +

α(A − B)zn(nϕ(z) + zϕ′(z))
(1 + Bzn ϕ(z))2 (8)

=
Hl

m(α1) f (z)
zp +

nα

A − B
(A − BHl

m(α1) f (z)/zp)(Hl
m(α1) f (z)/zp − 1)

+
α(A − B)zn+1 ϕ′(z)
(1 + Bzn ϕ(z))2

By using the Carathéodory inequality:

|ϕ′(z)| ≤ 1 − |ϕ(z)|2
1 − r2 ,

we get:

Re
{

zn+1 ϕ′(z)
(1 + Bzn ϕ(z))2

}
≤ rn+1(1 − |ϕ(z)|2)

(1 − r2)|1 + Bzn ϕ(z)|2

=
r2n|A − BHl

m(α1) f (z)/zp|2 − |Hl
m(α1) f (z)/zp − 1|2

(A − B)2rn−1(1 − r2)
(9)

Set Hl
m(α1) f (z)

zp = u + iv (u, v ∈ R). Then, (8) and (9) give:

Re

{
Hl

m(α1) f (z)
zp + αz(

Hl
m(α1) f (z)

zp )′
}

≤
(

1 + nα
A + B
A − B

)
u − nαA

A − B
− nαB

A − B
(u2 − v2)

+ α
r2n((A − Bu)2 + (Bv)2)− ((u − 1)2 + v2)

(A − B)rn−1(1 − r2)
(10)

=

(
1 + nα

A + B
A − B

)
u − nα

A − B
(A + Bu2)

+ α
r2n(A − Bu)2 − (u − 1)2

(A − B)rn−1(1 − r2)
+

α

A − B

(
nB − 1 − B2r2n

rn−1(1 − r2)

)
v2
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Note that:

1 − B2r2n

rn−1(1 − r2)
≥ 1 − r2n

rn−1(1 − r2)
=

1
rn−1 (1 + r2 + r4 + · · ·+ r2(n−2) + r2(n−1))

=
1

2rn−1 [(1 + r2(n−1)) + (r2 + r2(n−2)) + · · ·+ (r2(n−1) + 1)] (11)

≥ n ≥ nB

Using (10) and (11), we obtain:

Re{ Hl
m(α1) f (z)

zp + αz(
Hl

m(α1) f (z)
zp )′} ≤

(
1 + nα

A + B
A − B

)
u − nα

A − B
(A + Bu2)

+ α
r2n(A − Bu)2 − (u − 1)2

(A − B)rn−1(1 − r2)
= ψn(u) (12)

It is known that for |ξ| ≤ σ (σ < 1),∣∣∣∣1 + Aξ

1 + Bξ
− 1 − ABσ2

1 − B2σ2

∣∣∣∣ ≤ (A − B)σ
1 − B2σ2 (13)

and:
1 − Aσ

1 − Bσ
≤ Re

{
1 + Aξ

1 + Bξ

}
≤ 1 + Aσ

1 + Bσ
(14)

Furthermore, (7) and (14) show that:

1 − Arn

1 − Brn ≤ Re{ Hl
m(α1) f (z)

zp } ≤ 1 + Arn

1 + Brn .

Now, we calculate the maximum value of ψn(u) on the segment
[

1−Arn

1−Brn , 1+Arn

1+Brn

]
. Obviously,

ψ′
n(u) = 1 + nα

A + B
A − B

− 2nαB
A − B

u + 2α
(1 − ABr2n)− (1 − B2r2n)u

(A − B)rn−1(1 − r2)

ψ′′
n (u) = − 2α

A − B

(
nB +

1 − B2r2n

rn−1(1 − r2)

)
< 0 (see (11)) (15)

and ψ′
n(u) = 0 if and only if:

u = un =
2α(1 − ABr2n) + nα(A + B)rn−1(1 − r2) + (A − B)rn−1(1 − r2)

2α[1 − B2r2n + nBrn−1(1 − r2)]

=
Ln

2αKB
(see (6)) (16)

Since:

2αKB(1 − Arn)− Ln(1 − Brn)

= 2α[(1 − Arn)(1 − B2r2n)− (1 − Brn)(1 − ABr2n)]

− nαrn−1(1 − r2)[(A + B)(1 − Brn)− 2B(1 − Arn)]− (A − B)rn−1(1 − r2)(1 − Brn)

= −2α(A − B)rn(1 − Brn)− nα(A − B)rn−1(1 − r2)(1 + Brn)

− (A − B)rn−1(1 − r2)(1 − Brn) < 0

we see that:
un >

1 − Arn

1 − Brn (17)
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However, un is not always less than 1+Arn

1+Brn . The following two cases arise.

Case (I). un ≥ 1+Arn

1+Brn , that is Mn(A, B, α, r) ≤ 0. In view of ψ′
n(un) = 0 and (15), the function ψn(u)

is increasing on the segment
[

1−Arn

1−Brn , 1+Arn

1+Brn

]
. Thus, we deduce from (12) that, if Mn(A, B, α, r) ≤ 0,

then:

Re

{
Hl

m(α1) f (z)
zp + αz(

Hl
m(α1) f (z)

zp )′
}

≤ ψn

(
1 + Arn

1 + Brn

)
=

(
1 + nα

A + B
A − B

)(
1 + Arn

1 + Brn

)
− nα

A − B

(
A + B

(
1 + Arn

1 + Brn

)2
)

=
1 + Arn

1 + Brn − nα

A − B

(
1 − 1 + Arn

1 + Brn

)(
A − B

1 + Arn

1 + Brn

)
=

1 + (A + B + nα(A − B))rn + ABr2n

(1 + Brn)2

This gives (4).
Next, we consider the function f defined by:

Hl
m(α1) f (z)

zp =
1 + Azn

1 + Bzn

which satisfies the condition (3). It is easy to check that:

Hl
m(α1) f (r)

rp + αr(
Hl

m(α1) f (r)
rp )′ =

1 + (A + B + nα(A − B))rn + ABr2n

(1 + Brn)2

which implies that the inequality (4) is sharp.

Case (II). un ≤ 1+Arn

1+Brn , that is Mn(A, B, α, r) ≥ 0. In this case, we easily have:

Re

{
Hl

m(α1) f (z)
zp + αz(

Hl
m(α1) f (z)

zp )′
}

≤ ψn(un) (18)

In view of (6), ψn(u) in (12) can be written as:

ψn(u) =
−αKBu2 + Lnu − αKA

(A − B)rn−1(1 − r2)
(19)

Therefore, if Mn(A, B, α, r) ≥ 0, then it follows from (16), (18), and (19) that:

Re

{
Hl

m(α1) f (z)
zp + αz(

Hl
m(α1) f (z)

zp )′
}

≤ −αKBu2
n + Lnun − αKA

(A − B)rn−1(1 − r2)

=
L2

n − 4α2KAKB

4α(A − B)rn−1(1 − r2)KB

To show the sharpness, we take:

Hl
m(α1) f (z)

zp =
1 + Azn ϕ(z)
1 + Bzn ϕ(z)

and ϕ(z) =
z − cn

1 − cnz
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where cn ∈ R is determined by:

Hl
m(α1) f (r)

rp =
1 + Arn ϕ(r)
1 + Brn ϕ(r)

= un ∈
(

1 − Arn

1 − Brn ,
1 + Arn

1 + Brn

]
Clearly, −1 < ϕ(r) ≤ 1, −1 ≤ cn < 1, |ϕ(z)| ≤ 1 (z ∈ U), and so, f satisfies the

condition (3). Since:

ϕ′(r) =
1 − c2

n
(1 − cnr)2 =

1 − |ϕ(r)|2
1 − r2

from the above argument, we find that:

Hl
m(α1) f (r)

rp + αr(
Hl

m(α1) f (r)
zp )′ = ψn(un)

The proof of the theorem is now completed.

Corollary 1. Let f ∈ A1(p), and satisfy Re{Hl
m(α1) f (z)/zp} > β (β < 1; z ∈ U). Then, for |z| = r < 1,

Re

{
Hl

m(α1) f (z)
zp + αz(

Hl
m(α1) f (z)

zp )′
}

≤ β + (1 − β)
1 + 2αr − r2

(1 − r)2

The result is sharp.

Proof. By considering Hl
m(α1) f (z)/zp−β

1−β instead of Hl
m(α1) f (z)/zp, we only need to prove the corollary

for β = 0. Putting n = A = 1 and B = −1 in (6), we get:

K1 = 2(1 − r2), K−1 = 0, L1 = 2α(1 + r2) + 2(1 − r2)

and:
M1(1, −1, α, r) = −2(1 − r)[1 + α − (1 − α)r2] ≤ 0

Consequently, an application of (4) in Theorem 2.1 yields:

Re

{
Hl

m(α1) f (z)
zp + αz(

Hl
m(α1) f (z)

zp )′
}

≤ 1 + 2αr − r2

(1 − r)2

The sharpness follows immediately from that of Theorem 1.

Theorem 2. Let αj (j = 1, 2, · · · , l) and βs (s = 1, 2, · · · , m) be positive real numbers. Furthermore, let
f (z) = zp + ∑∞

k=n+p akzk ∈ An(p), and satisfy:

Hl
m(α1) f (z)

zp + αz

(
Hl

m(α1) f (z)
zp

)′
∈ P[A, B] (20)

Then:

|ak| ≤
k!(A − B)(β1)k · · · (βm)k

(1 + α(k − p))(α1)k · · · (αl)k
(k ≥ n + p) (21)

The result is sharp for each k ≥ n + p.

Proof. It is well known that if:

g(z) =
∞

∑
k=1

bkzk ≺ ϕ(z) (z ∈ U)
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where g(z) is analytic in U and ϕ(z) = z + · · · is convex univalent in U, then |bk| ≤ 1 (k = 1, 2, 3, · · · ).
From (20), we have:

1
A − B

(
Hl

m(α1) f (z)
zp + αz

(
Hl

m(α1) f (z)
zp

)′
− 1

)

=
1

A − B

∞

∑
k=n+p

(1 + α(k − p))(α1)k · · · (αl)k · ak
k!(β1)k · · · (βm)k

zk−p (22)

≺ z
1 + Bz

(z ∈ U)

In view of the function z
1+Bz being convex univalent in U, it follows from (22) that:

(1 + α(k − p))(α1)k · · · (αl)k
k!(A − B)(β1)k · · · (βm)k

|ak| ≤ 1 (k ≥ n + p)

which gives (21).
Next, we consider the function fk−p(z) defined by:

fk−p(z) = zp + (A − B)
∞

∑
q=1

(−B)q−1(β1)qk · · · (βm)qk(qk)!
(1 + αq(k − p))(α1)qk · · · (αl)qk

zq(k−p)+p (z ∈ U; k ≥ n + p)

Since:

Hl
m(α1) fk−p(z)

zp + αz

(
Hl

m(α1) fk−p(z)
zp

)′
=

1 + Azk−p

1 + Bzk−p ≺ 1 + Az
1 + Bz

(z ∈ U)

and:

fk−p(z) = zp +
k!(A − B)(β1)k · · · (βm)k

(1 + α(k − p))(α1)k · · · (αl)k
zk + · · ·

for each k ≥ n + p, the proof of Theorem 2 is completed.
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Abstract: In this paper, we define a continuous wavelet transform of a Schwartz tempered distribution
f ∈ S

′
(Rn) with wavelet kernel ψ ∈ S(Rn) and derive the corresponding wavelet inversion formula

interpreting convergence in the weak topology of S
′
(Rn). It turns out that the wavelet transform of a

constant distribution is zero and our wavelet inversion formula is not true for constant distribution,
but it is true for a non-constant distribution which is not equal to the sum of a non-constant
distribution with a non-zero constant distribution.

Keywords: function spaces and their duals; distributions; tempered distributions; Schwartz testing
function space; generalized functions; distribution space; wavelet transform of generalized functions;
Fourier transform

1. Introduction

As studied in the earlier works (see, for example, [1–12], we define a Schwartz testing function
space S(Rn) to consist of C∞ functions φ defined on Rn and satisfying the following conditions:

sup
x∈Rn

∣∣∣∣∣xmn
n · · · xm2

2 xm1
1

∂kn

∂xn

∂kn−1

∂xn−1
· · · ∂k2

∂x2

∂k1

∂x1
φ(x1, x2, x3, · · · xn)

∣∣∣∣∣ < ∞ (1)

|m| , |k| = 0, 1, 2, · · · .
The topology over S(Rn) is generated by the following sequence of semi-norms:

{γm,k}∞
|m|,|k|=0,

where
γm,k(φ) = sup

x∈Rn

∣∣∣|xm| φ(k)(x)
∣∣∣ , (2)

|m| = m1 + m2 + m3 + · · ·+ mn,

|k| = k1 + k2 + k3 + · · ·+ kn,

|xm| =
∣∣xm1

1 xm2
2 xm3

3 · · · xmn
n
∣∣ ,
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φ(k)(x) =
∂kn

∂xn
· · · ∂k3

∂x3

∂k2

∂x2

∂k1

∂x1
φ(x).

These collections of semi-norms in Equation (2) are separating which means that an element
φ ∈ S(Rn) is non-zero if and only if there exists at least one of the semi-norms γm,k satisfying
γm,k(φ) 	= 0. A sequence {φν}∞

ν=1 in S(Rn) tends to φ in S(Rn) if and only if γm,k(φν − φ) → 0 as ν

goes to ∞ for each of the subscripts |m| , |k| = 0, 1, 2, · · · , are as defined above. Now, one can verify
that the function e−(t2

1+t2
2+t3

3+···+t2
n) ∈ S(Rn) and the sequence

ν − 1
ν

e−(t2
1+t2

2+t3
3+···+t2

n) → e−(t2
1+t2

2+t3
3+···+t2

n)

in S(Rn) as ν → ∞. The Dirac delta function δ(t) is defined here by

< δ(t1 − a1, t2 − a2, t3 − a3, · · · , tn − an), φ(t1, t2, t3, · · · , tn) >= φ(a1, a2, a3, · · · , an).

So, we have

< δ(t1, t2, t3, · · · , tn), φ(t1, t2, t3, · · · , tn) >= φ(0, 0, 0, · · · , 0)
(
φ ∈ S(Rn)

)
.

It is easy to check that δ(t1, t2, · · · , tn) is a continuous linear functional on S(Rn). A regular distribution
generated by a locally integrable function is an element of S

′
(Rn).

Our objective now is to find an element ψ ∈ S(Rn), which is a wavelet, so as to be able to define
the wavelet transform of f ∈ S

′
(Rn) with respect to this kernel.

A function ψ ∈ L2(Rn) is a window function if it satisfies the following conditions:

xiψ(x), xixjψ(x), · · · , x1x2x3 · · · xnψ(x) (3)

belonging to L2(Rn). Here, i, j, k, · · · take on all assumed values 1, 2, 3, · · · and all the lower suffixes in
a term in Equation (3) are different. It has been proved by Pandey et al. [4,13] that a window function
which is an element of L2(Rn) belongs to L1(Rn). It is easy to verify that every element of S(Rn) is a
window function.

A window function ψ belonging to L2(Rn) and satisfying the following condition:

∞∫
−∞

ψ(x1, x2, x3, · · · , xi, · · · , xn)dxi = 0 (∀ i = 1, 2, 3, · · · , n) (4)

also satisfies the admissibility condition given by

∫
Rn

∣∣ψ̂(Λ)
∣∣2

|Λ| dΛ < ∞, (5)

where
ψ̂(Λ) = ψ̂(λ1, λ2, λ3, · · · , λn),

|Λ| = |λ1λ2 · · · λn|

and ψ̂(Λ) is the Fourier transform of ψ(x) ≡ ψ(x1, x2, x3, · · · , xn) (see also a recent work [14]). Clearly,
ψ in Equation (4) is a wavelet [13]. As an example, one can easily verify that the function given by

ψ(x) = x1x2 · · · xne−(x2
1+x2

2+x3
3+···+x2

n)

is a wavelet belonging to S(Rn). Let s(Rn) be a subspace of S(Rn) such that every element φ ∈ s(Rn)

satisfies Equation (4). Clearly, every element of s(Rn) is a wavelet [4].
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Now, if f ∈ S′(Rn) and ψ is a wavelet belonging to S(Rn), the wavelet transform of f can be
defined by

Wf (a, b) =

〈
f (x),

1√
|a|

ψ(
x − b

a
)

〉
,

where 〈·, ·〉 denotes the inner product and (a, b) is the argument of wavelet transform Wf (a, b) of f
with respect to wavelet ψ,

ψ

(
x − b

a

)
= ψ

(
x1 − b1

a1
,

x2 − b2

a2
,

x3 − b3

a3
, · · · ,

xn − bn

an

)
(
ai 	= 0 (∀ i = 1, 2, 3, · · · , n)

)
and

|a| = |a1a2a3 · · · an| .

Our objective next is to prove the following inversion formula:〈
1

Cψ

∫
Rn

∫
Rn

Wf (a, b)ψ(
t − b

a
)

db da√
|a|a2

, φ(t)

〉
→ 〈 f , φ〉 , φ ∈ S(Rn) (6)

by interpreting the convergence in S′(Rn). Here, we have

Cψ = (2π)n
∫
Rn

|ψ̂(∧)|2
| ∧ | d ∧ .

The derivation of the inversion formula given by the formula (6) is difficult. We, therefore, make an
easy approach. The work on the multidimensional wavelet transform with positive scale [a > 0] was done
by Daubechies [15], Meyer [16], Pathak [17], and some others. Motivated by the earlier works [6,8,12],
Pandey et al. [4] studied a generalization of these works and extended the multidimensional wavelet
transform with real scale [a 	= 0]. In the year 1995, Holschneider [18] extended the multidimensional
wavelet transform to Schwartz tempered distributions with positive scales [a > 0]. Recently, Weisz [19,20]
studied the inversion formula for the continuous wavelet transform and found its convergence in Lp

and Wiener amalgam spaces. Postnikov et al. [21] studied computational implementation of the inverse
continuous wavelet transform without a requirement of the admissibility condition.

Our objective in this investigation is to extend the wavelet transform to Schwartz tempered
distributions with real scale [a 	= 0]. The standard cut off of negative frequencies (which is required
to apply continuous wavelet transform with a > 0) may result in a loss of information if the
transformed functions were non-symmetric (in the Fourier space) mixture of real and imaginary
frequency components. Our proposed and proven inversion formula is free from the mentioned defect.
The main advantage of our work is a possible further practical utility of the proven result and the
simplicity of calculation; in addition, our extension of the multidimensional wavelet inversion formula
is the most general. In [4], it is proved that a window function ψ(x) ∈ L2(Rn) is a wavelet if and only
if the integral of ψ along each of the axes is zero; therefore, any ψ(x) ∈ s(Rn) is a wavelet. Hence, the
wavelet transform of a constant distribution is zero.

We thus realize that two elements of S′(Rn) having equal wavelet transform will differ by a constant
in general. Holschneider [18] uses the wavelet inversion formula for f ∈ S′(Rn), but he does not mention
the wavelet inversion formula and its convergence in S′(Rn). Perhaps, he takes it for granted, as such an
inversion formula is valid for elements of L2(Rn) by interpreting convergence in L2(Rn) . Our objective
in this paper is to fill up all these gaps. We will prove the inversion Formula (6) in Section 3.

187



Symmetry 2019, 11, 235

2. Structure of Generalized Functions of Slow Growth

Elements of S′(Rn) are called tempered distributions or distributions of slow growth.

Definition 1. A function f (x) is said to be a function of slow growth in Rn if, for m � 0, we have∫
Rn

| f (x)| (1 + |x|)−m dx < ∞

and it determines a regular functional f in S′(Rn) by the formula given by

〈 f , φ〉 =
∫
Rn

f (x)φ(x)dx (φ ∈ S(Rn)). (7)

It is easy to verify that the functional f defined by Equation (7) exists ∀φ ∈ S(Rn) and that it is
linear as well as continuous on S(Rn).

We now quote a theorem of Vladimirov proved in his book [8].

Theorem 1. If f ∈ S′(Rn), then there exists a continuous function g of slow growth in Rn and an integer
m � 0 such that

f (x) = Dm
1 Dm

2 Dm
3 · · · Dm

n g(x),
∂

∂xi
≡ Di (8)

or, equivalently,

f (x) = Dmg(x) (D := D1D2D3 · · · Dn). (9)

The n-dimensional wavelet inversion formula for tempered distributions will now be proved very
simply by using the structure Formula (9). This structure formula enables us to reduce the wavelet
analysis problem relating to tempered distributions to the classical wavelet analysis problem of L2(Rn)

functions. Our wavelet inversion formula of L2(Rn) functions will be used quite successfully in order
to derive the wavelet inversion formula for the wavelet transform of tempered distributions.

3. Wavelet Transform of Tempered Distributions in Rn and Its Inversion

Henceforth, we assume that a 	= 0 implies each of the components ai 	= 0 for all i = 1, 2, 3, · · · , n
and that a > 0 means each of the component ai of a is greater than zero. Moreover, |a| > ε will mean
that |ai| > ε for all i = 1, 2, 3, · · · , n.

Let ψ(x) = ψ(x1, x2, · · · , xn) ∈ S(Rn). Then ψ(x) is a window function and is a wavelet if and
only if

∞∫
−∞

ψ(x1, x2, · · · , xi, · · · , xn)dxi = 0 (∀ i = 1, 2, · · · , n). (10)

We define ψ
(

x−b
a

)
≡ ψ

(
x1−b1

a1
, x2−b2

a2
, · · · , xn−bn

an

)
, where ai, bi are real numbers and none of the

ai is zero. The wavelet transform Wf (a, b) of f with respect to the kernel 1√
|a|

ψ
(

x−b
a

)
is defined by

Wf (a, b) =

〈
f (x),

1√
|a|

ψ

(
x − b

a

)〉
. (11)

Here, we assume that

|a| = |a1a2a3 · · · an|
(
ai 	= 0 (i = 1, 2, 3, · · · , n)

)
.
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We now prove the following lemmas which will be used to prove the main inversion formula.

Lemma 1. (see [13]) Let φ ∈ S(Rn) and ψ be a wavelet belonging to S(Rn).

1
Cψ

∫
a∈Rn

∫
b∈Rn

∫
t∈Rn

(−Dt)
m φ(t)ψ̄

(
t−b

a

)
ψ
(

x0−b
a

)
dt db da

a2|a|

= (−Dx)
m φ(x)|x=x0 (∀ x0 ∈ Rn).

This is called pointwise convergence of the wavelet inversion formula.

Lemma 2. Let φ ∈ S (Rn) and let ψ be a wavelet belonging to S (Rn). Then

1
Cψ

∫
a∈Rn

∫
b∈Rn

∫
t∈Rn

(−Dt)
m φ(t)ψ̄

(
t − b

a

)
ψ

(
x − b

a

)
dt db da

a2|a|

converges to (−Dm
x ) φ(x) uniformly for all x ∈ Rn.

Proof. Let
F(∧) = 1

(2π)
n
2

∫
Rn

(−Dt)
m φ(t) e−i ∧.t dt

be the Fourier transform of (−Dt)
m φ(t). It follows that, in the sense of L2(Rn) convergence [17],

1
Cψ

∫
a∈Rn

∫
b∈Rn

∫
c∈Rn

(−Dt)
m φ(t)ψ̄

(
t − b

a

)
ψ

(
x − b

a

)
dt db da

a2|a|

=
1

(2π)
n
2

∫
Rn

F(∧)ei∧.xd∧ = (−Dx)
m φ(x).

This convergence is also uniform by a Weierstrass M-test because∣∣∣∣∣∣ 1

(2π)
n
2

∫
Rn

F(∧) ei∧.x d∧

∣∣∣∣∣∣ � 1

(2π)
n
2

∫
Rn

|F(∧)|d∧ < ∞

and
F(∧) ∈ S(Rn).

Theorem 2. Let f ∈ S′(Rn) and Wf (a, b) be its wavelet transform defined by

Wf (a, b) =

〈
f (x),

1√
|a|

ψ

(
x − b

a

)〉
.

Then the inversion formula of the wavelet transform Wf (a, b) is given by〈
1

Cψ

∫
Rn

∫
Rn

Wf (a, b)ψ
(

t − b
a

)
db da√
|a|a2

, φ(t)

〉
= 〈 f , φ〉 (12)

(
∀ φ ∈ S(Rn)

)
,

where the equality holds true almost everywhere.
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Proof. Using the structure formula (9) for f , we find by distributional differentiation that

Wf (a, b) =

〈
Dm

x g(x), 1√
|a|

ψ
(

x−b
a

)〉
=

〈
g(x), (−Dx)

m 1√
|a|

ψ
(

x−b
a

)〉
.

Here, we have

(−Dx) = (−Dx1) (−Dx2) (−Dx3) · · · (−Dxn) Dxi ≡ ∂

∂xi
(i = 1, 2, 3, · · · , n).

We thus obtain

Wf (a, b) =

〈
g(x), (Db)

m 1√
|a|

ψ
(

x−b
a

)〉
Db =

(
∂

∂b1
∂

∂b2
∂

∂b3
· · · ∂

∂bn

)
.

The expression on the left-hand side in (12) can be written as follows:

Ω :=
1

Cψ

∫
t∈Rn

∫
a∈Rn

∫
b∈Rn

∫
x∈Rn

g(x)Dm
b

1√
|a|

ψ̄

(
x − b

a

)
ψ

(
t − b

a

)
φ̄(t)dx db da dt

=
1

Cψ

∫
t∈Rn

∫
a∈Rn

∫
x∈Rn

g(x)

⎡⎣ ∫
b∈Rn

{
Dm

b ψ̄

(
x − b

a

)}
ψ

(
t − b

a

)
db

⎤⎦ φ̄(t) dx da dt
a2|a| . (13)

We now evaluate the integral in the big bracket by parts to find from Equation (13) that

Ω =
1

Cψ

∫
t∈Rn

∫
a∈Rn

∫
x∈Rn

g(x)

⎡⎣ ∫
b∈Rn

ψ̄

(
x − b

a

)
(−Db)

m ψ

(
t − b

a

)
db

⎤⎦ φ̄(t) dx da dt
a2|a|

=
1

Cψ

∫
t∈Rn

∫
a∈Rn

∫
x∈Rn

g(x)

⎡⎣ ∫
b∈Rn

ψ̄

(
x − b

a

)
(+Dt)

m ψ

(
t − b

a

)
db

⎤⎦ φ̄(t) dx da dt
a2|a| ,

which, upon inverting the order of integration with respect to a and t, yields

Ω =
1

Cψ

∫
a∈Rn

∫
t∈Rn

∫
b∈Rn

∫
x∈Rn

g(x)ψ̄
(

x − b
a

)
dx Dm

t ψ

(
t − b

a

)
dbφ̄(t)

dt da
|a|2|a|

=
1

Cψ

∫
a∈Rn

∫
b∈Rn

∫
x∈Rn

g(x)ψ̄
(

x − b
a

)
dx

∫
t∈Rn

ψ

(
t − b

a

)
db (−Dt)

m φ̄(t)
dt da
|a|2|a| . (14)

In order to justify the inversion of the order of integration with respect to a and t, we first perform
the integration in the region [(a, t) : |a| > ε, a, t ∈ Rn], invert the order of integration and then let
ε → 0. This existence of the triple integral in terms of b, a and t in Equation (14) is proved by using the
Plancherel theorem with respect to the variable b. Thus, by using

Cψ = (2π)n
∫
Rn

∣∣ψ̂(∧)∣∣2
|∧| d∧,

we notice that the variable a disappears from the denominator and every calculation goes on smoothly.
Since the functions φ and ψ are elements of S(Rn), the Fubini’s theorem can be applied in order to
justify the above interchanges of the order of integration.
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Now, Equation (14) can be written as follows:〈
g(x),

1
Cψ

∫
a∈Rn

∫
b∈Rn

∫
t∈Rn

(−Dt)
m φ(t)ψ̄

(
t − b

a

)
dt ψ

(
x − b

a

)
db da
|a|2|a|

〉
(15)

=
〈

g(x), (−Dx)
m φ(x)

〉
, (16)

by means of the wavelet inversion formula in Rn [4] and Lemma 2.
We note that the triple integral in Equation (15) converges uniformly to (−Dx)

m φ(x)∀ x ∈ Rn.
Thus, Equation (15) becomes Equation (16):〈

g(x), (−Dx)
m φ(x)

〉
=
〈
(Dx)

m g(x), φ(x)
〉

= 〈 f (x), φ(x)〉 .

4. Conclusions

In our present investigation, we have introduced and studied a continuous wavelet transform
of a Schwartz tempered distribution f ∈ S

′
(Rn) with the wavelet kernel ψ ∈ S(Rn). We have

successfully derived the corresponding wavelet inversion formula by interpreting convergence in the
weak topology of S

′
(Rn).

We have found that the wavelet transform of a constant distribution is zero and also that our
wavelet inversion formula is not true for constant distribution, but it is true for a non-constant
distribution which is not equal to the sum of a non-constant distribution with a non-zero constant
distribution. Our results and findings are stated and proved as Lemmas and Theorems.
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Abstract: In this paper, we define the (p, q)-variant of Szász–Kantorovich operators via Dunkl-type
generalization generated by an exponential function and study the Korovkin-type results. We also
obtain the convergence of our operators in weighted space by the modulus of continuity, Lipschitz
class, and Peetre’s K-functionals. The extra parameter p provides more flexibility in approximation
and plays an important role in symmetrizing these newly-defined operators.

Keywords: (p, q)-integers; Dunkl analogue; generating functions; generalization of exponential
function; Szász operator; modulus of continuity

1. Introduction and Preliminaries

Bernstein [1] and q-Bernstein ([2,3]) operators have become very important tools in the study of
approximation theory and several branches of applied sciences and engineering. For [r]p,q = pr−qr

p−q ,
r = 0, 1, 2, · · · , 0 < q < p � 1, the (p, q)-Bernstein operators were introduced by Mursaleen et al. [4]:

Bp,q
r (g; y) =

1

p
r(r−1)

2

r

∑
m=0

[
r
m

]
p,q

p
m(m−1)

2 yk
r−m−1

∏
s=0

(ps − qsy)g
(

[m]p,q

pm−r[r]p,q

)
, y ∈ [0, 1], (1)

where [r]p,q denotes the (p, q)-integer.
The (p, q)-analogues of exponential functions are defined in two forms as follows:

ep,q
r (y) =

∞

∑
r=0

p
r(r−1)

2
yr

[r]p,q!
, Ep,q

r (y) =
∞

∑
r=0

q
r(r−1)

2
yr

[r]p,q!
,

with the property that ep,q
r (y)Ep,q

r (−y) = 1. In the case of p = 1, ep,q
r (y) and Ep,q

r (y) reduce to
q-analogues of exponential functions.

The Dunkl-type generalization of Szász operators [5] was introduced by Sucu [6] and the
q-analogue by Ben Cheikh et al. [7]. Içöz [8] introduced the q-Dunkl analogue of Szász operators
defined by:

Dq
η(g; y) =

1
eq

η([r]qy)

∞

∑
m=0

([r]qy)m

γ
q
η(m)

g
(

1 − q2ηθm+m

1 − qr

)
(2)

where η > − 1
2 , y � 0, 0 < q < 1, g ∈ C[0, ∞) and C[0, ∞) is the set of all continuous functions defined

on [0, ∞).
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The (p, q)- and q-Dunkl analogues have been studied by several authors (see [9–24]). For the most
recent work on (p, q)-approximation, we refer to [25–27]. Recently. Alotaibi et al. [28] generalized the
q-Dunkl analogue of Szász operators via (pq)-calculus as follows:

Dp,q
η (g; y) =

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p
m(m−1)

2 g
(

p2ηθm+m − q2ηθm+m

pm−1(pr − qr)

)
(3)

where for q ∈ (0, 1), p ∈ (q, 1], and η > − 1
2 , the (p, q)-Dunkl analogue of exponential functions is

defined by:

ep,q
η =

∞

∑
r=0

p
r(r−1)

2
yr

γ
p,q
η (r)

, y ∈ [0, ∞) (4)

γ
p,q
η (r) =

∏
[ r+1

2 ]−1
i=0 p2η(−1)i+1+1 ((p2)i p2η+1 − (q2)iq2η+1)∏

[ r
2 ]−1

j=0 p2η(−1)j+1 ((p2)j p2 − (q2)jq2)
(p − q)r , (5)

γ
p,q
η (r + 1) =

p2η(−1)r+1+1(p2ηθr+1+r+1 − q2ηθr+1+r+1)

(p − q)
γ

p,q
η (r), (6)

θr =

{
0 for r = 2�, � = 1, 2, · · · , n
1 for r = 2�+ 1, � = 1, 2, · · · , n.

(7)

and [ r
2 ] denotes the greatest integer function; also, we have:

(α − β)r
p,q =

⎧⎨⎩∏r−1
j=0(pjα − qjβ) if r = 1, 2, · · · , n

1 if r = 0.

Lemma 1. For g(t) = 1, t, t2

1∗. Dp,q
η (1; y) = 1;

2∗. Dp,q
η (t; y) = y;

3∗. y2 + q2η

[r]p,q
[1 − 2η]p,q

ep,q
η (

q
p [r]p,qy)

ep,q
η ([r]p,qy)

y � Dp,q
η (t2; y) � y2 + 1

[r]p,q
[1 + 2η]p,qy.

2. New Operators and Estimations of Moments

In this section, we construct the (p, q)-variant of Szász–Kantorovich operators via Dunkl-type
generalization as follows.

Definition 1. For any y ∈ [0, ∞), g ∈ C[0, ∞) r ∈ N and 0 < q < p � 1, we define:

Kp,q
η (g; y) =

[r]p,q

ep,q
η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p−(m+2ηθm)p
m(m−1)

2

∫ qA+B

qA
g
(

t
qpm−1

)
dp,qt. (8)

We use the following relation:

[m + 1 + 2ηθm]p,q = q[m + 2ηθm]p,q + pm+2ηθm , (9)

A =
[m + 2ηθm]p,q

[r]p,q
, B =

pm+2ηθm

[r]p,q
(10)

where the parameter η � 0.
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To show the uniform convergence of operators Kp,q
η ( · ; · ), we take q = qr, p = pr with 0 < qr < 1

and qr < pr � 1 such that:

lim
r→∞

pr → 1, lim
r→∞

qr → 1, lim
r→∞

pr
r → u, lim

r→∞
qr

r → v, (0 < u, v � 1). (11)

For p = 1, these operators reduce to the operators defined in [29]. For η = 0, these are reduced to
the (p, q)-variant of Kantorovich-type operators defined by [30].

Lemma 2. Let g(t) = gi such that gi = ti−1 for i = 1, 2, 3. Then, we have:
(1) Kp,q

η (g1; y) = 1

(2) Kp,q
η (g2; y) � 2

[2]p,q
y +

1
[2]p,qq[r]p,q

(3) Kp,q
η (g3; y) � 3

[3]p,q
y2 +

3
[3]p,q[r]p,q

(
[1 + 2η]p,q +

1
q[r]p,q

)
y +

1
[3]p,qq2[r]2p,q

.

Proof. Using (9) and (10), we get:

∫ qA+B

qA
f
(

t
qpk−1

)
dp,qt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

B for g(t) = g1

B
[2]p,q pm−1q (2qA+ B) for g(t) = g2

B
[3]p,q p2(m−1)q2

(
3q2A2 + 3qAB + B2) for g(t) = g3

(12)

If we take g(t) = g1, then from (12), we have:

Kp,q
η (g1; y) =

[r]p,q

ep,q
η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p−(m+2ηθm)p
m(m−1)

2

∫ qA+B

qA
dp,qt

= 1.

For g(t) = g2, (12) implies:

Kp,q
η (g2; y) =

1
[2]p,qq[r]p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p−(m+2ηθm)p
m(m−1)

2

× p1+2ηθm
(

2q[m + 2ηθm]p,q + pm+2ηθm
)

=
2

[2]p,q[r]p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p
(m−1)(m−2)

2 [m + 2ηθm]p,q

+
1

[2]p,qq[r]p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p1+2ηθm

=
2

[2]p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p
m(m−1)

2

(
pm+2ηθm − qm+2ηθm

pm−1(pr − qr)

)
+

1
[2]p,qq[r]p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p1+2ηθm .

Separating into even and odd terms, we get:

Kp,q
η (g2; y) =

2
[2]p,q

y +
p

[2]p,qq[r]p,q
for r = 0, 2, 4, · · ·

Kp,q
η (g2; y) =

2
[2]p,q

y +
p1+2η

[2]p,qq[r]p,q
for r = 1, 3, 5, · · · .
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Since 0 < q < p � 1, η � 0, and p1+2η � 1, we have:

Kp,q
η (g2; y) � 2

[2]p,q
y +

1
q[2]p,q[r]p,q

.

Similarly for g(t) = g3, we have:

Kp,q
η (g3; y) =

3
[3]p,q[r]3p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p
m(m−1)

2 −2(m−1)[m + 2ηθm]
2
p,q

+
3

[3]p,qq[r]3p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

pm+2ηθm p
m(m−1)

2 −2(m−1)[m + 2ηθm]p,q

+
1

[3]p,qq2[r]2p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p2(m+2ηθm)p
m(m−1)

2 −2(m−1)

=
3

[3]p,q[r]2p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p
m(m−1)

2

(
pm+2ηθm − qm+2ηθm

pm−1(pr − qr)

)2

+
3

[3]p,qq[r]2p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p
m(m−1)

2

(
pm+2ηθm − qm+2ηθm

pm−1(pr − qr)

)
+

1
[3]p,qq2[r]2p,q

1
ep,q

η ([r]p,qy)

∞

∑
m=0

([r]p,qy)m

γ
p,q
η (m)

p
m(m−1)

2 p2(1+2ηθm).

Hence, for m = 0, 2, 4, · · · , we have:

Kp,q
η (g3; y) � 3

[3]p,q
y2 +

3
[3]p,q[r]p,q

(
[1 + 2η]p,q +

p
q[r]p,q

)
y +

p2

q2[3]p,q[r]2p,q
,

and for m = 1, 3, 5, · · · ,

Kp,q
η (g3; y) � 3

[3]p,q
y2 +

3
[3]p,q[r]p,q

(
[1 + 2η]p,q +

p
q[r]p,q

)
y +

p2

[3]p,qq2[r]2p,q
.

Therefore,

Kp,q
η (g3; y) � 3

[3]p,q
y2 +

3
[3]p,q[r]p,q

(
[1 + 2η]p,q +

1
q[r]p,q

)
y +

1
[3]p,qq2[r]2p,q

.

This completes the proof of Lemma 2.

Lemma 3. Let χi = (t − y)i for i = 1, 2. Then, we have:

Kp,q
η (χi; y) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2

[2]p,q
− 1

)
y +

1
[2]p,qq[r]p,q

for i = 1

(
3

[3]p,q
+ 1 − 4

[2]p,q

)
y2

+
1

q[r]p,q

(
3

[3]p,q

(
1

[r]p,q
+ q[1 + 2η]p,q

)
− 2

[2]p,q

)
y

+
1

[3]p,qq2[r]2p,q
for i = 2.

(13)
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3. Main Results

In this section, we study the Korovkin-type approximation theorems for positive linear operators
Kp,q

η ( · ; · ) defined by (8). We denote the set of all bounded and continuous functions by CB[0, ∞)

equipped with norm ‖ g ‖CB= supy∈[0,∞) | g(y) |. We write:

E := {g(y) : y ∈ [0, ∞),
g(y)

1 + y2 is convergent as y → ∞}.

Let:
Bσ[0, ∞) =

{
g : |g(y)| � Mgσ(y)

}
,

Cσ[0, ∞) = {g : g ∈ Bσ[0, ∞) ∩ C[0, ∞)} ,

Ck
σ[0, ∞) =

{
g : g ∈ Cσ[0, ∞) and lim

y→∞

g(y)
σ(y)

= k
}

,

where σ(y) is the weight function given by σ(y) = 1 + y2, k is a constant, and Mg depends on g.

Cσ[0, ∞) is equipped with the norm ||g||σ = supy∈[0,∞)
|g(y)|
σ(y) .

Theorem 1. Let qr, pr be the real numbers, with qr ∈ (0, 1) and pr ∈ (qr, 1] for every integer r, satisfying
(qr) → 1 and (pr) → 1 as r → ∞. Then, for every g ∈ C[0, ∞) ∩ E,

lim
r→∞

Kpr ,qr
η (g; y) = g(y)

uniformly on each compact subset of [0, ∞).

Proof. For the proof of the uniform convergence of the operators Kpr,qr
η on each compact subset of [0, ∞),

we apply the well-known Korovkin theorem [31]. It is sufficient to show that limr→∞ Kpr,qr
η

(
gi; y

)
= yi−1,

where gi = ti−1 for i = 1, 2, 3.
Clearly, if qr → 1, pr → 1 as r → ∞, then 1

[r]pr ,qr
→ 0, r

[r]pr ,qr
→ 1. This yields that:

lim
r→∞

Kpr ,qr
η (g1; y) = 1, lim

r→∞
Kpr ,qr

η (g2; y) = y, lim
r→∞

Kpr ,qr
η (g3; y) = y2.

Theorem 2. Let qr, pr be the real numbers, with qr ∈ (0, 1) and pr ∈ (qr, 1] for every integer r, satisfying
(qr) → 1 and (pr) → 1 as r → ∞. Then, for every g ∈ Ck

σ[0, ∞), we have:

lim
r→∞

∣∣∣∣∣∣Kpr ,qr
η (g; y)− g

∣∣∣∣∣∣
σ
= 0. (14)

Proof. Suppose g(t) ∈ Ck
σ[0, ∞) and g(t) = gτ , where gτ = tτ−1 for τ = 1, 2, 3. Then, from the

well-known Korovkin theorem, we have Kpr ,qr
η (gτ ; y) → yτ−1 (r → ∞) uniformly for each τ = 1, 2, 3.

Hence, from Lemma 2, we have:

lim
r→∞

∣∣∣∣∣∣Kpr ,qr
η (g1; y)− 1

∣∣∣∣∣∣
σ
= 0. (15)
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For τ = 2, ∣∣∣∣∣∣Kpr ,qr
η (g2; y)− y

∣∣∣∣∣∣
σ

= sup
y�0

∣∣∣Kpr ,qr
η (g2; y)− y

∣∣∣
1 + y2

�
(

2
[2]pr ,qr

− 1
)

sup
y�0

y
1 + y

+
1

qr[2]pr ,qr [r]pr ,qr

sup
y�0

1
1 + y

.

Then:
lim
r→∞

∣∣∣∣∣∣Kpr ,qr
η (g2; y)− y

∣∣∣∣∣∣
σ
= 0. (16)

Similarly, if we take τ = 3,

∣∣∣∣∣∣Kpr ,qr
η (g3; y)− y2

∣∣∣∣∣∣
σ

= sup
y�0

∣∣∣Kpr ,qr
η (g3; y)− y2

∣∣∣
1 + y2

�
(

3
[3]pr ,qr

− 1
)

sup
y�0

y2

1 + y2

+
3

[3]pr ,qr [r]pr ,qr

(
[1 + 2η]pr ,qr +

1
qr[r]pr ,qr

)
sup
y�0

y
1 + y2

+
1

[3]pr ,qr q2
r [r]2pr ,qr

sup
y�0

1
1 + y2 ,

lim
r→∞

∣∣∣∣∣∣Kpr ,qr
η (g3; y)− y2

∣∣∣∣∣∣
σ
= 0. (17)

This completes the proof.

The modulus of continuity ωb(g; δ) of the function g ∈ C̃[0, ∞) is defined by:

ωb(g; δ) = sup
|t−y|≤δ;

sup
y,t∈[0,b]

| g(t)− g(y) | (18)

where C̃[0, ∞) denotes the space of uniformly-continuous functions on [0, ∞). It is obvious that
limδ→0+ ωb(g; δ) = 0 and for g ∈ C[0, ∞):

| g(t)− g(y) |≤
( | t − y |

δ
+ 1

)
ωb(g; δ). (19)

Theorem 3. Let qr, pr be the real numbers, with qr ∈ (0, 1) and pr ∈ (qr, 1] for every integer r, satisfying
(qr) → 1 and (pr) → 1 as r → ∞. Then, for every g ∈ Cσ[0, ∞):∣∣∣Kpr ,qr

η (g; y)− g(y)
∣∣∣ � 2

(
ωb+1(g; δη(y)) +Mg(1 + b2)

(
δη(y)

)2
)

,

where δη(y) =
√

Kpr ,qr
η

(
χ2; y

)
, Mg is a constant depending only on g and Kpr ,qr

η

(
χ2; y

)
is defined by Lemma 3;

and [0, b + 1] ⊂ [0, ∞), b > 0.

Proof. Let y ∈ [0, b] and t > b + 1, with t > 0. Then, for δ > 0, we have:
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| g(t)− g(y) |� ωb+1(g; | t − y |) �
(

1 +
| t − y |

δ

)
ωb+1(g; δ). (20)

By applying the Cauchy–Schwarz inequality and the linearity of Kpr ,qr
η :

Kpr ,qr
r,η |g(t)− g(y); y| �

((
1 +

1
δ
Kpr ,qr

η

(
(t − y)2; y

)) 1
2
)

ωb+1(g; δ). (21)

For t − y > 1, we have:

|g(t)− g(y)|
� Mg

(
2 + y2 + t2

)
� Mg

(
2 + 3y2 + 2(t − y)2

)
� 2Mg(1 + b2)(t − y)2

Kpr ,qr
η (|g(t)− g(y)| ; ) � 2Mg(1 + b2)Kpr ,qr

η

(
(t − y)2; y

)
. (22)

From (21) and (22), we easily see that:∣∣∣Kpr ,qr
η (g; y)− g(y)

∣∣∣
� Kpr ,qr

η |g(t)− g(y); y|

�
((

1 +
1
δ
Kpr ,qr

η

(
(t − y)2; y

)) 1
2
)

ωb+1(g; δ)

+ 2Mg(1 + b2)Kpr ,qr
η

(
(t − y)2; y

)
=

(
1 +

1
δ
Kpr ,qr

η

(
χ2; y

)) 1
2

ωb+1(g; δ)

+ 2Mg(1 + b2)Kpr ,qr
η

(
χ2; y

)
If we choose δ = δη(y) =

√
Kpr ,qr

η

(
χ2; y

)
, then we get our result.

For any g ∈ C[0, ∞], L > 0, 0 < ν ≤ 1 and γ1, γ2 ∈ [0, ∞), we recall that:

LipL(ν) = {g :| g(γ1)− g(γ2) |≤ L | γ1 − γ2 |ν} . (23)

Theorem 4. Let qr, pr be the real numbers, with qr ∈ (0, 1) and pr ∈ (qr, 1] for every integer r, satisfying
(qr) → 1 and (pr) → 1 as r → ∞. Then, for each g ∈ LipL(ν), we have:∣∣∣Kpr ,qr

η (g; y)− g(y)
∣∣∣ � L

(
δη(y)

)ν ,

where δη(y) is defied by Theorem 3.
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Proof. Using Theorem 4, (23), and the well-known Hölder’s inequality, we get:∣∣∣Kpr ,qr
η (g; y)− g(y)

∣∣∣ �
∣∣∣Kpr ,qr

r,η (g(t)− g(y); y)
∣∣∣

� Kpr ,qr
η (|g(t)− g(y)| ; y)

� | LKpr ,qr
η

(
|t − y|ν ; y

)
� L

(
Kpr ,qr

η (g1; y)
) 2−ν

2
(
Kpr ,qr

η (|t − y|2 ; y)
) ν

2

= L
(
Kpr ,qr

η (χ2; y)
) ν

2 .

This completes the proof of the theorem.

We denote:
C2

B[0, ∞) =
{

ψ : ψ ∈ CB[0, ∞) and ψ′, ψ′′ ∈ CB[0, ∞)
}

, (24)

||ψ||C2
B(R

+) = ||ψ||CB [0,∞) +
∣∣∣∣ψ′∣∣∣∣

CB [0,∞) +
∣∣∣∣ψ′′∣∣∣∣

CB [0,∞) , (25)

||ψ||CB [0,∞) = sup
y∈[0,∞)

|ψ(y)|. (26)

Theorem 5. Let qr, pr be the real numbers, with qr ∈ (0, 1) and pr ∈ (qr, 1] for every integer r, satisfying
(qr) → 1 and (pr) → 1 as r → ∞. Then:∣∣∣Kpr ,qr

η (ψ; y)− ψ(y)
∣∣∣ � Υη(y)||ψ||C2

B [0,∞), (27)

where Υη(y) = δn(y)
(

1 + δη(y)
2

)
and δη(y) is defined by Theorem 3.

Proof. From the Taylor series expansion for any ψ ∈ C2
B[0, ∞), we have:

ψ(t) = ψ(y) + ψ′(y)(t − y) + ψ′′(ϕ)
(t − y)2

2
for ϕ ∈ (y, t),

|ψ(t)− ψ(y)| � P | t − y | +1
2
Q(t − y)2,

where:
P = sup

y[0,∞)

∣∣ψ′(y)
∣∣ = ||ψ′||CB [0,∞) � ||ψ||C2

B [0,∞),

Q = sup
y[0,∞)

∣∣ψ′′(y)
∣∣ = ||ψ′′||CB [0,∞) � ||ψ||C2

B [0,∞).

Therefore,

|ψ(t)− ψ(y)| �
(
| t − y | +1

2
(t − y)2

)
||ψ||C2

B [0,∞).
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By applying the linearity of Kpr ,qr
η , we get:∣∣∣Kpr ,qr

η (ψ; y)− ψ(y)
∣∣∣

�
(
Kpr ,qr

η (| t − y |; y) +
1
2
Kpr ,qr

η

(
(t − y)2; y

))
||ψ||C2

B [0,∞)

�
((

Kpr ,qr
η (χ2; y)

) 1
2

+
1
2
Kpr ,qr

η

(
χ2; y

))
||ψ||C2

B [0,∞)

=

(
δη(y) +

(
δη(y)

)2

2

)
||ψ||C2

B [0,∞).

This completes the proof of the theorem.

Peetre’s K-functional K2(g; δ) for δ > 0 (see [32]) is defined by:

K2(g; δ) = inf
y∈[0,∞)

{(
δ
∣∣∣∣∣∣ψ′′ + ||g − ψ||CB [0,∞)

∣∣∣∣∣∣
CB [0,∞)

)}
(28)

for all ψ ∈ C2
B[0, ∞).

For a given positive constant L > 0:

K2(g; δ) � Lω2(g; δ
1
2 ),

where the second-order modulus of continuity denoted by ω2(g; δ) is defined as:

ω2(g; δ) = sup
0<h<δ

, sup
y∈[0,∞)

|g(y) + g(y + 2h)− 2g(y + h)|. (29)

Theorem 6. Let qr, pr be the real numbers, with qr ∈ (0, 1) and pr ∈ (qr, 1] for every integer r, satisfying
(qr) → 1 and (pr) → 1 as r → ∞. Then, for all g ∈ CB[0, ∞), we have:∣∣∣Kpr ,qr

η (g; y)− g(y)
∣∣∣

� 2A
{

ω2

⎛⎝g;

√
Υη(y)

2

⎞⎠+ min
(

1;
Υη(y)

2

)
||g||CB [0,∞)

}
,

where A is a positive constant and Υη(y) is given in Theorem 5.

Proof. We take ψ ∈ C2
B[0, ∞) and apply Theorem (5). Thus:∣∣∣Kpr ,qr

η (g; y)− g(y)
∣∣∣ � ∣∣∣Kpr ,qr

η (g − ψ; y)
∣∣∣+ ∣∣∣Kpr ,qr

η (ψ; y)− ψ(y)
∣∣∣+ |g(y)− ψ(y)|

� 2||g − ψ||CB [0,∞) + Υη(y)||ψ||C2
B [0,∞)

= 2
(
||g − ψ||CB [0,∞) +

Υη(y)
2

||ψ||C2
B [0,∞)

)
.

By taking the infimum over all ψ ∈ C2
B[0, ∞) and using (28), we get:

∣∣∣Kpr ,qr
η (g; y)− g(y)

∣∣∣ � 2K2

(
g;

Υη(y)
2

)
.
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Now, from [33] for all g ∈ CB[0, ∞), we have the relation:

K2(g; δ) � A{min(1; δ) + ω2(g;
√

δ)||g||CB [0,∞)},

where A > 0 is an absolute constant. If we choose δ =
Υη(y)

2 , then we get the desired result.

4. Conclusions

In this paper, we have studied the approximation results via Dunkl generalization of the
Szász–Kantorovich operators in (p, q)-calculus. These types of modifications enable us to generalize
error estimation rather than the classical and q-calculus on the interval [0, ∞) obtained in [29]. We have
also proven the Korovkin-type results and obtained the convergence of our operators in weighted
space by the modulus of continuity, Lipschitz class, and Peetre’s K-functionals. We have a more
generalized version of the operators [29,30], and if we take η = 0 in (8), then the operators Kp,q

η reduce
to the operators defined by [30].
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2. Lupaş, A. A q-analogue of the Bernstein operator. Univ. Cluj-Napoca Semin. Numer. Stat. Calculus 1987,
9, 85–92.

3. Phillips, G.M. Bernstein polynomials based on the q- integers. The heritage of P.L. Chebyshev, A Festschrift
in honor of the 70th-birthday of Professor T. J. Rivlin. Ann. Numer. Math. 1997, 4, 511–518.

4. Mursaleen, M.; Ansari, K.J.; Khan, A. On (p; q)-analogue of Bernstein operators. Appl. Math. Comput. 2015,
266, 874–882. [CrossRef]

5. Szász, O. Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 1950,
45, 239–245. [CrossRef]

6. Sucu, S. Dunkl analogue of Szász operators. Appl. Math. Comput. 2014, 244, 42–48. [CrossRef]
7. Cheikh, B.; Gaied, Y.; Zaghouani, M. A q-Dunkl-classical q-Hermite type polynomials. Georgian Math. J. 2014,

21, 125–137.
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1. Introduction

Let A be a class of analytic functions f in the open unit disk D := {z ∈ C : |z| < 1} and normalized
by the conditions f (0) = 0 and f ′(0) = 1. Suppose S is a subclass of A consisting of univalent
functions. An analytic function f is subordinate to g, written as f ≺ g, if there exists an analytic
function w : D → D with |w(z)| ≤ |z| such that f (z) = g(w(z)) (z ∈ D). Moreover, if g is univalent in
D, then the equivalent conditions for subordination can be written as f (0) = g(0) and f (D) ⊆ g(D).
By imposing some geometric and analytic conditions over the functions in the class S , many authors
considered several subclasses of S . Various subclasses of starlike and convex functions were studied in
the literature, and they can be unified by considering an analytic univalent function ϕ with a positive
real part in D, symmetric about the real axis and starlike with respect to ϕ(0) = 1, and ϕ′(0) > 0.
Ma and Minda [1] studied the class

S∗(ϕ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ ϕ(z)

}
.

The class S∗(ϕ) for various choice of the domain ϕ(D) was considered in recent years. The class
S∗[A, B] := S∗((1+ Az)/(1+ Bz))(−1 ≤ B < A ≤ 1) was introduced by Janowski [2]. For 0 ≤ α ≤ 1,
the class S∗(α) := S∗[1 − 2α, −1] is the class of starlike functions of order α. Uralegaddi et al. [3]
defined the class

M(β) :=
{

f ∈ A : Re
(

z f ′(z)
f (z)

)
< β (β > 1)

}
= S∗

(
1 + (1 − 2β)z

1 − z

)
.

Several authors considered various special cases of the class of Janowski starlike functions
by considering some specific functions, namely ϕq(z) := z +

√
1 + z2, ϕ0(z) := 1 +

Symmetry 2019, 11, 219; doi:10.3390/sym11020219 www.mdpi.com/journal/symmetry204
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(z/k)((k + z)/(k − z)) (k =
√

2 + 1) , ϕs(z) := 1 + sin z, and Gα(z) := 1 + z/(1 − αz2). Some of
those classes are: S∗

L := S∗(
√

1 + z) [4], S∗
q := S∗(ϕq(z)) [5], S∗

e = S∗(ez) [6], S∗
R = S∗(ϕ0) [7],

S∗
s = S∗(ϕs) [8]) , BS∗(α) := S∗(Gα(z)), 0 ≤ α < 1 [9,10]. For a brief survey on these classes, readers

may refer to [11,12].
It should be noted that the special cases of ϕ, mentioned above, are univalent in the unit disk.

In 2011, Dziok et al. [13,14] considered ϕ to be a non-univalent function associated with the Fibonacci
numbers, defined by

p̃(z) := ϕ(z) =
1 + τ2z2

1 − τz − τ2z2 , τ :=
(

1 −
√

5
)

/2

which maps the unit disk D on to a shell-like domain in the right-half plane. Further, they defined the
class S∗

F := { f ∈ A : z f ′(z)/ f (z) ≺ p̃(z)}. The functions f ∈ S∗
F are starlike of order

√
5/10.

Motivated by the above defined classes, we consider a function associated with the Bell Numbers.
For a fixed non-negative integer n, the Bell numbers Bn count the possible disjoint partitions of a set
with n elements into non-empty subsets or, equivalently, the number of equivalence relations on it.
The Bell numbers Bn satisfy a recurrence relation involving binomial coefficients Bn+1 = ∑n

k=0 (
n
k)Bk.

Clearly B0 = B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, and B6 = 203. For more details, see [15–21].
Kumar et al. [22] considered the function

Q(z) := eez−1 =
∞

∑
n=0

Bn
zn

n!
= 1 + z + z2 +

5
6

z3 +
5
8

z4 + · · · (z ∈ D)

which is starlike with respect to 1 and it’s coefficients generate the Bell numbers. Kumar et al. [22]
defined the class S∗

B by S∗
B := S∗(Q). From [1], note that the function f ∈ S∗

B if and only if there exists
an analytic function q, satisfying q(z) ≺ Q(z) (z ∈ D), such that

f (z) = I(q(z)) = z exp
(∫ z

0

q(t)− 1
t

dt
)

.

The above representation shows that the functions in the class S∗
B can be seen as an integral

transform I(q(z)) of the function q with f (0) = 0 and f ′(0) = 1. The reader may refer to the paper [23]
and the references cited therein for integral transform related works. The authors in [22] determined
sharp coefficient bounds on the six initial coefficients, Hankel determinant, and on the first three
consecutive higher order Schwarzian derivatives for functions in the class S∗

B.
Let P be the class of analytic functions p : D → C with p(0) = 1 and Re p(z) > 0 (z ∈ D). In 1989,

Nunokawa et al. [24] showed that if 1 + zp′(z) ≺ 1 + z, then p(z) ≺ 1 + z. In 2007, Ali et al. [25]
computed the condition on β, in each case, for which

1 +
βzp′(z)

pj(z)
≺ 1 + Dz

1 + Ez
(j = 0, 1, 2) implies p(z) ≺ 1 + Az

1 + Bz
,

A, B, C, D, E, F ∈ [−1, 1]. Further, Ali et al. [26] determined some sufficient conditions for normalized
analytic functions to lemniscate starlike functions. Recently, Kumar and Ravichandran [27] obtained
sufficient conditions for first order differential subordinations so that the corresponding analytic
function belongs to the class P . In 2016, Tuneski [28] gave a criteria for analytic functions to be
Janowski starlike. For more details, see [11,29–33].

Motivated by above works, in Section 2, using the theory of differential subordination developed
by Miller and Mocanu, a sharp bound on parameter β is determined in each case so that p(z) ≺ Q(z),
whenever 1 + βzp′(z)/pj(z)(j = 0, 1, 2) is subordinate to the function ϕ0(z) or

√
1 + z or Gα(z) or

(1+ Az)/(1+ Bz) or ϕs(z) or ϕq(z). Further, various sufficient conditions are obtained for f ∈ A to be
in the class S∗

B as an application of these subordination results. In Section 3, S∗
B-radius for the class of

Janowski starlike functions and some other well-known classes of analytic functions are investigated.
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2. Differential Subordinations

Theorem 1 provides estimate on β so that p(z) ≺ Q(z) holds, whenever 1 + βzp′(z) ≺ ϕ0(z) or
ϕs(z) or

√
1 + z or Gα(z) or (1 + Az)/(1 + Bz) or ϕs(z) or ϕq(z) or ez.

To prove our main results, we need the following lemma due to Miller and Mocanu:

Lemma 1. ([32] Theorem 3.4h, p. 132) Let q be analytic in D and let ψ and ν be analytic in a domain U
containing q(D) with ψ(w) 	= 0 when w ∈ q(D). Set

Q(z) := zq′(z)ψ(q(z)) and h(z) := ν(q(z)) +Q(z).

Suppose that

(i) either h is convex, or Q is starlike univalent in D and

(ii) Re
(

zh′(z)
Q(z)

)
> 0 for z ∈ D.

If p is analytic in D, with p(0) = q(0), p(D) ⊆ U and

ν(p(z)) + zp′(z)ψ(p(z)) ≺ ν(q(z)) + zq′(z)ψ(q(z)),

then p ≺ q, and q is most dominant.

Theorem 1. Let l(e) = (1 − e(1−e)/e)−1, 0 < α < 1, 0 < B < A < 1, and p be an analytic function defined
in D with p(0) = 1.

Set
Υβ(z, p(z)) = 1 + βzp′(z).

Then, the following are sufficient for p(z) ≺ Q(z).

(a) Υβ(z, p(z)) ≺ ϕ0(z) for β ≥ l(e)(1 −
√

2 + log 2) ≈ 0.59533.
(b) Υβ(z, p(z)) ≺

√
1 + z for β ≥ l(e)(2(1 − log2)) ≈ 1.30984.

(c) Υβ(z, p(z)) ≺ Gα(z) for β ≥ l(e) 1
2
√

α
log 1+

√
α

1−√
α

.

(d) Υβ(z, p(z)) ≺ 1+Az
1+Bz for β ≥ l(e) A−B

B log (1 − B)−1.
(e) Υβ(z, p(z)) ≺ ϕs(z) for β ≥ l(e)∑∞

n=0
(−1)n

(2n+1)!(2n+1) ≈ 2.01905.
(f) Υβ(z, p(z)) ≺ ϕq(z) for β ≥ l(e)(2 −

√
2 − log 2 + log (1 +

√
2)) ≈ 1.65198.

(g) Υβ(z, p(z)) ≺ ez for β ≥ l(e)∑∞
n=0

(−1)n−1

n!n ≈ 0.785166.

The lower bound on β in each case is sharp.

Proof. Let the functions ν and ψ be defined by ν(w) = 1 and ψ(w) = β.
(a) Define the function qβ : D → C by

qβ(z) = 1 − 1
βk

(
z + 2k log

(
1 − z

k

))
is a solution of the differential equation βzq′(z) = ϕ0(z) − 1 and is analytic in D. Now consider
the function

Q(z) = zq′
β(z)ψ(qβ(z)) = ϕ0(z)− 1 =

k + z − 2k2

k − z
.

It can be easily seen that Q is starlike in D and the function h is defined by

h(z) := ν(q(z)) +Q(z) = 1 +Q(z)
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satisfies the following inequality

Re
(

zh′(z)
Q(z)

)
= Re

(
zQ′(z)
Q(z)

)
> 0 (z ∈ D).

Therefore, from Lemma 1, we conclude that

1 + βzp′(z) ≺ 1 + βzq′
β(z) implies p ≺ qβ. (1)

Now the subordination p ≺ Q holds if subordination qβ ≺ Q. Thus, the subordination qβ ≺ Q
holds if the inequalities

Q(−1) ≤ qβ(−1) ≤ qβ(1) ≤ Q(1)

hold and these yield a necessary condition for subordination p ≺ Q to hold. In view of the graph
of the respective function, the necessary condition is also sufficient condition. The inequalities
qβ(−1) ≥ Q(−1) and qβ(1) ≤ Q(1) yield β ≥ β1 and β ≥ β2, where

β1 =
1 −

√
2 + log 2

1 − e(1−e)/e
and β2 =

1 −
√

2 − 2 log(2 −
√

2)
e(e−1)/e − 1

.

Now the subordination qβ ≺ Q holds if β ≥ max {β1, β2} = β1.
(b) The function

qβ(z) =
β + 2(

√
1 + z − log(1 +

√
1 + z) + log 2 − 1)

β

is an analytic solution of the first order differential equation βzq′(z) =
√

1 + z − 1 in D. The function
Q defined by Q(z) = zq′

β(z)ψ(qβ(z)) =
√

1 + z − 1 is starlike in D and the function h(z) :=
ν(q(z)) + Q(z) satisfies Re (zh′(z)/Q(z)) = Re (zQ′(z)/Q(z)) > 0, z ∈ D. Therefore, in view of
the subordination relation 1, the required subordination p ≺ Q holds if subordination qβ ≺ Q holds.
Thus, the subordination qβ ≺ Q holds if the inequalities

Q(−1) ≤ qβ(−1) ≤ qβ(1) ≤ Q(1)

hold which in-turn yield a necessary condition for subordination p ≺ Q. The inequalities qβ(−1) ≥
Q(−1) and qβ(1) ≤ Q(1) yield β ≥ β1 = 2(1 − log 2)/1 − e(1−e)/e and β ≥ β2 = 2(

√
2 − 1 +

log 2 − log(1 +
√

2))/(e(1−e)/e − 1), respectively. Therefore, the subordination qβ ≺ Q holds if β ≥
max {β1, β2} = β1.

(c) The analytic function

qβ(z) =
2
√

αβ + log 1+
√

αz
1−√

αz

2
√

αβ

is a solution of the differential equation βzq′
β(z) = Gα(z)− 1 in D. Now computation shows that

Q(z) = zq′
β(z)ψ(qβ(z)) =

z
1 − αz2

is starlike in D. Note that the function h(z) := ν(q(z)) +Q(z) = 1+Q(z) satisfies Re (zh′(z)/Q(z)) =
Re (zQ′(z)/Q(z)) > 0 in D. Therefore, in view of the subordination relation 1, the required
subordination p ≺ Q holds if subordination qβ ≺ Q. Similar to as in part (a), the desired subordination
p ≺ Q holds if β ≥ max{β1, β2} = β1, where β1 = l(e)g(α) and β2 = −l(e)g(α) such that

g(α) =
1

2
√

α
log

1 +
√

α

1 − √
α

.
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(d) Consider the analytic function

qβ(z) =
Bβ + (A − B) log(1 + Bz)

Bβ

which is a solution of differential equation

βzq′(z) =
(A − B)z

1 + Bz
.

Since the function (A − B)z/(1 + Bz) is starlike in D, it follows that Q(z) = zq′
β(z)ψ(qβ(z)) is

starlike in D. The function h : D → C defined by h(z) := ν(qβ(z)) + Q(z) = 1 + Q(z) satisfies
Re(zh′(z)/Q(z)) > 0 (z ∈ D). Thus, as in previous case, the subordination p ≺ Q holds if
β ≥ max{β1, β2} = β1, where

β1 =
(A − B) log(1 − B)−1

B(1 − e(1−e)/e)
and β2 =

(A − B) log(1 + B)
B(e(1−e)/e − 1)

.

(e) The differential equation
dq
dz

=
sin z
βz

has an analytic solution

qβ(z) = 1 +
1
β

∞

∑
n=0

(−1)nz2n+1

(2n + 1)!(2n + 1)

in D. Now the function Q(z) = zq′
β(z)ψ(qβ(z)) = sin z is starlike in D and the function h(z) :=

ν(q(z)) +Q(z) = 1 +Q(z), satisfies Re (zh′(z)/Q(z)) = Re (zQ′(z)/Q(z)) > 0 holds. As in part (a),
the desired subordination p(z) ≺ Q(z) holds if β ≥ max{β1, β2} = β1, where

β1 =
1

(1 − e(1−e)/e)

∞

∑
n=0

(−1)n

(2n + 1)!(2n + 1)
≈ 2.01905

and

β2 =
1

(e(e−1) − 1)

∞

∑
n=0

(−1)n

(2n + 1)!(2n + 1)
≈ 0.206779.

(f) The differential equation
dq
dz

=
z +

√
1 + z2 − 1
βz

has an analytic solution

qβ(z) =
β + (z +

√
1 + z2 − log(1 +

√
1 + z2)− 1 + log 2)

β
.

Computation shows that the function

Q(z) = zq′
β(z)ψ(qβ(z)) = z +

√
1 + z2 − 1

is starlike in D. As before, the function h(z) := ν(q(z)) +Q(z) satisfies Re (zh′(z)/Q(z)) > 0, z ∈ D.
Therefore, the desired subordination p ≺ Q holds if β ≥ max{β1, β2} = β1, where

β1 =
2 −

√
2 − log 2 + log(1 +

√
2)

1 − e(1−e)/e
≈ 1.65198
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and

β2 =

√
2 + log 2 − log(1 +

√
2)

e(1−e)/e − 1
≈ 0.267979.

(g) The differential equation
dq
dz

=
ez − 1

βz

has an analytic solution

qβ(z) = 1 +
1
β

∞

∑
n=0

zn

n!n
.

Note that the function Q(z) = zq′
β(z)ψ(qβ(z)) = ez is starlike in the unit disk D and the function

h(z) := ν(q(z)) + Q(z) = 1 + Q(z) satisfies Re (zh′(z)/Q(z)) = Re (zQ′(z)/Q(z)) > 0. Now the
subordination p ≺ Q holds if β ≥ max{β1, β2} = β1, where

β1 =
1

(1 − e(1−e)/e)

∞

∑
n=0

(−1)n−1

n!n
≈ 0.785166 and β2 =

1
(e(e−1) − 1)

∞

∑
n=0

1
n!n

≈ 0.288069.

This ends the proof.

Theorem 1 also provides the following various sufficient conditions for the normalized analytic
functions f to be in the class S∗

B.
Let function f ∈ A and set

Υβ

(
z,

z f ′(z)
f (z)

)
= 1 + β

z f ′(z)
f (z)

(
1 − z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

)
.

If either of the following subordination holds

(a) Υβ

(
z, z f ′(z)

f (z)

)
≺ ϕ0(z) (β ≥ 0.59533),

(b) Υβ

(
z, z f ′(z)

f (z)

)
≺

√
1 + z (β ≥ 1.30984),

(c) Υβ

(
z, f ′(z)

f (z)

)
≺ Gα(z) (β ≥ 1

(1−e(1−e)/e)
1

2
√

α
log 1+

√
α

1−√
α
),

(d) Υβ

(
z, f ′(z)

f (z)

)
≺ 1+Az

1+Bz (β ≥ 1
(1−e(1−e)/e)

A−B
B log (1 − B)−1),

(e) Υβ

(
z, z f ′(z)

f (z)

)
≺ ϕs(z) (β ≥ 2.01905),

(f) Υβ

(
z, z f ′(z)

f (z)

)
≺ ϕq(z) (β ≥ 1.65198),

(g) Υβ

(
z, z f ′(z)

f (z)

)
≺ ez (β ≥ 0.785166),

then f ∈ S∗
B.

The next result gives sharp lower bound on β such that subordination p ≺ Q holds, whenever
1 + βzp′(z)/p(z) ≺ ϕ0(z) or ϕs(z) or

√
1 + z or Gα(z) or (1 + Az)/(1 + Bz) or ϕs(z) or ϕq(z) or ez.

Theorem 2. Let 0 < α < 1, 0 < B < A < 1, and p be an analytic function defined in D with p(0) = 1.
Set

Ωβ(z, p(z)) = 1 + β
zp′(z)
p(z)

.

Then, the following conditions are sufficient for subordination p ≺ Q.

(a) Ωβ(z, p(z)) ≺ ϕ0(z) for β ≥ e(2(1+
√

2) log
√

2−1
(e−1)(1+

√
2)

≈ 0.441266.

(b) Ωβ(z, p(z)) ≺
√

1 + z for β ≥ 2e(1−log 2)
e−1 ≈ 0.970868.

(c) Ωβ(z, p(z)) ≺ Gα(z) for β ≥ e
2(e−1)

√
α

log 1+
√

α
1−√

α
.

(d) Ωβ(z, p(z)) ≺ 1+Az
1+Bz for β ≥ e

B(e−1) (A − B) log(1 − B)−1.
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(e) Ωβ(z, p(z)) ≺ ϕs(z) for β ≥ e
e−1 ∑∞

n=0
(−1)n

(2n+1)!(2n+1) ≈ 1.49655.
(f) Ωβ(z, p(z)) ≺ ϕq(z) for β ≥ e

e−1 (2 −
√

2 + log(1 +
√

2)− log 2) ≈ 1.22447.
(g) Ωβ(z, p(z)) ≺ ez for β ≥ 1

e−1 ∑∞
n=0

1
n!n ≈ 0.766987.

The lower bound on β in each case is sharp.

Proof. Let us define ν(w) = 1 and ψ(w) = β/w for all w ∈ C.
(a) The function

qβ(z) = exp
(
− 1

βk

(
z + 2k log

(
1 − z

k

)))
satisfies the differential equation βzq′(z)/q(z) = ϕ0(z) − 1. Clearly, the function Q : D → defined
by Q(z) = zq′

β(z)ψ(qβ(z)) = (z − 2k2 + k)/(k − z) is starlike in D. Further, the function h(z) :=
ν(qβ(z)) +Q(z) satisfies Re(zh′(z)/Q(z)) > 0 (z ∈ D). Thus, using Lemma 1, it follows that

1 + β
zp′(z)
p(z)

≺ 1 + β
zq′

β(z)

qβ(z)
implies p ≺ qβ. (2)

Now using Theorem 1 (a), the subordination p ≺ Q holds if β ≥ max {β1, β2} = β1, where

β1 =
(−1 + 2(1 +

√
2) log

√
2)e

(e − 1)(1 +
√

2)

and

β2 = − (1 + 2(1 +
√

2) log (2 −
√

2))
(e − 1)(1 +

√
2)

.

(b) The function

qβ(z) = exp
(

2
β

(√
1 + z − log(1 +

√
1 + z) + log 2 − 1

))
is a solution of the differential equation

β
zq′(z)
q(z)

=
√

1 + z − 1.

Moreover, the function Q(z) = zq′
β(z)ψ(qβ(z)) =

√
1 + z − 1 is starlike in D and a computation

shows that the function h(z) := ν(q(z)) + Q(z) satisfies Re (zh′(z)/Q(z)) > 0 (z ∈ D). Now the
desired subordination p ≺ Q holds if β ≥ max {β1, β2} = β1, where β1 = 2e(1 − log 2)/(e − 1) and
β2 = 2(−1 +

√
2 + log 2 − log(1 +

√
2))/(e − 1).

(c) Consider the function qβ defined by

qβ(z) = exp
(

1
2
√

αβ
log

1 +
√

αz
1 − √

αz

)
.

It can be verified that the function qβ is a solution of the differential equation

β
zq′(z)
q(z)

=
1

1 − αz2 .

Now the function Q(z) = zq′
β(z)ψ(qβ(z)) = 1/(1 − αz2) is starlike in D and the function h(z) :=

ν(q(z)) +Q(z) satisfies Re (zh′(z)/Q(z)) > 0 (z ∈ D). Now, as in previous cases, p ≺ Q holds only if
β ≥ max {β1, β2} = β1, where
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β1 =
e

2(e − 1)
√

α
log

1 +
√

α

1 − √
α

and β2 =
1

2(e − 1)
√

α
log

1 +
√

α

1 − √
α

.

(d) Let the function qβ(z) = exp ((A − B) log(1 + Bz)/βB) be an analytic solution of the
differential equation

1 + β
zq′(z)
q(z)

=
1 + Az
1 + Bz

.

Now the desired subordination p ≺ Q holds if β ≥ max {β1, β2} = β1, where β1 = e(A −
B) log(1 − B)−1/B(e − 1) and β2 = e(A − B) log(1 + B)/B(e − 1).

(e) The differential equation βzq′(z)/q(z) = sin z has an analytic solution given by

qβ(z) = exp

(
1
β

∞

∑
n=0

(−1)nz2n+1

(2n + 1)!(2n + 1)

)
.

As in part Theorem 2 (a), the subordination p ≺ Q holds if β ≥ max {β1, β2} = β1 where

β1 =
e

e − 1

∞

∑
n=0

(−1)n

(2n + 1)!(2n + 1)
≈ 1.49655

and

β2 =
1

e − 1

∞

∑
n=0

(−1)n

(2n + 1)!(2n + 1)
≈ 0.55055.

(f) The solution of the differential equation

dq
dz

=
z +

√
1 + z2 − 1
βz

is given by

qβ(z) = exp

(
z +

√
1 + z2 − log(1 +

√
1 + z2)− 1 + log 2

β

)
.

As in proof of Theorem 2 (a), the desired result holds if β ≥ max{β1, β2} = β1, where β1 =

e(2 −
√

2 + log(1 +
√

2)− log 2)/(e − 1) and β2 = (
√

2 − log(1 +
√

2) + log 2)/(e − 1).
(g) The differential equation βzq′(z)/q(z) = ez − 1 has a solution

qβ(z) = exp

(
1
β

∞

∑
n=1

zn

n!n

)

analytic in D. Thus, as previous, the subordination p ≺ Q holds if β ≥ max {β1, β2} = β2, where

β1 =
e

e − 1

∞

∑
n=0

(−1)n−1

n!n
≈ 0.581976 and β2 =

1
e − 1

∞

∑
n=0

1
n!n

≈ 0.766987.

This ends the proof.

Next, Theorem 2 also provides the following various sufficient conditions for the normalized
analytic functions f to be in the class S∗

B. Let the function f ∈ A and set

Ωβ

(
z,

z f ′(z)
f (z)

)
= 1 + β

(
1 − z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

)
.

If either of the following subordination conditions are fulfilled:
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(a) Ωβ

(
z, z f ′(z)

f (z)

)
≺ ϕ0(z) (β ≥ 0.441266),

(b) Ωβ

(
z, z f ′(z)

f (z)

)
≺

√
1 + z (β ≥ 0.970868),

(c) Ωβ

(
z, z f ′(z)

f (z)

)
≺ Gα(z) (β ≥ e

2(e−1)
√

α
log 1+

√
α

1−√
α
),

(d) Ωβ

(
z, z f ′(z)

f (z)

)
≺ 1+Az

1+Bz (β ≥ e
B(e−1) (A − B) log(1 − B)−1),

(e) Ωβ

(
z, z f ′(z)

f (z)

)
≺ ϕs(z) (β ≥ 1.49655),

(f) Ωβ

(
z, z f ′(z)

f (z)

)
≺ ϕq(z) (β ≥ 1.22447),

(g) Ωβ

(
z, z f ′(z)

f (z)

)
≺ ez (β ≥ 0.766987),

then f ∈ S∗
B.

In the following theorem, the sharp lower bound on β is obtained so that the subordination p ≺ Q
holds, whenever 1+ βzp′(z)/p2(z) ≺ ϕ0(z) or ϕs(z) or

√
1 + z or Gα(z) or (1+ Az)/(1+ Bz) or ϕs(z)

or ϕq(z) or ez. These results can be proved by defining the functions ν, ψ : D → defined by ν(w) = 1
and ψ(w) = β/w2 and proceeding in a similar fashion as in the proofs of Theorems 1 and 2.

Theorem 3. Let 0 < α < 1, 0 < B < A < 1, and p be an analytic function defined in D with p(0) = 1.
Set

Ξβ(z, p(z)) = 1 + β
zp′(z)
p2(z)

.

Then, the following conditions are sufficient for p ≺ Q.

(a) Ξβ(z, p(z)) ≺ ϕ0(z) for β ≥ 1+2(
√

2+1) log(2−
√

2)
(1+

√
2)(e(1−e)−1)

≈ 0.798642.

(b) Ξβ(z, p(z)) ≺
√

1 + z for β ≥ 2(−1+
√

2+log 2−log(1+
√

2))
1−e1−e ≈ 0.550768.

(c) Ξβ(z, p(z)) ≺ Gα(z) for β ≥ ee−1

ee−1−1
1

2
√

α
log 1+

√
α

1−√
α

.

(d) Ξβ(z, p(z)) ≺ 1+Az
1+Bz for β ≥ e(1−e)/e

1−e(1−e)/e
(A−B) log (1−B)−1

B .

(e) Ξβ(z, p(z)) ≺ ϕs(z) for β ≥ ee−1

ee−1−1 ∑∞
n=0

(−1)n

(2n+1)!(2n+1) ≈ 1.15278.

(f) Ξβ(z, p(z)) ≺ ϕq(z) for β ≥ ee−1

ee−1−1 (
√

2 − log(1 +
√

2) + log 2) ≈ 1.49397.

(g) Ξβ(z, p(z)) ≺ ez for β ≥ ee−1

ee−1−1 ∑∞
n=0

1
n!n ≈ 1.60597.

The lower bound on β in each case is sharp.

Let f ∈ A and set

Ξβ

(
z,

z f ′(z)
f (z)

)
= 1 + β

(
z f ′(z)

f (z)

)−1 (
1 − z f ′(z)

f (z)
+

z f ′′(z)
f ′(z)

)
.

If either of the following subordination holds

(a) Ξβ

(
z, z f ′(z)

f (z)

)
≺ ϕ0(z) (β ≥ 0.798642),

(b) Ξβ

(
z, z f ′(z)

f (z)

)
≺

√
1 + z (β ≥ 0.550768),

(c) Ξβ

(
z, z f ′(z)

f (z)

)
≺ Gα(z) (β ≥ ee−1

ee−1−1
1

2
√

α
log 1+

√
α

1−√
α
),

(d) Ξβ

(
z, z f ′(z)

f (z)

)
≺ 1+Az

1+Bz (β ≥ e(1−e)/e

1−e(1−e)/e
(A−B) log (1−B)−1

B ),

(e) Ξβ

(
z, z f ′(z)

f (z)

)
≺ ϕs(z) (β ≥ 1.15278),

(f) Ξβ

(
z, z f ′(z)

f (z)

)
≺ ϕq(z) (β ≥ 1.49397),

(g) Ξβ

(
z, z f ′(z)

f (z)

)
≺ ez (β ≥ 1.60597),

then f ∈ S∗
B.
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3. Radius Estimates

Let θ1 and θ2 be two sub-families of A. The θ1 radius of θ2 is the largest number ρ ∈ (0, 1) such
that r−1 f (rz) ∈ θ1, 0 < r ≤ ρ for all f ∈ θ2. Grunsky [34] obtained the radius of starlikeness for
functions in the class S . Sokół [35] computed the radius of α-convexity and α-starlikeness for a class
S∗

L . In 2016, authors [7] determined the S∗
R-radius for various subclasses of starlike functions. For more

results on radius problems, see [36–41].
The main technique involved in tackling the S∗

B-radius estimates for classes of functions f is the
determination of the disk that contains the values of z f ′(z)/ f (z). The associated technical lemma is
achieved as:

Lemma 2. Let Q(z) := eez−1, z ∈ D. Define the function r : [e1/e−1, ee−1] → R+ by

r(a) :=

{
ea−e1/e

e , e
1
e −1 ≤ a ≤ e1/e+ee

2e ;
ee−ea

e , e1/e+ee

2e ≤ a ≤ ee−1.

Then, the following holds:

{w ∈ C : |w − a| < r(a)} ⊂ ΩB ⊂
{

w ∈ C : |w − 1| < ee − e
e

}
.

Proof. To prove the assertion, we let z = eit, t ∈ (−π, π]. Therefore,

Q(eit) = eeeit −1 = u(t) + iv(t)

with
u(t) := cos

(
sin(sin t)ecos t) exp

(
ecos t cos(sin t)− 1

)
and

v(t) := sin
(
sin(sin t)ecos t) exp

(
ecos(t) cos(sin t)− 1

)
.

Now, consider the square of the distance of an arbitrary point (u(t), v(t)) on the boundary of
∂Q(D) from (a, 0) and is given by

h(t) = d2(t) = a2 − 2aeecos t cos(sin t)−1 cos
(
sin(sin t)ecos t)+ e2ecos t cos(sin t)−2.

Now we need to prove |w − a| < r(a) is the largest disk contained in Q(D). For this, we need
to show that min−π≤t≤π d(t) = r(a). Since h is an even function, i.e., h(t) = h(−t), we need to
only consider the case when t ∈ [0, π]. Now h′(t) = 0 has three roots viz. 0, π and t0(a) ∈ (0, π).
Among these roots, the root t0(a) depends on a and graphics reveals that h is increasing in the interval
[0, t0(a)] and decreasing in [t0(a), π], and therefore, h attains its minimum either at 0 or π. Further

computations give h(π) =
(

ea − e1/e
)2

/e2 and h(0) = (ee − ea)2 /e2. Hence, we have

min
−π≤t≤π

h(t) = min {h(0), h(π)} =

{
h(π), e

1
e −1 ≤ a ≤ e1/e+ee

2e ;
h(0), e1/e+ee

2e ≤ a ≤ ee−1.

Therefore, we can write

min
−π≤t≤π

d(t) =

{
ea−e1/e

e , e
1
e −1 ≤ a ≤ e1/e+ee

2e ;
ee−ea

e , e1/e+ee

2e ≤ a ≤ ee−1.
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To find the circle of minimum radius with center at (1, 0) containing the domain Q(D), we need
to find the maximum distance from (1, 0) to an arbitrary point on the boundary of the domain Q(D).
The square of this distance function is given by

φ(t) = −2eecos t cos(sin t)−1 cos
(
sin(sin t)ecos t)+ e2ecos t cos(sin t)−2 + 1.

The equation φ′(t) = 0 has two roots in [0, π], namely 0 and π. It is easy to see that

φ(0) = (e − ee)2 /e2 and φ(π/2) =
(

e − e1/e
)2

/e2. Therefore,

max {φ(0), φ(π)} = φ(0) =
(e − ee)2

e2 .

Hence, the radius of the smallest disk containing Q(D) is (e − ee) /e. This ends the proof.

We now recall some classes and results related to them which are to be used for further
development of this section. For −1 ≤ B < A ≤ 1, let

Pn[A, B] :=

{
p(z) = 1 +

∞

∑
k=n

cnzn : p(z) ≺ 1 + Az
1 + Bz

}
.

Let us denote Pn(α) := Pn[1 − 2α, −1] and P1(0) =: P . For f ∈ A, if we set p(z) = z f ′(z)/ f (z)
and p(z) = 1 + z f ′′(z)/ f ′(z), then the class P [A, B] is denoted by S∗[A, B] and K[A, B], respectively.
These classes were introduced and studied by [2]. Further, let S∗(α) := S∗[1 − 2α, −1].

The following results will be needed:

Lemma 3. [42] If p ∈ Pn[A, B], then, for |z| = r,∣∣∣∣p(z)− 1 − ABr2n

1 − B2r2n

∣∣∣∣ ≤ (A − B)rn

1 − B2r2n .

In particular, if p ∈ Pn(α), then, for |z| = r,∣∣∣∣p(z)− (1 + (1 − 2α))r2n

1 − r2n

∣∣∣∣ ≤ 2(1 − α)rn

1 − r2n .

Lemma 4. [43] If p ∈ Pn(α), then, for |z| = r,∣∣∣∣ zp′(z)
p(z)

∣∣∣∣ ≤ 2(1 − α)nrn

(1 − rn)(1 + (1 − 2α)rn)
.

The main objective of this section is to determine the S∗
B-radii constants for functions belonging to

certain well-known subclasses of A. Let G denote the class of functions f ∈ S for which f (z)/z ∈ P .
The following theorem gives the sharp S∗

B-radius for the class G.

Theorem 4. Let f ∈ G. Then, the sharp S∗
B-radius is

RS∗
B
(G) :=

e − e1/e√
2e2 − 2e1+ 1

e + e2/e + e
≈ 0.222654.

Proof. Since f ∈ G, therefore, f (z)/z ∈ P . Then, from Lemma 2, we must have∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ 2r

1 − r2
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Therefore, f ∈ S∗
B if 2r/(1 − r2) ≤ (e − e1/e)/e, or equivalently if

(e − e1/e)r2 + 2er + e1/e − e ≤ 0

which holds for all

r ≤ e − e1/e√
2e2 − 2e1+ 1

e + e2/e + e
=: RS∗

B
(G) ≈ 0.222654.

For verification of sharpness, consider the function f (z) = z(1 + z)/(1 − z). Then, f (z)/z ∈ P
and at z = RS∗

B
(G), we have

RS∗
B
(G) f ′(RS∗

B
(G))

f (RS∗
B
(G)) − 1 =

RS∗
B
(G)

1 − RS∗
B
(G) = 1 − e

1
e −1.

Hence the result is sharp.

In the following theorem, we shall investigate sharp S∗
B-radius for the class S∗[A, B].

Theorem 5. Let f ∈ S∗[A, B]. Then,

1. for 0 ≤ B < A ≤ 1, the sharp S∗
B-radius for the class S∗[A, B] is

RS∗
B
(S∗[A, B]) = min

{
1;

√
e − e1/e

√
eAB − e1/eB2

;
e1/e − e

e1/eB − eA

}
.

2. for −1 ≤ B < 0 ≤ A ≤ 1, the sharp S∗
B-radius for the class S∗[A, B] is

RS∗
B
(S∗[A, B]) = min

⎧⎨⎩1;

√
−2e + e1/e + ee

−2eAB + e1/eB2 + eeB2 ;
e1/e − e

e1/eB − eA

⎫⎬⎭ .

Proof. Let f ∈ S∗[A, B]. Then using Lemma 4, we see that f maps the disk |z| ≤ r onto the disk∣∣∣∣ z f ′(z)
f (z)

− 1 − ABr2

1 − B2r2

∣∣∣∣ ≤ (A − B)r
1 − B2r2 .

The center of the above disk is at (c, 0) and the radius is R, where

c :=
1 − ABr2

1 − B2r2 and R :=
(A − B)r
1 − B2r2 .

(1) We see that c ≤ (e1/e + ee)/(2e) holds for all 0 ≤ B < A ≤ 1 and 0 < r < 1. Further, the
condition 1 − e1/e ≤ c is equivalent to

−eABr2 + e1/eB2r2 − e1/e + e ≥ 0

which holds for all

r ≤
√

e − e1/e

eAB − e1/eB2 =: r1.

Further computation shows that the condition R ≤ (eea − e1/e)/e is equivalent to eAr − e1/eBr +
e1/e − e ≤ 0 which holds for all

r ≤ e1/e − e
e1/eB − eA

=: r2.

Now from Lemma 2, f ∈ S∗
B for all |z| ≤ RS∗

B
(S∗[A, B]) = min {1; r1; r2} .
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(2) Let −1 ≤ B < 0 ≤ A ≤ 1. Then we see that e1/e−1 ≤ c holds for all 0 < r < 1. Further,
c ≤ (ee + e1/e)/2e is equivalent to

−2eABr2 + e1/eB2r2 + eeB2r2 − e1/e − ee + 2e ≤ 0

which holds for

r ≤
√

−2e + e1/e + ee

−2eAB + e1/eB2 + eeB2 =: r3.

Now, as in the previous case R < (ec − e1/e)/e holds if r ≤ r2. Therefore, S∗
B-radius for the class

S∗[A, B] is RS∗
B
(S∗[A, B]) = min {1; r2; r3} .

The equality holds in case of the function f0 defined by

f0(z) =

{
z(1 + Bz)

A
B −1, B 	= 0;

zeAz, B = 0.

This ends the proof.

Remark 1. Let f ∈ S∗. Then, since S∗ = S∗[0, −1], it follows from the above theorem, that the S∗
B-radius for

starlike functions is r4 := (e − e1/e)/(e + e1/e) ≈ 0.30594. To see the sharpness, consider the Koebe function
k(z) = z/(1 − z)2. Then, at z = r4, we have

r4 f ′(r4)

f (r4)
=

1 + r4

1 − r4
= e1− 1

e .

Because the function k is univalent too, it follows that the S∗
B-radius for the class S and S∗ is r4. Therefore,

the radius r4 can not be increased. Thus, we have the following:

Corollary 1. The sharp S∗
B-radius for the classes S and S∗ is (e − e1/e)/(e + e1/e) ≈ 0.30594.

Let the class F1 be defined by

F1 :=
{

f ∈ A : Re
f (z)
g(z)

> 0 and Re
g(z)

z
> 0, g ∈ A

}
.

The following theorem gives the sharp S∗
B-radius for the class F1.

Theorem 6. Let f ∈ F1. Then, the sharp S∗
B-radius is

RS∗
B
(F1) =

e − e1/e√
5e2 − 2e1+ 1

e + e2/e + 2e
≈ 0.11557.

Proof. Since f ∈ F1, there is g ∈ A such that Re(g(z)/z) > 0. Define the functions p, h : D → C by

p(z) =
g(z)

z
and h(z) =

f (z)
g(z)

.

Then, through some assumptions, we have p, h ∈ P . Now using Lemma 4, we get∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣ ≤

∣∣∣∣ zh′(z)
h(z)

∣∣∣∣+ ∣∣∣∣ zp′(z)
p(z)

∣∣∣∣
≤ 4r

1 − r2 ≤ e − e1/e

e
,
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this holds if and only if (e − e1/e)r2 + 4er + e1/e − e ≤ 0, that is if

r ≤ e − e1/e√
5e2 − 2e1+ 1

e + e2/e + 2e
=: RS∗

B
(F1) ≈ 0.11557.

Consider the functions f2 and g2 defined by

f2(z) = z
(

1 + z
1 − z

)2
and g2(z) = z

(
1 + z
1 − z

)
.

Further, we have Re( f2(z)/g2(z)) > 0 and Re(g2(z)/z) > 0, and therefore f ∈ F1. Now a
computation shows that, for z = RS∗

B
(F1),

RS∗
B
(F1) f ′2(RS∗

B
(F1))

f2(RS∗
B
(F1))

− 1 =
4RS∗

B
(F1)

1 − RS∗
B
(F1)2 = 1 − e

1
e −1.

Hence the result is sharp.

Let us define the class F2 by

F2 :=
{

f ∈ A : Re
f (z)
g(z)

> 0 and Re
g(z)

z
> 1/2, g ∈ A

}
.

The following theorem gives the sharp S∗
B-radius for the class F2.

Theorem 7. Let f ∈ F2. Then, the sharp S∗
B-radius is

S∗
B(F2) =

2
(

e − e1/e
)

√
17e2 − 12e1+ 1

e + 4e2/e + 3e
≈ 0.145776.

Proof. Since f ∈ F2 and g ∈ A satisfies Re(g(z)/z) > 1/2. Now define the functions p, h : D → C

by p(z) = g(z)/z and h(z) = f (z)/g(z). Then, it is clear that p ∈ P(1/2) and h ∈ P . Further, since
f (z) = zp(z)h(z), it follows from Lemma 4, get∣∣∣∣ z f ′(z)

f (z)
− 1

∣∣∣∣ ≤ 3r + r2

1 − r2 ≤ e − e1/e

e

provided −e1/er2 + 2er2 + 3er + e1/e − e ≤ 0. This holds for

r ≤
2
(

e − e1/e
)

√
17e2 − 12e1+ 1

e + 4e2/e + 3e
=: S∗

B(F2) ≈ 0.145776.

Thus, f ∈ S∗
B for r ≤ S∗

B(F2).
For the sharpness of the result, consider the functions

f3(z) =
z(1 + z)
(1 − z)2 and g3(z) =

z
1 − z

.

Then, we see that Re( f3(z)/g3(z)) > 0 and Re(g3(z)/z) > 1/2, and therefore, f ∈ F2. Now from
the definition of f0, we see that at z = S∗

B(F2),
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S∗
B(F2) f ′3(S∗

B(F2))

f3(S∗
B(F2))

− 1 =
3S∗

B(F2) + S∗
B(F2)

2

1 − S∗
B(F2)2 = 1 − e

1
e −1.

This confirms the sharpness of the result.

Define the class F3 by

F3 :=
{

f ∈ A :
∣∣∣∣ f (z)

g(z)
− 1

∣∣∣∣ < 1 and Re
g(z)

z
> 0, g ∈ A

}
.

The next result gives the sharp S∗
B-radius for the class F3.

Theorem 8. Let f ∈ F3. Then, the sharp S∗
B-radius is

S∗
B(F3) =

2
(

e − e1/e
)

√
17e2 − 12e1+ 1

e + 4e2/e + 3e
≈ 0.145776.

Proof. Since f ∈ F3, it follows that p ∈ P and h ∈ P(1/2), where the functions p, h : D → C are
defined by p(z) = g(z)/z and h(z) = g(z)/ f (z). Now since f (z) = zp(z)/h(z) from Lemma 4,
we have ∣∣∣∣ z f ′(z)

f (z)
− 1

∣∣∣∣ ≤ 3r + r2

1 − r2 ≤ e − e1/e

e

which holds for all r ≤ S∗
B(F3).

Consider the functions f4 and g4 defined by

f4(z) =
z(1 + z)2

(1 − z)
and g4(z) =

z(1 + z)
1 − z

.

The results are sharp, since at z = S∗
B(F3), we have

S∗
B(F3) f ′4(S∗

B(F3))

f4(S∗
B(F3))

= 2 − e
1
e −1.

This completes the proof.
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24. Nunokawa, M.; Obradović, M.; Owa, S. One criterion for univalency. Proc. Am. Math. Soc. 1989, 106,

1035–1037. [CrossRef]
25. Ali, R.M.; Ravichandran, V.; Seenivasagan, N. Sufficient conditions for Janowski starlikeness. Int. J. Math.

Math. Sci. 2007, 2007, 62925. [CrossRef]
26. Ali, R.M.; Cho, N.E.; Ravichandran, V.; Kumar, S.S. Differential subordination for functions associated with

the lemniscate of Bernoulli. Taiwan. J. Math. 2012, 16, 1017–1026. [CrossRef]
27. Kumar, S.; Ravichandran, V. Subordinations for Functions with Positive Real Part. Complex Anal. Oper. Theory

2018, 12, 1179–1191. [CrossRef]
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1. Introduction

Let Σ denote the class of functions of the form

f (z) = z−1 +
∞

∑
j=1

ajzj, (1)

which are analytic in the punctured open unit disk U∗ = {z : z ∈ C, 0 < |z| < 1} = U/{0}.
Let Σ∗(ρ) and Σk(ρ) denote the subclasses of Σ that are meromorphically starlike functions of

order ρ and meromorphically convex functions of order ρ respectively. Analytically, a function f of the
form (1) is in the class Σ∗(ρ) if it satisfies

Re

{
− z f

′
(z)

f (z)

}
> ρ (z ∈ U

∗),

and f ∈ Σk(ρ) if satisfies

Re

{
−
(

1 +
z f

′′
(z)

f ′(z)

)}
> ρ (z ∈ U

∗).

The Hadamard product for two functions f ∈ Σ, defined by (1) and

g(z) = z−1 +
∞

∑
j=1

bjzj,

is given by

f (z) ∗ g(z) = z−1 +
∞

∑
j=1

ajbjzj. (2)

Symmetry 2019, 11, 210; doi:10.3390/sym11020210 www.mdpi.com/journal/symmetry221
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For the two functions f (z) and g(z) analytic in U, we say that f (z) is subordinate to g(z), written
f ≺ g or f (z) ≺ g(z) (z ∈ U), if there exists a Schwarz function w(z) in U with w(0) = 0 and |w(z)| < 1
(z ∈ U), such that f (z) = g(w(z)), (z ∈ U).

For complex parameters ai, bk, q (i = 1, ..., l, k = 1, ..., r, bk ∈ C \ {0, −1, −2, ...}) the basic
hypergeometric function (or q-hypergeometric function) lΨr(z) is defined by:

lΨr(a1, ..., al ; b1, ...., br; q, z) =
∞

∑
j=0

(a1, q)j...(al , q)j

(q, q)j(b1, q)j...(br, q)j
×
[
(−1)jq(

j
2)
]1+r−l

zj, (3)

with ( j
2) = j(j − 1)/2, where q 	= 0 when l > r + 1 (l, r ∈ N0 = N ∪ {0},N = {1, 2, ...}), and (a, q)j is

the q-analogue of the Pochhammer symbol (a)j defined by:

(a, q)j =

{
(1 − a)(1 − aq)(1 − aq2)...(1 − aqj−1), j = 1, 2, 3, ....,
1, j = 0.

The hypergeometric series defined by (3) was initially introduced by Heine in 1846 and referred
to as the Heines series. More details on q-theory are available in [1–3] for readers to refer to.

It is clear that

lim
q→1−

[
lΨr(qa1 , ..., qal ; qb1 , ...., qbr ; q, (q − 1)1+r−lz)

]
=l Fr(a1, ..., al ; b1, ...., br; z),

where l Fr(a1, ..., al ; b1, ...., br; z) represents the generalised hypergeometric function (as shown in [4]).
Riemann, Gauss, Euler and others have conducted extensive studies of hypergeometric functions

some hundreds years ago. The focus on this area is based mostly on the structural beauty and
distinctive applications that this theory has, which include dynamic systems, mathematical physics,
numeric analysis and combinatorics. Based on this, hypergeometric functions are utilised in various
disciplines and this includes geometric function theory. One example that can be associated with
the hypergeometric functions is the well-known Dziok–Srivastava operator [5,6] defined via the
Hadamard product.

Now for z ∈ U, |q| < 1, and l = r + 1, the q-hypergeometric function defined in (3) takes the
following form:

lΨr(a1, ..., al ; b1, ...., br; q, z) =
∞

∑
j=0

(a1, q)j...(al , q)j

(q, q)j(b1, q)j...(br, q)j
zj, (4)

which converges absolutely in the open unit disk U.
In reference to the function lΨr(a1, ..., al ; b1, ...., br; q, z) for meromorphic functions f ∈ Σ that

consist of functions in the form of (1), (see Aldweby and Darus [7], Murugusundaramoorthy and
Janani [8]), as illustrated below, have recently introduced the q-analogue of the Liu–Srivastava operator

lΥr(a1, ..., al ; b1, ..., br; q, z) f (z) = z−1
lΨr(a1, ..., al ; b1, ..., br; q, z) ∗ f (z)

= z−1 +
∞

∑
j=1

∏l
i=1(ai, q)j+1

(q, q)j+1 ∏r
k=1(bk, q)j+1

ajzj. (5)

For convenience, we write

lΥr(a1, ..., al ; b1, ..., br; q, z) f (z) =l Υr(ai, bk; q, z) f (z).
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Before going further, we state the well-known Mittag–Leffler function Eα(z), put forward by
Mittag–Leffler [9,10], as well as Wiman’s generalisation [11] Eα,β(z) given respectively as follows:

Eα(z) =
∞

∑
j=0

zj

Γ(αj + 1)
, (6)

and

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)
, (7)

where α, β ∈ C , Re(α) > 0 and Re(β) > 0.
There has been a growing focus on Mittag–Leffler-type functions in recent years based on the

growth of possibilities for their application for probability, applied problems, statistical and distribution
theory, among others. Further information about how the Mittag–Leffler functions are being utilised
can be found in [12–18]. In most of our work related to Mittag–Leffler functions, we study the geometric
properties, such as the convexity, close-to-convexity and starlikeness. Recent studies on the Eα,β(z)
Mittag–Leffler function can be seen in [19]. Additionally, Ref. [20] presents findings related to partial
sums for Eα,β(z).

The function given by (7) is not within the class Σ. Based on this, the function is then normalised
as follows:

Ωα,β(z) = z−1Γ(β)Eα,β(z)

= z−1 +
∞

∑
j=1

Γ(β)

Γ(α(j + 1) + β)
zj. (8)

Having use of the function Ωα,β(z) given by (8), a new operator Dα,m
β [al , br, λ] : Σ → Σ is defined,

in terms of Hadamard product, as follows:

Dα,0
β [al , br, λ] f (z) =l Υr(ai, bk; q, z) f (z) ∗ Ωα,β(z),

Dα,1
β [al , br, λ] f (z) = (1 − λ)(lΥr(ai, bk; q, z) f (z) ∗ Ωα,β(z)) + λz(lΥr(ai, bk; q, z) f (z) ∗ Ωα,β(z))

′
,

:

Dα,m
β [al , br, λ] f (z) = Dα,1

β (Dα,m−1
β [al , br, λ] f (z)). (9)

If f ∈ Σ, then from (9) we deduce that

Dα,m
β [al , br, λ] f (z) = z−1 +

∞

∑
j=1

[1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)ajzj, (10)

where

∇(j+1,α,β)(al , br) =
∏l

i=1(ai, q)j+1

(q, q)j+1 ∏r
k=1(bk, q)j+1

(
Γ(β)

Γ(α(j + 1) + β)

)
. (11)

Remark 1. It can be seen that, when specialising the parameters λ, l, r, m, α, β, q, a1, .., al and b1, ..., br, it is
observed that the defined operator Dα,m

β [al , br, λ] f (z) leads to various operators. Examples are presented for
further illustration.

• For λ = 1, l = 1, r = 0, β = 1, α = 0, a1 = q and q → 1 we get the operator Im f (z) studied by
El–Ashwah and Aouf [21].

• For m = 0, α = 0, β = 1, ai = qai , bk = qbk , ai > 0, bk > 0, (i = 1, ..., l; k = 1, .., r, l = r + 1) and
q → 1 we get the operator Hl,r[ai, bk] f (z) which was investigated by Liu and Srivastava [22].
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• For m = 0, l = 2, r = 1, β = 1, α = 0, a2 = q and q → 1 we get the operator N [a1, b1] f (z) studied by
Liu and Srivastava [23].

• For m = 0, l = 1, r = 0, β = 1, α = 0, a1 = λ + 1 and q → 1 we get the operator Dλ f (z) =

(1/z(1 − z)λ+1) ∗ f (z) (λ > −1) was introduced by Ganigi and Uralegaddi [24], and then it was
generalised by Yang [25].

A range of meromorphic function subclasses have been explored by, for example,
Challab et al. [26], Elrifai et al. [27], Lashin [28], Liu and Srivastava [22] and others. These works have
inspired our introduction of the new subclass T m

α,β(al , br, λ; D, H, d) of Σ, which involves the operator
Dα,m

β [al , br, λ] f (z), and is shown as follows:

Definition 1. For −1 ≤ H < D ≤ 1, the function f ∈ Σ is in the class T m
α,β(al , br, λ; D, H, d) if it satisfies

the inequality

1 − 1
d

⎧⎨⎩ z(Dα,m
β [al , br, λ] f (z))

′

Dα,m
β [al , br, λ] f (z)

+ 1

⎫⎬⎭ ≺ 1 + Dz
1 + Hz

, (12)

or, equivalently, to: ∣∣∣∣∣∣∣∣∣∣∣

z(Dα,m
β [al , br, λ] f (z))

′

Dα,m
β [al , br, λ] f (z)

+ 1

H
z(Dα,m

β [al , br, λ] f (z))
′

Dα,m
β [al , br, λ] f (z)

+ [(D − H)d + H]

∣∣∣∣∣∣∣∣∣∣∣
< 1 (13)

Let Σ∗ denote the subclass of Σ consisting of functions of the form:

f (z) = z−1 +
∞

∑
j=1

|aj|zj. (14)

Now, we define the class T m,∗
α,β (al , br, λ; D, H, d) by

T m,∗
α,β (al , br, λ; D, H, d) = T m

α,β(al , br, λ; D, H, d) ∩ Σ∗.

2. Main Result

This section presents work to acquire sufficient conditions in which (14) gives the function f
within the class T m,∗

α,β (al , br, λ; D, H, d), as well as demonstrates that this condition is required for
functions which belong to this class. In addition, linear combinations, growth and distortion bounds,
closure theorems and extreme points are presented for the class T m,∗

α,β (al , br, λ; D, H, d).
In our first theorem, we begin with the necessary and sufficient conditions for functions f in

T m,∗
α,β (al , br, λ; D, H, d).

Theorem 1. Let the function f (z) be of the form (14). Then the function f (z) ∈ T m,∗
α,β (al , br, λ; D, H, d) if and

only if

∞

∑
j=1

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)|aj| ≤ |d|(D − H). (15)
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Proof. Suppose that the inequality (15) holds true, we obtain∣∣∣∣∣∣∣∣∣∣∣

z(Dα,m
β [al , br, λ] f (z))

′

Dα,m
β [al , br, λ] f (z)

+ 1

H
z(Dα,m

β [al , br, λ] f (z))
′

Dα,m
β [al , br, λ] f (z)

+ [(D − H)d + H]

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
z(Dα,m

β [al , br, λ] f (z))
′
+Dα,m

β [al , br, λ] f (z)

Hz(Dα,m
β [al , br, λ] f (z))′ + [d(D − H) + H]Dα,m

β [al , br, λ] f (z)

∣∣∣∣∣∣
=

∣∣∣∣∣ ∑∞
j=1(j + 1) [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)|aj|zj+1

d(D − H) + ∑∞
j=1 [H(j + 1) + d(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)|aj|zj+1

∣∣∣∣∣
< 1 (z ∈ U∗).

Then, by the maximum modulus theorem, we have f (z) ∈ T m,∗
α,β (al , br, λ; D, H, d).

Conversely, assume that f (z) is in the class T m,∗
α,β (al , br, λ; D, H, d) with f (z) of the form (14),

then we find from (13) that∣∣∣∣∣∣
z(Dα,m

β [al , br, λ] f (z))
′
+Dα,m

β [al , br, λ] f (z)

Hz(Dα,m
β [al , br, λ] f (z))′ + [d(D − H) + H]Dα,m

β [al , br, λ] f (z)

∣∣∣∣∣∣
=

∣∣∣∣∣ ∑∞
j=1(j + 1) [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)|aj|zj+1

d(D − H) + ∑∞
j=1 [H(j + 1) + d(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)|aj|zj+1

∣∣∣∣∣
< 1,

(16)

since the above inequality is genuine for all z ∈ U∗, choose values of z on the real axis. After clearing
the denominator in (16) and letting z → 1− through real values, we get

∞

∑
j=1

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)|aj| ≤ |d|(D − H).

Thus, we obtain the desired inequality (15) of Theorem 1.

Corollary 1. If the function f of the form (14) is in the class T m,∗
α,β (al , br, λ; D, H, d) then

|aj| ≤
|d|(D − H)

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)
(j ≥ 1),

the result is sharp for the function

f (z) = z−1 +
|d|(D − H)

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)
zj (j ≥ 1). (17)

Growth and distortion bounds for functions belonging to the class T m,∗
α,β (al , br, λ; D, H, d) will be

given in the following result:
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Theorem 2. If a function f given by (14) is in the class T m,∗
α,β (al , br, λ; D, H, d) then for |z| = r, we have:

1
r
− |d|(D − H)

[2(1 − H)− |d|(D − H)]∇(2,α,β)(al , br)
r ≤ | f (z)| ≤ 1

r
+

|d|(D − H)

[2(1 − H)− |d|(D − H)]∇(2,α,β)(al , br)
r,

and

1
r2 − |d|(D − H)

[2(1 − B)− |d|(D − H)]∇(2,α,β)(al , br)
≤ | f

′
(z)| ≤ 1

r2 +
|d|(D − H)

[2(1 − H)− |d|(D − H)]∇(2,α,β)(al , br)
.

Proof. By Theorem 1,

[2(1 − H)− |d|(D − H)]∇(2,α,β)(al , br)
∞

∑
j=1

|aj|

≤
∞

∑
j=1

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)|aj| ≤ |d|(D − H),

which yields:
∞

∑
j=1

|aj| ≤
|d|(D − H)

[2(1 − H)− |d|(D − H)]∇(2,α,β)(al , br)
.

Therefore,

| f (z)| ≤ 1
|z| + |z|

∞

∑
j=1

|aj| ≤
1
|z| +

|d|(D − H)

[2(1 − H)− |d|(D − H)]∇(2,α,β)(al , br)
|z|,

and

| f (z)| ≥ 1
|z| − |z|

∞

∑
j=1

|aj| ≥
1
|z| − |d|(D − H)

[2(1 − H)− |d|(D − H)]∇(2,α,β)(al .br)
|z|.

Now, by differentiating both sides of (14) with respect to z, we get:

| f ′(z)| ≤ 1
|z|2 +

∞

∑
j=1

|aj| ≤
1

|z|2 +
|d|(D − H)

[2(1 − H)− |d|(D − H)]∇(2,α,β)(al , br)
,

and

| f ′(z)| ≥ 1
|z|2 −

∞

∑
j=1

|aj| ≥
1

|z|2 − |d|(D − H)

[2(1 − H)− |d|(D − H)]∇(2,α,β)(al , br)
.

Next, we determine the radii of meromorphic starlikeness and convexity of order ρ for functions
in the class T m,∗

α,β (al , br, λ; D, H, d).

Theorem 3. Let the function f given by (14) be in the class T m,∗
α,β (al , br, λ; D, H, d). Thus, we have:

(i) f is meromorphically starlike of order ρ in the disc |z| < r1, that is

Re

{
− z f

′
(z)

f (z)

}
> ρ (|z| < r1, 0 ≤ ρ < 1),

where

r1 = inf
j≥1

{
(1 − ρ) [(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)

|d|(D − H)(j + ρ)

} 1
j+1

. (18)
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(ii) f is meromorphically convex of order ρ in the disc |z| < r2, that is

Re

{
−
(

1 +
z f

′′
(z)

f ′(z)

)}
> ρ (|z| < r2, 0 ≤ ρ < 1),

where

r2 = inf
j≥1

{
(1 − ρ) [(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)

j|d|(D − H)(j + ρ)

} 1
j+1

. (19)

Proof. (i) From the definition (14), we can get:∣∣∣∣∣∣∣∣∣
z f

′
(z)

f (z)
+ 1

z f
′
(z)

f (z)
− 1 + 2ρ

∣∣∣∣∣∣∣∣∣ ≤
∑∞

j=1(j + 1)|aj||z|j+1

2(1 − ρ)− ∑∞
j=1(j − 1 + 2ρ)|aj||z|j+1 .

Then, we have: ∣∣∣∣∣∣∣∣∣
z f

′
(z)

f (z)
+ 1

z f
′
(z)

f (z)
− 1 + 2ρ

∣∣∣∣∣∣∣∣∣ ≤ 1 (0 ≤ ρ < 1),

if
∞

∑
j=1

(
j + ρ

1 − ρ

)
|aj||z|j+1 ≤ 1. (20)

Thus, by Theorem 1, the inequality (20) will be true if(
j + ρ

1 − ρ

)
|z|j+1 ≤

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)

|d|(D − H)
,

then

|z| ≤
{
(1 − ρ) [(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)

|d|(D − H)(j + ρ)

} 1
j+1

.

The last inequality leads us immediately to the disc |z| < r1, where r1 is given by (18).
(ii) In order to prove the second affirmation of Theorem 3, we find from (14) that:∣∣∣∣∣∣∣∣∣

2 +
z f

′′
(z)

f ′(z)
z f

′′
(z)

f ′(z)
+ 2ρ

∣∣∣∣∣∣∣∣∣ ≤
∑∞

j=1 j(j + 1)|aj||z|j+1

2(1 − ρ)− ∑∞
j=1 j(j − 1 + 2ρ)|aj||z|j+1 .

Thus, we have the desired inequality:∣∣∣∣∣∣∣∣∣
2 +

z f
′′
(z)

f ′(z)
z f

′′
(z)

f ′(z)
+ 2ρ

∣∣∣∣∣∣∣∣∣ ≤ 1 (0 ≤ ρ < 1),

if
∞

∑
j=1

j
(

j + ρ

1 − ρ

)
|aj||z|j+1 ≤ 1. (21)

227



Symmetry 2019, 11, 210

Thus, by Theorem 1, the inequality (21) will be true if

j
(

j + ρ

1 − ρ

)
|z|j+1 ≤

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)

|d|(D − H)
,

then

|z| ≤
{
(1 − ρ) [(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)

j|d|(D − H)(j + ρ)

} 1
j+1

.

The last inequality readily yields the disc |z| < r2, where r2 is given by (19).

The closure theorems and extreme points of the class T m,∗
α,β (al , br, λ; D, H, d) will now

be determined.

Theorem 4. The class T m,∗
α,β (al , br, λ; D, H, d) is closed under convex linear combinations.

Proof. Assume that the functions

fi(z) = z−1 +
∞

∑
j=1

|aj,i|zj (i = 1, 2),

are in T m,∗
α,β (al , br, λ; D, H, d). It suffices to show that the function h defined by

h(z) = (1 − c) f1(z) + c f2(z) (0 ≤ c ≤ 1),

is in the class T m,∗
α,β (al , br, λ; D, H, d), since

h(z) = z−1 +
∞

∑
j=1

[
(1 − c)|aj,1|+ c|aj,2|

]
zj (0 ≤ c ≤ 1).

In view of Theorem 1, we have:

∞

∑
j=1

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β) ·
{
(1 − c)|aj,1|+ c|aj,2|

}
= (1 − c)

∞

∑
j=1

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)|aj,1|

+ c
∞

∑
j=1

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)|aj,2|

≤ (1 − c)|d|(D − H) + c|d|(D − H) = |d|(D − H),

which shows that h(z) ∈ T m,∗
α,β (al , br, λ; D, H, d).

Theorem 5. Let fo(z) =
1
z

and

fj(z) =
1
z
+

|d|(D − H)

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)
zj (j ≥ 1).

Then f ∈ T m,∗
α,β (al , br, λ; D, H, d) if and only if it can be expressed in the form

f (z) =
∞

∑
j=0

νj f j(z), (22)
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where

νj ≥ 0 and
∞

∑
j=0

νj = 1.

Proof. Let the function f (z) be expressed in the form given by (22), then

f (z) = z−1 +
∞

∑
j=1

νj
|d|(D − H)

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)
zj

and for this function, we have:

∞

∑
j=1

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)(al , br)

× νj
|d|(D − H)

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)

=
∞

∑
j=1

νj|d|(D − H) = |d|(D − H)(1 − ν0) ≤ |d|(D − H)

The condition (15) is satisfied. Thus, f ∈ T m,∗
α,β (al , br, λ; D, H, d)

Conversely, we suppose that f ∈ T m,∗
α,β (al , br, λ; D, H, d), since

|aj| ≤
|d|(D − H)

[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)
(j ≥ 1),

we set

νj =
[(j + 1)(1 − H)− |d|(D − H)] [1 + (j − 1)λ]m ∇(j+1,α,β)

|d|(D − H)
|aj|, (j ≥ 1),

and

ν0 = 1 −
∞

∑
j=1

νj,

so it follows that

f (z) =
∞

∑
j=0

νj f j(z).

This completes the assertion of Theorem 5.

3. Conclusions

Studying the theory of analytical functions has been an area of concern for many researchers.
A more specific field is the study of inequalities in complex analysis. Literature review indicates lots of
studies based on the classes of analytical functions. The interplay of geometry and analysis represents
a very important aspect in complex function theory study. This rapid growth is directly linked to the
relation that exists between analytical structure and geometric behaviour. Motivated by this approach,
in the current study, we have introduced a new meromorphic function subclass which is related to
both the Mittag–Leffler function and q-hypergeometric function, and we have obtained sufficient and
necessary conditions in relation to this subclass. Linear combinations, distortion theory and other
properties are also explored. For further research we could study the certain classes related to functions
with respect to symmetric points associated with hypergeometric and Mittag–Leffler functions.
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Abstract: In this paper, we present two kinds of Hermite-type collocation methods for linear Volterra
integral equations of the second kind with highly oscillatory Bessel kernels. One method is direct
Hermite collocation method, which used direct two-points Hermite interpolation in the whole
interval. The other one is piecewise Hermite collocation method, which used a two-points Hermite
interpolation in each subinterval. These two methods can calculate the approximate value of function
value and derivative value simultaneously. Both methods are constructed easily and implemented
well by the fast computation of highly oscillatory integrals involving Bessel functions. Under some
conditions, the asymptotic convergence order with respect to oscillatory factor of these two methods
are established, which are higher than the existing results. Some numerical experiments are included
to show efficiency of these two methods.

Keywords: Volterra integral equations; highly oscillatory Bessel kernel; Hermite interpolation;
direct Hermite collocation method; piecewise Hermite collocation method

1. Introduction

Volterra integral equations arise from many mathematical problems in engineering and
physics [1–3]. For example, the numerical solution of a scalar retarded potential integral equation
posted on an infinite flat surface,

∫
R2

u(x′, t − |x′ − x|)
|x′ − x| dx′ = a(x, t) on R

2 × (0, T),

where u and a satisfy the causality condition u ≡ 0, a ≡ 0 for all t ≤ 0. The continuous Fourier
transform (CFT) of a function g ∈ L2(R2) is g̃ ∈ L2(R2) defined by g̃(�ω) =

∫
R2 g(x)e−ix�ωdx. When

a(·, t), u(·, t) ∈ L2(R2) for t ∈ (0, T), by taking CFT, Davies and Duncan [2] reformulated it as the
following Volterra integral equation of the first kind with highly oscillatory Bessel kernel,

2π
∫ t

0
ũ(�ω, t − R)J0(ωR)dR = ã(�ω, t), f or �ω ∈ R

2, t ∈ (0, T), (1)

where Jm(x) is the first-kind Bessel function of order m, which is the solution of the Bessel equation
d2y
dx2 + 1

x
dy
dx + (1 − m2

x2 )y = 0. In 2005, for the study of the problem of the electromagnetic scattering
from a large cavity, G. Bao and W. W. Sun [1] reformulated (1) as a Volterra integral equation with
Cauchy singular and highly oscillatory Hankel kernel.
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The Bessel kernel of the above Equation (1) has a parameter ω. Obviously, when ω $ 1, the Bessel
kernel function becomes highly oscillatory. When resort to numerical solutions of Equation (1),
the computation of integrals involved Bessel kernel functions is inevitable. However, the classical
quadrature rules, such as Newton-Cotes rule, Clenshaw-Curtis rule or Gauss rule, are failed to calculate
this kind of integral. Hence, adopting suitable quadrature rules for the corresponding highly oscillatory
integrals plays an important role in obtaining the numerical solution.

The function J0(ω(x − t)) satisfies the condition of Theorem 2.1.8 ([4], p. 64). Upon differentiation
with respect to x, the first-kind Volterra integral Equation (1) can be rewritten as the second-kind
Volterra integral equations. In this paper, we treat the following Volterra integral equation of the
second kind with highly oscillatory Bessel kernel

u(x)−
∫ x

0
Jm(ω(x − t))u(t)dt = f (x), x ∈ [0, 1], t ∈ I := [0, x], (2)

where u(x) is an unknown function, f (x) is a given smooth function, Jm is the Bessel function of the
first kind of order m ≥ 0 and the frequency ω is a parameter. When ω $ 1, the Bessel kernel function
is highly oscillatory, and this makes solving Equation (2) a challenging problem.

In recent years, there has been tremendous interest in developing methods for solving
highly oscillatory Volterra integral equation, such as discontinuous Galerkin method [5], Filon-type
method [6,7], collocation method [4,8,9], collocation boundary value method [10,11], collocation
method on uniform mesh [12], collocation method on graded mesh [13].

Xiang and Brunner [14] presented three methods: direct Filon method, piecewise constant
collocation method and piecewise linear collocation method for the equation,

u(x)−
∫ x

0
Jm(ω(x − t))

u(t)
(x − t)α

dt = f (x), x ∈ [0, 1], t ∈ I := [0, x], 0 ≤ α < 1, f (x) ∈ C1[0, 1].

Based on the asymptotic analysis of the solution, they gave corresponding convergence rates
in terms of the frequency for these methods. For the case of the α = 0, f ∈ C2[0, 1], Fang et al. [15]
showed that the optimal convergence with respect to the ω are O(ω−2), O(ω−3/2), O(ω−2) respectively.
These three methods, same as other existing methods, are constructed by original integral equation or
its equivalent equation. Since only the function value in start point is used, which leads to low error
precision. In this paper, we present two kinds of Hermite-type collocation methods by combining
original integral equation and its differential equation. The new methods will use the values of
function and derivative function in start point, which gets higher error precision than that of the above
three methods.

The rest of the paper is organized as follows. In Section 2, we present two efficient methods for
Equation (2): direct Hermite collocation method and piecewise Hermite collocation method. We show
the error bound with respect to the frequency ω In Section 3. In Section 4, several numerical examples
are included to verify the results of theoretical analysis. It is observed from numerical experiments
that these methods have higher accuracy as compared with the Direct Filon method in [14].

2. Hermite-Type Collocation Methods

2.1. Direct Hermite Collocation Method (Algorithm 1)

Differentiate both sides of Equation (2),

u′(x)− Jm(0)u(x)−
∫ x

0
(Jm(ω(x − t))′u(t)dt = f ′(x). (3)
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Since

(Jm(ω(x − t))′ =

{ ω
2 (−Jm+1(ω(x − t)) + Jm−1(ω(x − t))), m > 0,

−ω J1(ω(x − t)), m = 0,
(4)

it follows that for the case m = 0,

u′(x)− J0(0)u(x) + ω
∫ x

0
(J1(ω(x − t))u(t)dt = f ′(x), (5)

and for m > 0,

u′(x)− Jm(0)u(x) +
ω

2

∫ x

0
(Jm+1(ω(x − t))− Jm−1(ω(x − t)))u(t)dt = f ′(x). (6)

Let us denote the Hermite interpolant polynomial between u(0) and u(xj) by

uh(x) = H0ju(0) + H1ju(xj) + H2ju′(0) + H3ju′(xj),

where the polynomials

H0j =

(
1 +

2x
xj

)(
x − xj

xj

)2

, H1j =

(
1 + 2

x − xj

−xj

)(
x
xj

)2

,

H2j =x

(
x − xj

−xj

)2

, H3j = (x − xj)

(
x
xj

)2

,

mean the fundamental polynomials with respect to the nodes 0 and xj. Then the collocation
systems follow

ud
j −

∫ xj

0
Jm(ω(xj − t))(H0ju0 + H1jud

j + H2ju′
0 + H3ju′d

j )dt = f j, (7)

u′d
j − Jm(0)ud

j +
ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t))(H0ju0 + H1jud

j + H2ju′
0 + H3ju′d

j )dt = f ′j , (8)

where ud
j denotes an approximation of u(xj), u′d

j denotes an approximation of u′(xj). That is

(1 − I(1, j, m))ud
j − I(3, j, m)u′d

j = f j + I(0, j, m)u0 + I(2, j, m)u′
0, (9)

(
−Jm(0) +

ω

2
(

I(1, j, m + 1)− I(1, j, m − 1)
))

ud
j +

(
1 +

ω

2
(

I(3, j, m + 1)− I(3, j, m − 1)
))

u′d
j

= f ′j − ω

2
(I(0, j, m + 1)− I(0, j, m − 1))u0 − ω

2
(I(2, j, m + 1)− I(2, j, m − 1))u′

0.
(10)

Solving these systems, we get direct Hermite appromximate schemes for m = 0,

ud
j =

( f j + I(0, j, 0)u0 + I(2, j, 0)u′
0)(1 + ωI(3, j, 1)) + ( f ′j − ωI(0, j, 1)u0 − ωI(2, j, 1)u′

0)I(3, j, 0)

(1 − I(1, j, 0))(1 + ωI(3, j, 1)) + I(3, j, 0)(−1 + ωI(1, j, 1))
, (11)

u
′d
j =

( f j + I(0, j, 0)u0 + I(2, j, 0)u′
0)(1 − ωI(1, j, 1)) + ( f ′j − ωI(0, j, 1)u0 − ωI(2, j, 1)u′

0)(1 − I(1, j, 0))

−I(3, j, 0)(1 − ωI(1, j, 1)) + (1 + ωI(3, j, 0))(1 − I(1, j, 0))
, (12)

for m > 0,

ud
j =

b1a22 − b2a12

a11a22 − a21a12
, u

′d
j =

a11b2 − a21b1

a11a22 − a21a12
, (13)

234



Symmetry 2019, 11, 168

where

a11 = 1 − I(1, j, m), a12 = −I(3, j, m), a21 = −Jm(0) +
ω

2
(I(1, j, m + 1)− I(1, j, m − 1)),

a22 = 1 +
ω

2
(I(3, j, m + 1)− I(3, j, m − 1)), b1 = f j + I(0, j, m)u0 + I(2, j, m)u′

0,

b2 = f ′j − ω

2
(I(0, j, m + 1)− I(0, j, m − 1))u0 − ω

2
(I(2, j, m + 1)− I(2, j, m − 1))u′

0.

I(k, j, m) denotes the moment

I(k, j, m) =
∫ xj

0
Hkj Jm(ω(xj − t))dt k = 0, 1, 2, 3.

The specific calculation formula follows

I(0, j, m) =
3
x2

j
L(2, m, ω, xj)−

2
x3

j
L(3, m, ω, xj), (14)

I(1, j, m) =L(0, m, ω, xj)−
3
x2

j
L(2, m, ω, xj) +

2
x3

j
L(3, m, ω, xj), (15)

I(2, j, m) =
1
xj

L(2, m, ω, xj)−
1
x2

j
L(3, m, ω, xj), (16)

I(3, j, m) =− L(1, m, ω, xj) +
2
xj

L(2, m, ω, xj)−
1
x2

j
L(3, m, ω, xj). (17)

The moments L[μ, m, ω, a] =
∫ a

0
tμ Jm(ωt)dt can be efficiently calculated by

L[μ, m, ω, a] =
2μΓ

(
m+μ+1

2

)
a2ωμ+1Γ

(
m−μ+1

2

) +
(m + μ − 1)Jm(ωa)s(2)μ−1,m−1(ωa)− Jm−1(ωa)s(2)μ,m(ωa)

aωμ , (18)

where Γ(x) =
∫ ∞

0 e−ttx−1dt denotes the Gamma function and s(2)μ,ν(z) denotes the Lommel function of
the second kind [16,17]. Once ω is large, the Lommel function can be efficiently approximated
by truncating

s(2)μ,ν(z) = zμ−1[1 − (μ−1)2−ν2

z2 + . . . + (−1)p [(μ−1)2−ν2]...[(μ−2p+1)2−ν2]
z2p ] + O(zμ−2p−2) (19)

Algorithm 1: direct Hermite collocation method.
1. Compute L[i, m, ω, xj], i = 0, 1, 2, 3 by (18);
2. Compute I(k, j, m), k = 0, 1, 2, 3 by (14)–(17) ;
3. Compute ud

j and u′d
j by (13).

2.2. Piecewise Hermite Collocation Method

To obtain higher-order approximations, a direct improvement of the direct Hermite collocation
method is the composite Hermite collocation method, which is so-called piecewise Hermite collocation
method (Algorithm 2), that is split the interval into several bins and apply the formula over each bin
independently of the other.

Without loss of generality, suppose that I� = {xj = j ∗ h : j = 0, 1, · · · , N} is a uniform
nodal point and û(x) is an approximation of u(x) such that û(x)|[xj−1, xj]is the Hermite interpolant
polynomial between u(xj−1) and u(xj) for j = 1, . . . , N .

235



Symmetry 2019, 11, 168

Let us define

û(x) = Ĥ0ju(xj−1) + Ĥ1ju(xj) + Ĥ2ju′(xj−1) + Ĥ3ju′(xj),

where the polynomials

Ĥ0j =
(

1 + 2
x−xj−1
xj−xj−1

) ( x−xj
xj−xj−1

)2
=
(

1 + 2
x−xj−1

h

) ( x−xj
h

)2
,

Ĥ1j =
(

1 + 2
xj−x

xj−xj−1

) ( x−xj−1
xj−xj−1

)2
=
(

1 + 2
xj−x

h

) ( x−xj−1
h

)2
,

Ĥ2j = (x − xj−1)
( x−xj

xj−xj−1

)2
= (x − xj−1)

( x−xj
h

)2
, Ĥ3j = (x − xj)

( x−xj−1
xj−xj−1

)2
= (x − xj)

( x−xj−1
h

)2

denote the fundamental polynomials with respect to the nodes xj−1 and xj. Then the collocation
systems follow

uj −
j−1

∑
i=1

∫ xi

xi−1

Jm(ω(xj − t))ûi(t)dt −
∫ xj

xj−1

Jm(ω(xj − t))ûj(t)dt = f j, (20)

u′
j − Jm(0)uj +

ω

2

j−1

∑
i=1

∫ xi

xi−1

(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)) ∗ ûi(t)dt

+
ω

2

∫ xj

xj−1

(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)) ∗ ûj(t)dt = f ′j . (21)

This leads to the piecewise Hermite collocation method[
b11 b12

b21 b22

] [
uj
u′

j

]
=

[
r1

r2

]
, (22)

where

b11 =1 − Ajj1m, b12 = −Ajj3m, b21 = −Jm(0) +
ω

2
(Ajj1(m+1) − Ajj1(m−1)),

b22 =1 +
ω

2
(Ajj3(m+1) − Ajj3(m−1)),

r1 = f j +
j−1

∑
i=1

(Aij0mui−1 + Aij1mui + Aij2mu′
i−1 + Aij3mu′

i) + Ajj0muj−1 + Ajj2mu′
j−1,

r2 = f ′j − ω

2

j−1

∑
i=1

(Aij0(m+1) − Aij0(m−1))ui−1 + (Aij1(m+1) − Aij1(m−1))ui

+ (Aij2(m+1) − Aij2(m−1))u
′
i−1 + (Aij3(m+1) − Aij3(m−1))u

′
i

− ω

2

(
(Ajj0(m+1) − Ajj0(m−1))uj−1 + (Ajj2(m+1) − Ajj2(m−1))u

′
j−1

)
, (23)

Aijkm denotes the moment

Aijkm =
∫ xi

xi−1

Ĥki Jm(ω(xj − t))dt k = 0, 1, 2, 3.

The specific calculation formula is following that
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Aij0m = (L(0, m, ω, (j − i + 1)h)− L(0, m, ω, (j − i)h)) (2j − 2i + 3)(j − i)2

− (L(1, m, ω, (j − i + 1)h)− L(1, m, ω, (j − i)h)) (j − i + 1)(j − i)6/h

+ (L(2, m, ω, (j − i + 1)h)− L(2, m, ω, (j − i)h)) 3(2j − 2i + 1)/h2

− (L(3, m, ω, (j − i + 1)h)− L(3, m, ω, (j − i)h)) 2/h3,

Aij1m = (L(0, m, ω, (j − i + 1)h)− L(0, m, ω, (j − i)h)) (j − i + 1)2(−2j + 2i + 1)

+ (L(1, m, ω, (j − i + 1)h)− L(1, m, ω, (j − i)h)) (j − i + 1)(j − i)6/h

− (L(2, m, ω, (j − i + 1)h)− L(2, m, ω, (j − i)h)) 3(2j − 2i + 1)/h2

+ (L(3, m, ω, (j − i + 1)h)− L(3, m, ω, (j − i)h)) 2/h3,

Aij2m = (L(0, m, ω, (j − i + 1)h)− L(0, m, ω, (j − i)h)) (j − i + 1)(j − i)2h

− (L(1, m, ω, (j − i + 1)h)− L(1, m, ω, (j − i)h)) (3j − 3i + 2)(j − i)

+ (L(2, m, ω, (j − i + 1)h)− L(2, m, ω, (j − i)h)) (3j − 3i + 1)/h

− (L(3, m, ω, (j − i + 1)h)− L(3, m, ω, (j − i)h)) /h2,

Aij3m = (L(0, m, ω, (j − i + 1)h)− L(0, m, ω, (j − i)h)) (j − i + 1)2(j − i)h

− (L(1, m, ω, (j − i + 1)h)− L(1, m, ω, (j − i)h)) (j − i + 1)(3j − 3i + 1)

+ (L(2, m, ω, (j − i + 1)h)− L(2, m, ω, (j − i)h)) (3j − 3i + 2)/h

− (L(3, m, ω, (j − i + 1)h)− L(3, m, ω, (j − i)h)) /h2. (24)

Algorithm 2: piecewise Hermite collocation method.
1. Compute L[i, m, ω, xj], i = 0, 1, 2, 3 by (18);
2. Compute Aijkm, k = 0, 1, 2, 3 by (24) ;
3. Compute uj and u′

j by (22).

3. Error Analyses

Firstly, we introduce some useful lemmas, which will be used to prove theorems for the
later analyses.

Lemma 1 ([15], Lemma 1). For any integers μ, ν ≥ 0 and x ∈ (0, 1], the following integral

ω
∫ x

0
Jμ(ωt)Jν(ω(x − t))dt (25)

is uniformly bounded with respect to ω > 0.

Lemma 2 ([15], Lemma 2). Suppose gω(t) ∈ C[0, 1] and gω(t) = O(1) as ω → ∞. Then for any v > 0 and
x ∈ (0, 1], it is true that the integral ∫ x

0

gω(t)Jν(ωt)
t

dt (26)

is uniformly bounded with respect to ω > 0.

Lemma 3 ([18], Lemma 2.1). For any ω $ 1,m ≥ 0 and hω(t) satisfies

•
∫ 1

0
|h′

ω(s)|ds is integrable;

•
∫ 1

0
|h′

ω(s)|ds and hω(t) are bounded in ω ∈ (0, ∞] for fixed t, respectively,
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it is true that ∣∣∣∣∫ 1

0
hω(t)tk Jm(ωt)dt

∣∣∣∣ ≤
{

K1ω−1−k, −1 < k < 1
2 ,

K2ω−3/2, k ≥ 1
2 ,

(27)

where the constants K1 and K2 are independent of ω.

Let A : C(I) → C(I) denote the linear Volterra integral operator defined by

(A u)(t) :=
∫ x

0
Jm(ω(x − t))u(t)dt, x ∈ [0, 1], t ∈ I := [0, x],

and I denote identity operator. Then Equation (2) can be reformulated more compactly as

(I − A ) u = f . (28)

To get the expression of (1)–(3) order derivatives of the solution of (2), we first discuss the relation
between the integral operator A and the differential operator D.

Theorem 1. Assume f ∈ C3[0, 1] . The Volterra operator A n := C(I) → C(I) defined by (A nu)(x) :=∫ x
0 Kn(t, x)u(t)dt, n ≥ 1, where Kn(t, x) are the iterated kernels. Then the solution of (2) satisfies

u =
∞

∑
j=0

A j f , (29)

Du =
∞

∑
j=0

(
f (0)A j−1r +A jD f

)
, (30)

D2u =
∞

∑
j=0

(
f (0)r(0)A j−2r + f (0)A j−1Dr + f ′(0)A j−1r +A jD2 f

)
, (31)

D3u =
∞

∑
j=0

(
f (0)r(0)

(
r(0)A j−3r +A j−2Dr

)
+ f (0)

(
r′(0)A j−2r +A j−1D2r

)
+ f ′(0)

(
r(0)A j−2r +A j−1Dr

)
+
(

f ′′(0)A j−1r +A jD3 f
))

. (32)

where, r(x) = Jm(ωx) and A j = 0 if j < 0. Moreover, we have both of ‖Du‖∞,
∥∥D2u − f (0)Dr − D2 f

∥∥
∞

and ‖D3u − f (0)r(0)Dr − f (0)D2r − f ′(0)Dr − D3 f ‖∞ are uniformly bounded with respect to ω.

Proof.

A j f =
∫ x

0
Jm(ω(x − s1))

∫ s1

0
Jm(ω(s1 − s2)) . . .

∫ sj−1

0
Jm(ω(sj−1 − s)) f (s)dsdsj−1 . . . ds1. (33)

Let s′1 = x − s1, s′2 = s1 − s2, . . . , s′j−1 = sj−2 − sj−1, s′ = sj−1 − s, it follows that

A j f =
∫ x

0
Jm(ωs′1)

∫ x−s′1

0
Jm(ωs′2) . . .

∫ x−∑
j−1
k=1 s′k

0
Jm(ωs′) f

(
x −

j−1

∑
k=1

s′k − s′
)

ds′ds′j−1 . . . ds′1. (34)

Then

DA j f = f (0)
∫ x

0
Jm(ωs′1)

∫ x−s′1

0
Jm(ωs′2) . . .

∫ x−∑
j−2
k=1 s′k

0
Jm(ωs′j−1)Jm

(
ω(x −

j−1

∑
k=1

s′k)

)
ds′j−1 . . . ds′1

+
∫ x

0
Jm(ωs′1)

∫ x−s′1

0
Jm(ωs′2) . . .

∫ x−∑
j−1
k=1 s′k

0
Jm(ωs′) f ′

(
x −

j−1

∑
k=1

s′k − s′
)

ds′ds′j−1 . . . ds′1

= f (0)A j−1r +A jD f .

(35)
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Since

u =
∞

∑
j=0

A j f , (36)

this series is uniformly absolutely convergent, therefore we can differentiate it term by term

Du =
∞

∑
j=0

(
f (0)A j−1r +A jD f

)
,

D2u =
∞

∑
j=0

(
f (0)r(0)A j−2r + f (0)A j−1Dr + f ′(0)A j−1r +A jD2 f

)
,

D3u =
∞

∑
j=0

(
f (0)r(0)(r(0)A j−3r +A j−2Dr) + f (0)(r′(0)A j−2r +A j−1D2r)

+ f ′(0)(r(0)A j−2r +A j−1Dr) + ( f ′′(0)A j−1r +A jD3 f )
)

,

where A j = 0 if j < 0.

If we define

‖A j‖ := sup
‖A jφ‖∞

‖φ‖∞
= max

x∈I

∫ x

0
|Kj(x, s)|ds

and recall that ‖A jφ‖∞ ≤ ‖A j‖‖φ‖∞, we find

Remark 1.

‖A j‖ ≤ max{|Jm(ω(x − s))| : (x, s) ∈ I × (0, x)}/j! ≤ 1/j!,

‖Du‖ ≤
∞

∑
j=0

(
f (0)‖A j−1‖‖r‖+ ‖A j‖‖D f ‖

)
,∥∥∥∥∥D2u − f (0)

∞

∑
j=0

A j−1Dr

∥∥∥∥∥ ≤
∞

∑
j=0

(
f (0)r(0)‖A j−2‖‖r‖+ f ′(0)‖A j−1‖‖r‖+ ‖A j‖‖D2 f ‖

)
,

‖D3u −
∞

∑
j=0

( f (0)r(0)A j−2Dr − f (0)A j−1D2r − f ′(0)A j−1Dr) ≤
∞

∑
j=0

(| f (0)r2(0)|‖A j−3‖‖r‖

+| f (0)r′(0)|‖A j−2‖‖r‖+ f ′(0)r(0)|‖A j−2‖‖r‖+ | f ′′(0)|‖A j−1‖‖r‖+ ‖A j‖‖D3 f ‖,

then, we have ‖Du‖∞,
∥∥D2u − f (0)Dr − D2 f

∥∥
∞ and ‖D3u − f (0)r(0)Dr − f (0)D2r − f ′(0)Dr −

D3 f ‖∞ are uniform bounded with respect to ω.

Theorem 2. Assuming f ∈ C3[0, 1], the pointwise error of the direct Hermite collocation method for (2) satisfies

|u(xi)− ud
i | =

{
O(ω−3), f (0) = 0

O(ω−2), f (0) 	= 0
ω → ∞, i = 1, 2, 3, . . . , N. (37)

|u′(xi)− u′d
i | =

{
O(ω−2), f (0) = 0

O(ω−1), f (0) 	= 0
ω → ∞, i = 1, 2, 3, . . . , N. (38)
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Proof. We only prove a situation m > 0. For the case m = 0, the proof method is similar.
By the definition of the direct Hermite collocation method, for any xi ∈ IN , it follows that

⎧⎨⎩ E(xj)−
∫ xj

0 Jm(ω(xj − t))E(t)dt = 0,

E′(xj)− Jm(0)E(t) + ω
2

∫ xj
0 (Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))E(t)dt = 0,

(39)

where E(x) = u(x)− uh(x) be the error function. Interpolating E(x) at x = 0 and x = xj, we have

E(x) = H1jE(xj) + H3jE′(xj) + R(x), (40)

where R(x) denotes the remainder of the Hermite interpolation. As we know E(x) satisfies that
E(0) = E′(0) = 0. Substituting (40) into (39), we are led to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E(xj)−

∫ xj
0 Jm(ω(xj − t))(H1jE(xj) + H3jE′(xj) + R(t))dt = 0,

E′(xj)− Jm(0)E(t)

+ω
2

∫ xj
0 (Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))(H1jE(xj) + H3jE′(xj) + R(t))dt = 0.

(41)

That is⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 −
∫ xj

0 Jm(ω(xj − t))H1jdt)E(xj)−
∫ xj

0 Jm(ω(xj − t))H3jdtE′(xj) =
∫ xj

0 Jm(ω(xj − t)R(t)dt(
−Jm(0) + ω

2

∫ xj
0 (Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H1jdt

)
E(xj)

+
(

1 + ω
2

∫ xj
0 (Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H3jdt

)
E′(xj)

= −ω
2

∫ xj
0 (Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))R(t)dt.

(42)

Therefore, the error E(xj) can be computed by

E(xj) =
Q1

Q3
, E′(xj) =

Q2

Q3
, (43)

where

Q1 =
∫ xj

0
Jm(ω(xj − t))R(t)dt ∗

(
1 +

ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H3jdt

)
−
∫ xj

0
Jm(ω(xj − t))H3jdt ∗ ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))R(t)dt

Q2 =
∫ xj

0
Jm(ω(xj − t))R(t)dt ∗

(
Jm(0)−

ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H1jdt

)
−
(

1 −
∫ xj

0
Jm(ω(xj − t))H1jdt

)
∗ ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))R(t)dt

Q3 =

(
1 −

∫ xj

0
Jm(ω(xj − t))H1jdt

)
∗
(

1 +
ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H3jdt

)
−
∫ xj

0
Jm(ω(xj − t))H3jdt ∗

(
Jm(0)−

ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H1jdt

)
.

Defining R(xj − t) = S(t), then S(0) = S′(0) = S(xj) = S′(xj). From Lemma 1 to Lemma 3,
we can easily get Q3 = O(1) with respect to ω. What shall we do is prove that
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∫ xj

0
Jm(ωs)S(s)ds =

{
O(ω−3), f (0) = 0

O(ω−2), f (0) 	= 0
.

Using integration by parts twice, we get

∫ xj

0
Jm(ωs)S(s)ds =

∫ xj

0
S(s)d

sm+1 Jm+1(ωs)
ωsm+1

=
1

ω2

∫ xj

0

(
S′′(s)− (2m + 3)

S′(s)
s

+ (m + 1)(m + 3)
S(s)

s2

)
Jm+2(ωs)ds.

Denote

J =
∫ xj

0

(
S′′(s)− (2m + 3)

S′(s)
s

+ (m + 1)(m + 3)
S(s)

s2

)
Jm+2(ωs)ds.

So, we only need to prove that J =

{
O(ω−1) f (0) = 0

O(1) f (0) 	= 0
.

In the following, we show that the convergence degree of J with respect to ω.
Letting

F(s) = S′′(s)− (2m + 3)
S′(s)

s
+ (m + 1)(m + 3)

S(s)
s2 ,

then we have

F(0) = S′′(0)− (2m + 3)S′′(0) + (m + 1)(m + 3)
S′′(0)

2
,

J =
∫ xj

0
F(s)Jm+2(ωs)ds

=
∫ xj

0
(F(s)− F(0))Jm+2(ωs)ds +

∫ xj

0
F(0)Jm+2(ωs)ds

=
1
ω

(
Jm+3(ωs)(F(s)− F(0))|s=xj

s=0 −
∫ xj

0

(
F′(s)− (m + 3)

F(s)− F(0)
s

)
Jm+3(ωs)ds

)
+ F(0)

∫ xj

0
Jm+2(ωs)ds.

Observing that

F′(s) = S′′′(s)− (2m + 3)
S′′(s)s − S′(s)

s2 + (m + 1)(m + 3)
(

S′(s)
s2 − 2S(s)

s3

)
,

F(s)− F(0)
s

=
S′′(s)s − S′(0)

s
− (2m + 3)

(
S′(s)

s
− S′′(0)

)
+ (m + 1)(m + 3)

(
S′(s)

s2 − S′′(0)
2

)
.

Notice that

S′′′(s) = u′′′(s)− u′′′
h (s)

= u′′′(s) + c1 · u′
0 + c2 · u′

j,

where c1 and c2 are some constants independent of ω. For uh(x) is cubic polynomial, we can easily show
that u′′′

h (s) = O(1) with respect to ω. According to Theorem 1 it follows that ‖D3u − f (0)r(0)Dr −
f (0)D2r − f ′(0)Dr − D3 f ‖∞. Together with Lemma 3 we can easily get
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∫ xj

0
(u′′′(s)− f (0)r(0)Dr − f (0)D2r − f ′(0)Dr − D3 f )Jm(ω(xj − s)ds =

{
O(1), f (0) = 0,

O(ω), f (0) 	= 0.

That is ∫ xj

0
S′′′(s)Jm(ω(xj − s))ds =

{
O(1), f (0) = 0,

O(ω), f (0) 	= 0.

Then

J =

{
O(ω−1), f (0) = 0,

O(1), f (0) 	= 0.

Therefore, we can get

|u(xi)− ud
i | =

{
O(ω−3), f (0) = 0

O(ω−2), f (0) 	= 0
ω → ∞, i = 1, 2, 3, . . . , N. (44)

|u′(xi)− u′d
i | =

{
O(ω−2), f (0) = 0

O(ω−1), f (0) 	= 0
ω → ∞, i = 1, 2, 3, . . . , N. (45)

Theorem 3. Assuming f ∈ C3(I), the error of the piecewise Hermite collocation method for (2) satisfies

|u(xi)− ui| =
{

O(ω−3h), f (0) = 0

O(ω−2h), f (0) 	= 0
ω → ∞, i = 1, 2, 3, . . . , N. (46)

|u′(xi)− u′
i| =

{
O(ω−2h), f (0) = 0

O(ω−1h), f (0) 	= 0
ω → ∞, i = 1, 2, 3, . . . , N. (47)

Proof. For the piecewise Hermite collocation method, u(xj) satisfies

u(xj)−
j−1

∑
k=1

∫ xk

xk−1

Jm(ω(xj − t))u(t)dt −
∫ xj

xj−1

Jm(ω(xj − t))u(t)dt = f (xj). (48)

Combining the above equation with

uj −
j−1

∑
k=1

∫ xk

xk−1

Jm(ω(xj − t))ûk(t)dt −
∫ xj

xj−1

Jm(ω(xj − t))ûj(t)dt = f (xj), (49)

we get

ε j =
∑

j−1
k=1 εk

∫ xk
xk−1

Jm(ω(xj − t))dt + ∑
j
k=1

∫ xk
xk−1

Jm(ω(xj − t))rk(t)dt

1 −
∫ x1

0 Jm(ωt)dt
, (50)

where ε j = u(xj)− uj, j = 1, 2, · · ·, N and rk(t) = (u(t)− ûk(t))|t ∈ [xk−1, xk]. An argument similar to
the one used in Theorem 2 shows that

∑
j
k=1

∫ xk
xk−1

Jm(ω(xj − t))rk(t)dt

1 −
∫ x1

0 Jm(ωt)dt
=

{
O(ω−3h), f (0) = 0

O(ω−2h), f (0) 	= 0
, (51)

the desired result is then found by employing the generalized discrete Gronwall inequality ([4], p. 95).
Similarly, one can derive the convergence order of |u′(xi)− u′

i| .
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4. Numerical Examples

From Section 4, we can see that direct Hermite collocation method and piecewise Hermite
collocation method are very efficient for solving the second-kind Volterra integral equation with highly
oscillatory Bessel kernel. They possess the property that the higher oscillation, the higher accuracy.
In this section, based on the Formulas (11), (13) and (22), we present some preliminary numerical
experiments to verify the result of theoretical analysis. The experiments are performed on a 1.86 GHz
PC with 2 GB of RAM. We are using the R2016a version of the MATLAB system. The following Direct
Filon method (DF) is presented in paper [14].

Example 1. Consider the following equation

u(x)−
∫ x

0
Jm(ω(x − t))u(t)dt = f (x) with x ∈ I = [0, 1], (52)

where f (x) = ex −
∫ x

0 Jm(ω(x − t))etdt. The analytic solution is u(x) = ex.

In Table 1, we compare the relative error of u(x) from the DF method, piecewise linear collocation
method, direct Hermite collocation, and piecewise Hermite collocation method. In Table 2, for fixed ω,
we compare the relative error of u(x) from the piecewise linear collocation method and piecewise
Hermite collocation method when the steps are different. In Figures 1–3, we can see the convergence
rate with respect to ω of these methods.

Table 1. Relative errors of u(x) in N–point approximations to the Example 1 by the DF method,
the piecewise linear method (PL), the direct Hermite method(DH) and the piecewise Hermite
collocation method(PH). The step is 0.1 for piecewise method and the test point is 0.8.

ω\Method DF PL DH PH

10 6.85 × 10−3 6.86 × 10−5 8.80 × 10−5 1.14 × 10−8

100 8.89 × 10−5 1.06 × 10−5 1.56 × 10−7 2.08 × 10−9

1000 9.38 × 10−7 1.31 × 10−7 1.56 × 10−10 3.08 × 10−12

10, 000 9.36 × 10−9 1.46 × 10−9 1.57 × 10−13 3.39 × 10−15

ω

ω

ω

ω

ω

ω

ω

ω

ω

Figure 1. The relative errors of u(x) for DF method, direct Hermite collocation method (DH) and
piecewise Hermite collocation method (PH) at point x = 0.8 (left), the maximum relative errors at
collocation points x = 0.1:0.1:1 (right).
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ω

ω

ω

ω

ω

ω

ω
ω

ω

ω

ω

Figure 2. The relative errors of u(x) at point x = 0.8 for DF method, direct Hermite collocation
method (DH), piecewise Hermite collocation method (PH).

ω

′

ω

Figure 3. The relative error of u′(x).

Table 2. Relative errors of u(x) in N–point approximations to the Example 1 by the PL method and the
piecewise Hermite collocation method(PH). where ω = 1000 and the test point is 0.8.

Method\h 0.2 0.1 0.05 0.01

PL 2.71 × 10−7 1.31 × 10−7 5.69 × 10−8 1.10 × 10−8

PH 1.21 × 10−11 3.08 × 10−12 7.44 × 10−13 1.03 × 10−14

Example 2. Consider the following equation,

u(x)−
∫ x

0
J3(ω(x − t))u(t)dt = f (x) with x ∈ I = [0, 1], (53)

where f (x) = 1
1+x2 −

∫ x
0 J3(ω(x − t)) 1

1+t2 dt. The analytic solution is u(x) = 1
1+x2 .

We can see the numerical solutions from the Tables 3 and 4 and Figures 4 and 5.
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ω

ω

ω

ω

ω

ω

ω

ω

ω

Figure 4. The relative errors of u(x) for DF method, direct Hermite collocation method (DH) and
piecewise Hermite collocation method (PH) at point x = 0.8 (left), the maximum relative errors at
collocation points x = 0.1:0.1:1 (right).

ω

′

ω

Figure 5. The relative error of u′(x).

Table 3. Relative errors of u(x) in N–point approximations to the Example 2 by the DF method, the PL
method, the DH method, and the piecewise Hermite collocation method (PH). The step is 0.1 for
piecewise method and the test point is 0.8.

ω\Method DF PL DH PH

10 1.13 × 10−2 6.83 × 10−5 4.34 × 10−4 2.22 × 10−7

100 5.10 × 10−5 7.23 × 10−6 1.68 × 10−6 2.53 × 10−8

1000 5.12 × 10−7 6.77 × 10−8 1.75 × 10−9 4.11 × 10−11

10, 000 5.32 × 10−9 9.68 × 10−10 1.75 × 10−12 4.21 × 10−14

Table 4. Relative errors of u(x) in N–point approximations to the Example 2 by the PL method and the
piecewise Hermite collocation method (PH). where ω = 10, 000 and the test point is 0.8.

Method\h 0.2 0.1 0.05 0.01

PL 1.64 × 10−9 9.68 × 10−10 4.91 × 10−10 8.78 × 10−11

PH 1.85 × 10−13 4.21 × 10−14 1.00 × 10−14 0
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Example 3. Consider the following equation,

u(x)−
∫ x

0
Jm(ω(x − t))u(t)dt = f (x) with x ∈ I = [0, 1], (54)

where f (x) = sin(x)−
∫ x

0 J2(ω(x − t)) sin(t)dt. The analytic solution is u(x) = sin(x).

Results of these calculations are given in Table 5 and Figures 6 and 7.

ω

ω

ω

ω

ω

ω

ω

ω

ω

Figure 6. The relative errors of u(x) for DF method, direct Hermite collocation method (DH) and
piecewise Hermite collocation method (PH) at point x = 0.9 (left), the maximum relative errors at
collocation points x = 0.1:0.1:1 (right).

ω

′

ω

Figure 7. The relative error of u′(x).

Table 5. Relative errors of u(x) in N–point approximations to the Example 3 by the DF method and the
PL method and the DH method, and the piecewise Hermite collocation method (PH). The step is 0.1
for piecewise method and the test point is 0.9.

ω\Method DF PL DH PH

10 5.02 × 10−3 7.35 × 10−5 7.88 × 10−5 1.23 × 10−8

100 6.31 × 10−5 6.83 × 10−6 7.01 × 10−8 1.03 × 10−9

1000 6.38 × 10−7 8.92 × 10−8 6.62 × 10−11 1.20 × 10−12

10, 000 6.35 × 10−9 9.88 × 10−10 6.56 × 10−14 1.28 × 10−15
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Example 4. Consider the following equation,

u(x)−
∫ x

0
J3(ω(x − t))u(t)dt = f (x) with x ∈ I = [0, 1], (55)

where f (x) = (x − 0.5)3.1 −
∫ x

0 J3(ω(x − t))(t − 0.5)3.1dt. The analytic solution is u(x) = (x − 0.5)3.1.

We can see the numerical solutions from the Figure 8.
From above examples, as can be seen, there is a good agreement between the present result

and the exact solution. The Hermite-type collocation methods are better than DF method and PL
collocation method. For Hermite-type collocation methods, the higher oscillation, the higher accuracy.
For fixed frequency, the error is decrease with the increase of nodes.

ω

ω

ω

′

ω

Figure 8. The relative errors of u(x) and u′(x) for direct Hermite collocation method (DH) and
piecewise Hermite collocation method (PH) .

5. Conclusions

Collocation methods are efficient in solving Volterra integral equation with highly oscillatory
kernel. In this paper, we present two collocation methods: DH collocation method and piecewise
Hermite collocation method. The first conclusion to be drawn from the numerical evidence
presented earlier is that Hermite-type collocation methods are higher efficient than existent collocation
methods. Both methods can calculate the approximate value of function value and derivative value
simultaneously. Finally, while we have considered only the case of Bessel kernel in this paper, the
Hermite-type collocation methods can be extended to Fourier kernel.

In the future work, we will study better methods to solve the Volterra integral equations with
different kernel and Fredholm integral equations.
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1. Introduction and Preliminaries

The subject of q-calculus leads to a new method for computations and classifications of q-special
functions. It was launched in the 1920s. However, it has gained importance and considerable popularity
during the last three decades [1–9]. In the last decades, q-calculus has been developed into an
interdisciplinary subject and served as a bridge between physics and mathematics. The recent interest
in the subject is due to the fact that q-series has popped in such various areas as quantum groups,
statistical mechanics, transcendental number theory, etc. The definitions and notations of q-calculus
reviewed here are taken from [10] (see also [11,12]).

The q-analog of the Pochhammer symbol (δ)κ , also called a q-shifted factorial, are defined by

(δ; q)0 = 1, (δ; q)κ =
κ−1

∏
r=0

(1 − δqr), κ ∈ N, δ ∈ C. (1)

The q-analogs of a complex number δ and of the factorial function are given as follows:

[δ]q =
1 − qδ

1 − q
, q ∈ C− {1}, δ ∈ C, (2)

[κ]q =
κ

∑
ν=1

qν−1, [0]q = 0, [κ]q! =
κ

∏
ν=1

[ν]q = [1]q[2]q[3]q...[κ]q, [0]q! = 1, κ ∈ N, q ∈ C\{0, 1}. (3)

The q-binomial coefficients [κν]q are defined by[
κ

ν

]
q

=
(q; q)κ

(q; q)ν(q; q)κ−ν
=

[κ]q!
[ν]q! [κ − ν]q!

, ν = 0, 1, 2, ..., κ. (4)

Symmetry 2019, 11, 159; doi:10.3390/sym11020159 www.mdpi.com/journal/symmetry249
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The q-analog of the classical derivative D u of a function u at a point 0 	= τ ∈ C is given as

Dqu(τ) =
u(τ)− u(qτ)

τ − qτ
, 0 < |q| < 1, τ 	= 0. (5)

In addition, we note that

(i) lim
q→0

Dqu(τ) =
du(τ)

dτ
, where

d
dτ

denotes the classical ordinary derivative, (6)

(ii) Dq(a1u(τ) + a2 v(τ)) = a1Dqu(τ) + a2Dqv(τ), (7)

(iii) Dq(uv)(τ) = u(qτ)Dqv(τ) + v(τ)Dqu(τ) = u(τ)Dqv(τ) + Dqu(τ)v(qτ), (8)

(vi) Dq

(
u(τ)
v(τ)

)
=

v(τ)Dqu(τ)− u(τ)Dqv(τ)
v(τ)v(qτ)

=
v(qτ)Dqu(τ)− u(qτ)Dqv(τ)

v(τ)v(qτ)
. (9)

The q-exponential functions eq(τ) and Eq(τ) are defined as:

eq(τ) =
∞

∑
κ=0

τκ

[κ]q!
:=

1
((1 − q)τ; q)∞

, 0 < |q| < 1, |τ| < |1 − q|−1, (10)

Eq(τ) =
∞

∑
κ=0

q
1
2 κ(κ−1) τκ

[κ]q!
:= (−(1 − q); q)∞, 0 < |q| < 1, τ ∈ C. (11)

which satisfy the following properties:

Dqeq(τ) = eq(τ), DqEq(τ) = Eq(qτ), (12)

eq(τ)Eq(−τ) = Eq(τ)eq(−τ) = 1. (13)

The class of Appell polynomials was introduced and characterized completely by Appell [13].
Further, Throne [14], Sheffer [15] and Varma [16] studied this class of polynomials from different
point of views. Sharma and Chak [17] introduced a q-analog for the class of Appell polynomials
and called this sequence of polynomials as q-Harmonic. Later, Al-Salam [1] established the class of
q-Appell polynomials {Aκ,q(z)}∞

κ=0 and investigated some of its properties. These polynomials appear
in several problems of theoretical physics, applied mathematics, approximation theory and many
other branches of mathematics. The polynomials Aκ,q(z) (of degree κ) are called q-Appell polynomials
provided that they satisfy the following q-differential equation

Dq,z{Aκ,q(z)} = [κ]qAκ−1,q(z), κ = 0, 1, 2, 3, ...; q ∈ C, 0 < |q| < 1. (14)

The generating function for the q-Appell polynomials Aκ,q(z) is given as:

Aq(τ) eq(zτ) =
∞

∑
κ=0

Aκ,q(z)
τκ

[κ]q!
, (15)

where

Aq(τ) =
∞

∑
κ=0

Aκ,q
τκ

[κ]q!
, Aq(τ) 	= 0; A0,q = 1, (16)

is an analytic function at τ = 0 and Aκ,q := Aκ,q(0) denotes the q-Appell numbers.
We note that the function Aq(τ) is called the determining function for the set Aκ,q(z). Based on

suitable selection for the function Aq(τ), different members belonging to the family of q-Appell
polynomial Aκ,q(z) can be obtained. These members along with their notations, names and generating
functions are listed in Table 1.
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Table 1. Certain members of q-Appell family.

S. No. Aq(τ) Generating Functions Polynomials

I. Aq(τ) =
τ

(eq(τ)−1)
τ

(eq(τ)−1) eq(zτ) = ∑∞
κ=0 Bκ,q(z) τκ

[κ]q ! The q-Bernoulli polynomials [2,18,19]

II. Aq(τ) =
[2]q

(eq(τ)+1)
[2]q

(eq(τ)+1) eq(zτ) = ∑∞
κ=0 Eκ,q(z) τκ

[κ]q ! The q-Euler polynomials [3,19,20]

III. Aq(τ) =
[2]qτ

(eq(τ)+1)
[2]qτ

(eq(τ)+1) eq(zτ) = ∑∞
κ=0 Gκ,q(z) τκ

[κ]q ! , The q-Genocchi polynomials [7,19,21]

In 1978, Roman and Rota [22] used the umbral calculus to define the sequence of Sheffer
polynomials whose their characteristics proved that this new proposed family of polynomials is
equivalent to the family of polynomials of type zero, which was previously introduced by Sheffer [23].
Later, Roman [24] proposed a similar umbral approach under the area of nonclassical umbral calculus
which is called q-umbral calculus. Recently, Kim et al. [5] introduced the q-Sheffer polynomials (qSP)
sκ,q(z) for (v(τ), u(τ)) by means of the following generation function:

1
v(u−1(τ))

eq(zu−1(τ)) =
∞

∑
κ=0

sκ,q(z)
τκ

[κ]q!
, for all z ∈ C, (17)

where u−1(τ) is the compositional inverse of u(τ).
In addition, the q-Sheffer polynomials may be alternatively defined as:

φq(τ) eq(zH(τ)) =
∞

∑
κ=0

sκ,q(z)
τκ

[κ]q!
, (18)

where

φq(τ) =
∞

∑
κ=0

φκ,q
τκ

[κ]q!
and H(τ) =

∞

∑
κ=0

Hκ,q
τκ

[κ]q!
. (19)

In view of Equations (17) and (18), we have

φq(τ) =
1

v(u−1(τ))
and H(τ) = u−1(τ). (20)

The q-Sheffer polynomials for the pair (φ(τ), τ)q is called the q-Appell polynomials Aκ,q(z) and
for the pair (1, H(τ))q becomes the q-associated Sheffer polynomials sκ,q(z).

Recently, Duran et al. [25] introduced the q-Hermite polynomials (qHP) Hκ,q(z) by means of the
following generating function:

eq([2]qzτ)eq(−τ2) =
∞

∑
κ=0

Hκ,q(z)
τκ

[κ]q!
. (21)

In [25], (p, q)-number is defined by [x]p,q = px−qx

p−q . It is worth noting that [x]p,q = c[x]q for some
constant c in p. Thus, there is no need to deal with the family of (p, q)-Sheffer–Appell polynomials.

In the present article, a new family of q-Sheffer–Appell polynomials (qSAP) is introduced by
means of generating functions, series and determinant definitions. Further, some results are obtained
for some members of this family. In the next section, the q-Sheffer–Appell polynomials are introduced
by means of the generating functions and series definition. In addition, the determinant definition and
many interesting properties of these q-hybrid special polynomials are derived. In Section 3, we consider
some members of q-Sheffer–Appell polynomials and obtain the determinant definitions and some
other properties of these members. In Section 4, the class of 2D q-Sheffer–Appell polynomials (2DqSAP)
is also introduced. In Section 5, the graphs of some members of q-Sheffer–Appell polynomials and 2D
q-Sheffer–Appell polynomials are plotted for different values of indices by using Matlab.
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2. q-Sheffer–Appell Polynomials

In this section, the generating function, series definition and determinant definition for the
q-Sheffer–Appell polynomials sAκ,q(z) are introduced.

To establish the generating function for the qSAP by making use of replacement technique,
the following result is proved:

Theorem 1. The following generating function for the q-Sheffer–Appell polynomials sAκ,q(z) holds true:

Aq(τ)φq(τ) eq(zH(τ)) =
∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
. (22)

Proof. By expanding the q-exponential function eq(zτ) in the left hand side of Equation (15)
and then replacing the powers of z, i.e., z0, z, z2, ..., zκ , by the corresponding polynomials
s0,q(z), s1,q(z), s2,q(z), ..., sκ,q(z) in the left hand side and z by s1,q(z) in the right hand side of the
resultant equation, we have

Aq(τ)

(
1 + s1,q(z)

τ

[1]q!
+ s2,q(z)

τ2

[2]q!
+ ... + sκ,q(z)

τκ

[κ]q!
+ ...

)
=

∞

∑
κ=0

Aκ,q(s1,q(z))
τκ

[κ]q!
. (23)

Further, summing up the series in left hand side and then using Equation (18) in the resultant
equation, we get

Aq(τ)φq(τ) eq(zH(τ)) =
∞

∑
κ=0

Aκ,q(s1,q(z))
τκ

[κ]q!
. (24)

Finally, indicating resultant qSAP by sAκ,q(z), that is

Aκ,q(s1,q(z)) = sAκ,q(z), (25)

the assertion in Equation (22) is proved.

Next, we introduce the series definition for the qSAP sAκ,q(z) by proving the following result:

Theorem 2. The q-Sheffer–Appell polynomials sAκ,q(z) are defined by the following series definition:

sAκ,q(z) =
κ

∑
ν=0

[
κ

ν

]
q

Aν,q sκ−ν,q(z). (26)

Proof. In view of Equations (16) and (18), Equation (22) can be written as:

∞

∑
ν=0

Aν,q
τν

[ν]q!

∞

∑
κ=0

sκ,q(z)
τκ

[κ]q!
=

∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
, (27)

which on using the Cauchy product rule [26] gives

∞

∑
κ=0

κ

∑
ν=0

[
κ

ν

]
q

Aν,q sκ−ν,q(z)
τκ

[κ]q!
=

∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
. (28)

Now, comparing the coefficients of identical powers of τ in above equation, we arrive at our
assertion in Equation (26).

Theorem 3. The q-Sheffer–Appell polynomials sAκ,q(z) satisfy the following linear homogeneous
recurrence relation:

sAκ,q(z) =
1

[κ]q

κ

∑
ν=0

[
κ

ν

]
q

(αν + zβν)sAκ−ν,q(z), (29)
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where

τ
Aq(qτ)

(
Dq,τφq(τ)

)
+ φq(τ)

(
Dq,τAq(τ)

)
Aq(τ)φq(τ)

=
∞

∑
κ=0

ακ
τκ

[κ]q!
,

τ
Aq(qτ)φq(qτ)

(
Dq,τ H(τ)

)
Aq(τ)φq(τ)

=
∞

∑
κ=0

βκ
τκ

[κ]q!
.

(30)

Proof. Consider the generating function

Fq(z, τ) = Aq(τ)φq(τ) eq(zH(τ)) =
∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
. (31)

Taking the q-derivative of Equation (31) partially with respect to τ, we get

Dq,τ(Fq(z, τ)) = {Aq(qτ)
(

Dq,τφq(τ)
)
+ φq(τ)

(
Dq,τAq(τ)

)
}eq(zH(τ))

+z Aq(qτ)φq(qτ)
(

Dq,τ H(τ)
)
eq(zH(τ)) (32)

Now, factorizing Fq(z, τ) from its left hand side and after that multiplying both sides by τ,
it follows that

τDq,τ(Fq(z, τ))

= Fq(z, τ)

{
τ
Aq(qτ)φq(τ)

(
Dq,τAq(τ)

)(
Dq,τφq(τ)

)
Aq(τ)φq(τ)

+ zτ
Aq(qτ)φq(qτ)

(
Dq,τ H(τ)

)
Aq(τ)φq(τ)

}
. (33)

In view of the assumption in Equations (30) and (31), Equation (33) can be expressed as

∞

∑
κ=0

[κ]q sAκ,q(z)
τκ

[κ]q!
=

∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!

{
∞

∑
κ=0

ακ
τκ

[κ]q!
+ z

∞

∑
κ=0

βκ
τκ

[κ]q!

}
, (34)

which on using the Cauchy product rule, gives

∞

∑
κ=0

[κ]q sAκ,q(z)
τκ

[κ]q!
=

∞

∑
κ=0

κ

∑
ν=0

[
κ

ν

]
q

(αν + zβν)sAκ−ν,q(z)
τκ

[κ]q!
. (35)

Finally, equating the coefficients of identical powers of τ in above equation and after that dividing
both sides of the resultant equation by [κ]q, we get the assertion in Equation (29).

Due to the importance of determinant form for the computational and applied purposes, we derive
the determinant definition for the qSAP sAκ,q(z).

Theorem 4. The q-Sheffer–Appell polynomials sAκ,q(z) of degree κ are defined by
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sA0,q(z) =
1

B0,q
, (36)

sAκ,q(z) =
(−1)κ

(B0,q)κ+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 s1,q(z) s2,q(z) ... sκ−1,q(z) sκ,q(z)

B0,q B1,q B2,q ... Bκ−1,q Bκ,q

0 B0,q [21]qB1,q ... [κ−1
1 ]qBκ−2,q [κ1]qBκ−1,q

0 0 B0,q ... [κ−1
2 ]qBκ−3,q [κ2]qBκ−2,q

. . . ... . .

. . . ... . .
0 0 0 ... B0,q [ κ

κ−1]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (37)

Bκ,q = − 1
A0,q

( κ

∑
ν=1

[
κ

ν

]
q

Aν,qBκ−ν,q

)
, κ = 1, 2, 3, ...,

where B0,q 	= 0, B0,q = 1
A0,q

and sκ,q(z)(κ = 0, 1, 2, ..., ) are the q-Sheffer polynomials of degree κ.

Proof. Consider sAκ,q(z) to be a sequence of the qSAP defined by Equation (22) and Aκ,q, Bκ,q be two
numerical sequences (the coefficients of q-Taylor’s series expansions of functions) such that

Aq(τ) = A0,q +A1,q
τ

[1]q!
+A2,q

τ2

[2]q!
+ ... +Aκ,q

τκ

[κ]q!
+ ..., κ = 0, 1, 2, 3, ...; A0,q 	= 0, (38)

Âq(τ) = B0,q + B1,q
τ

[1]q!
+ B2,q

τ2

[2]q!
+ ... + Bκ,q

τκ

[κ]q!
+ ..., κ = 0, 1, 2, 3, ...; B0,q 	= 0, (39)

satisfying
Aq(τ)Âq(τ) = 1. (40)

On using Cauchy product rule for the two series production Aq(τ)Âq(τ), we get

Aq(τ)Âq(τ) =
∞

∑
κ=0

Aκ,q
τκ

[κ]q!

∞

∑
κ=0

Bκ,q
τκ

[κ]q!

=
∞

∑
κ=0

κ

∑
ν=0

[
κ

ν

]
q

Aν,qBκ−ν,q
τκ

[κ]q!
.

Consequently,
κ

∑
ν=0

[
κ

ν

]
q

Aν,qBκ−ν,q =

{
1, i f κ = 0,

0, i f κ > 0.
(41)

That is, ⎧⎨⎩B0,q = 1
A0,q

,

Bκ,q = − 1
A0,q

{
∑κ

ν=1 [
κ
ν]qAν,qBκ−ν,q

}
, κ = 0, 1, 2, ...

(42)

Next, multiplying both sides of Equation (22) by Âq(t), we get

Aq(τ)Âq(τ)φq(τ) eq(zH(τ)) = Âq(τ)
∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
. (43)

Further, in view of Equations (18), (39) and (40), the above equation can be expressed as
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∞

∑
κ=0

sκ,q(z)
τκ

[κ]q!
=

∞

∑
κ=0

Bκ,q
τκ

[κ]q!

∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
. (44)

Now, on using Cauchy product rule for the two series in the right hand side of Equation (44), we
obtain the following infinite system for the unknowns sAκ,q(z):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B0,q sA0,q(z) = 1,

B1,q sA0,q(z) + B0,q sA1,q(z) = s1,q(z)

B2,q sA0,q(z) + [21]qB1,q sA1,q(z) + B0,q sA2,q(z) = s2,q(z),
...

Bκ−1,q sA0,q(z) + [κ−1
1 ]qBκ−2,q sA1,q(z) + ... + B0,q sAκ−1,q(z) = sκ−1,q(z),

Bκ,q sA0,q(z) + [κ1]qBκ−1,q sA1,q(z) + ... + B0,q sAκ,q(z) = sκ,q(z),
...

(45)

Obviously, the first equation of the system in Equation (45) leads to our first assertion in
Equation (36). The coefficient matrix of the system in Equation (45) is lower triangular, thus this
assist us to obtain the unknowns sAκ,q(z) by applying Cramer rule to the first κ + 1 equations of the
system in Equation (45). According to this, we can obtain

sAκ,q(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 ... 0 1

B1,q B0,q 0 ... 0 s1,q(z)

B2,q [21]qB1,q B0,q ... 0 s2,q(z)
. . . ... . .
. . . ... . .

Bκ−1,q [κ−1
1 ]qBκ−2,q [κ−1

2 ]qBκ−3,q ... B0,q sκ−1,q(z)

Bκ,q [κ1]qBκ−1,q [κ2]qBκ−2,q ... [ κ
κ−1]qB1,q sκ,q(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 ... 0 1

B1,q B0,q 0 ... 0 0

B2,q [21]qB1,q B0,q ... 0 0
. . . ... . .
. . . ... . .

Bκ−1,q [κ−1
1 ]qBκ−2,q [κ−1

2 ]qBκ−3,q ... B0,q 0

Bκ,q [κ1]qBκ−1,q [κ2]qBκ−2,q ... [ κ
κ−1]qB1,q B0,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(46)

where κ = 1, 2, 3, ..., which on expanding the determinant in the denominator and taking the transpose
of the determinant in the numerator, yields to
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sAκ,q(z) =
1

(B0,q)κ+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q B1,q B2,q ... Bκ−1,q Bκ,q

0 B0,q [21]qB1,q ... [κ−1
1 ]qBκ−2,q [κ1]qBκ−1,q

0 0 B0,q ... [κ−1
2 ]qBκ−3,q [κ2]qBκ−2,q

. . . ... . .

. . . ... . .
0 0 0 ... B0,q [ κ

κ−1]qB1,q

1 s1,q(z) s2,q(z) ... sκ−1,q(z) sκ,q(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (47)

Finally, after κ circular row exchanges, i.e., after moving the jth row to the (j + 1)th position for
j = 1, 2, 3, ..., κ − 1, we arrive at our assertion in Equation (37).

Theorem 5. The following identity for the qSAP sAκ,q(z) holds true:

sAκ,q(z) =
1

B0,q

(
sκ,q(z)−

κ−1

∑
ν=0

[
κ

ν

]
q

Bκ−ν,q sAν,q(z)
)

, κ = 1, 2, .... (48)

Proof. Expanding the determinant in Equation (37) with respect to the (κ + 1)th row and using a
similar approach used in ([27], Theorem 3.1), the assertion in Equation (48) is proved.

3. Examples

Several members belonging to the q-Sheffer–Appell family sAκ,q(z) can be derived by making
suitable selections for the functions Aq(τ), φq(τ) and H(τ). The q-Hermite polynomials (qHP)
Hκ,q(z) [25] are one of the important members of q-Sheffer family. In addition, the q-Bernoulli
polynomials Bκ,q(z), q-Euler polynomials Eκ,q(z) and q-Genocchi polynomials Gκ,q(z) are considerable
members of the q-Appell family. In this section, we introduce the q-Hermite–Bernoulli polynomials

HBκ,q(z), q-Hermite–Euler polynomials HEκ,q(z) and q-Hermite–Genocchi polynomials HGκ,q(z)
by means of the generating functions, series definitions and also explore other properties of
these members.

3.1. q-Hermite–Bernoulli Polynomials

Since, for Aq(τ) = τ
eq(τ)−1 , the qAP Aκ,q(z) reduce to the qBP Bκ,q(z) (Table 1(I)) and for

φq(τ) = eq(−τ2), H(τ) = [2]qτ the qSP sκ,q(z) reduce to qHP Hκ,q(z), for the same choices of
Aq(τ), φq(τ) and H(τ), the qSAP sAκ,q(z) reduce to qHBP HBκ,q(z). In view of Equation (22),
the generating function for the qHBP HBκ,q(z) is given as:

τ

eq(τ)− 1
eq([2]qzτ)eq(−τ2) =

∞

∑
κ=0

HBκ,q(z)
τκ

[κ]q!
. (49)

In view of Equation (26), the qHBP HBκ,q(z) of degree κ are defined by the series:

HBκ,q(z) =
κ

∑
ν=0

[
κ

ν

]
q

Bν,qHκ−ν,q(z). (50)

In view of Equation (48), the following identity for the qHBP HBκ,q(z) holds true:

HBκ,q(z) =
1

B0,q

(
Hκ,q(z)−

κ−1

∑
ν=0

[
κ

ν

]
q

Bκ−ν,q HBν,q(z)
)

, κ = 1, 2, .... (51)
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Further, by taking sκ,q(z) = Hκ,q(z), B0,q = 1 and Bj,q = 1
[j+1]q

(j = 1, 2, 3, ...) in Equations (36)
and (37), we obtain the determinant definition of the qHBP HBκ,q(z) given as:

Definition 1. The q-Hermite–Bernoulli polynomials HBκ,q(z) of degree κ are defined by

HB0,q(z) = 1, (52)

HBκ,q(z) = (−1)κ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) ... Hκ−1,q(z) Hκ,q(z)

1 1
[2]q

1
[3]q

... 1
[κ]q

1
[κ+1]q

0 1 [21]q
1

[2]q
... [κ−1

1 ]q
1

[κ−1]q
[κ1]q

1
[κ]q

0 0 1 ... [κ−1
2 ]q

1
[κ−2]q

[κ2]q
1

[κ−1]q
. . . ... . .
. . . ... . .
0 0 0 ... 1 [ κ

κ−1]q
1

[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (53)

κ = 1, 2, 3, ...,

where Hκ,q(z)(κ = 0, 1, 2, 3, ...) are the q-Hermite polynomials of degree κ.

Theorem 6. The q-Hermite–Bernoulli polynomials HBκ,q(z) satisfy the following q-recurrence relations:

Dq,zHBκ,q(z) = [2]q[κ]qHBκ−1,q(z), (54)

D(k)
q,zHBκ,q(z) =

[2]kq[κ]q!
[κ − k]q! H

Bκ−k,q(z). (55)

Proof. Applying the q-derivative with respect to z to both sides of Equation (49), we get

∞

∑
κ=0

Dq,zHBκ,q(z)
τκ

[κ]q!
= [2]qτ

τ

eq(t)− 1
eq([2]qzτ)eq(−τ2)

= [2]q
∞

∑
κ=0

[κ]qHBκ−1,q(z)
τκ

[κ]q!
. (56)

Now, equating the coefficient of like powers of τ in both sides of the above equation, we get the
assertion in Equation (54). Similarly, on applying the q-derivative with respect to z to both sides of
Equation (49) k times, we get the assertion in Equation (55).

3.2. q-Hermite–Euler Polynomials

Since, for Aq(τ) =
[2]q

eq(τ)+1 , the qAP Aκ,q(z) reduce to the qEP Eκ,q(z) (Table 1(II)) and for φq(τ) =

eq(−τ2), H(t) = [2]qτ the qSP sκ,q(z) reduce to qHP Hκ,q(z), for the same choices of Aq(τ), φq(τ) and
H(τ), the qSAP sAκ,q(z) reduce to qHEP HEκ,q(z). In view of Equation (22), the generating function
for the qHEP HEκ,q(z) is given as:

[2]q
eq(τ) + 1

eq([2]qzτ)eq(−τ2) =
∞

∑
κ=0

HEκ,q(z)
τκ

[κ]q!
. (57)

In view of Equation (26), the qHEP HEκ,q(z) of degree κ are defined by the series:

HEκ,q(z) =
κ

∑
ν=0

[
κ

ν

]
q

Eν,qHκ−ν,q(z). (58)
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In view of Equation (48), the following identity for the qHEP HEκ,q(z) holds true:

HEκ,q(z) =
1

B0,q

(
Hκ,q(z)−

κ−1

∑
ν=0

[
κ

ν

]
q

Bκ−ν,q HEν,q(z)
)

, κ = 1, 2, .... (59)

Further, by taking sκ,q(z) = Hκ,q(z), B0,q = 1 and Bj,q = 1
2 (j = 1, 2, 3, ...) in

Equations (36) and (37), we obtain the determinant definition of the qHEP HEκ,q(z) given as:

Definition 2. The q-Hermite–Euler polynomials HEκ,q(z) of degree κ are defined by

HE0,q(z) = 1, (60)

HEκ,q(z) = (−1)κ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) ... Hκ−1,q(z) Hκ,q(z)

1 1
2

1
2 ... 1

2
1
2

0 1 [21]q
1
2 ... [κ−1

1 ]q
1
2 [κ1]q

1
2

0 0 1 ... [κ−1
2 ]q

1
2 [κ2]q

1
2

. . . ... . .

. . . ... . .
0 0 0 ... 1 [ κ

κ−1]q
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (61)

κ = 1, 2, 3, ...,

where Hκ,q(z)(κ = 0, 1, 2, 3, ...) are the q-Hermite polynomials of degree κ.

Theorem 7. The q-Hermite–Euler polynomials HEκ,q(z) satisfy the following q-recurrence relations:

Dq,zHEκ,q(z) = [2]q[κ]qHEκ−1,q(z), (62)

D(k)
q,zHEκ,q(z) =

[2]kq[κ]q!
[κ − k]q! H

Eκ−k,q(z). (63)

Proof. Using a similar approach used in the proof of Theorem 6, we are led to the assertions in
Equations (62) and (63).

3.3. q-Hermite–Genocchi Polynomials

Since, for Aq(τ) =
[2]qτ

eq(τ)+1 , the qAP Aκ,q(z) reduce to the qGP Gκ,q(z) (Table 1(III)) and for

φq(τ) = eq(−τ2), H(t) = [2]qτ the qSP sκ,q(z) reduce to qHP Hκ,q(z), for the same choices of
Aq(τ), φq(τ) and H(τ), the qSAP sAκ,q(z) reduce to qHGP HGκ,q(z) which in view of Equation (22)
can be defined by means of following generating functions:

[2]q τ

eq(τ) + 1
eq([2]qzτ)eq(−τ2) =

∞

∑
κ=0

HGκ,q(z)
τκ

[κ]q!
. (64)

In view of Equation (26), the qHGP HGκ,q(z) of degree κ are defined by the series:

HGκ,q(z) =
κ

∑
ν=0

[
κ

ν

]
q

Gν,qHκ−ν,q(z). (65)

In view of Equation (48), the following identity for the qHGP HGκ,q(z) holds true:

HGκ,q(z) =
1

B0,q

(
Hκ,q(z)−

κ−1

∑
ν=0

[
κ

ν

]
q

Bκ−ν,q HGν,q(z)
)

, κ = 1, 2, .... (66)
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Further, by taking sκ,q(z) = Hκ,q(z), B0,q = 1 and Bj,q = 1
2[j+1]q

(j = 1, 2, 3, ...) in Equations (36)
and (37), we obtain the determinant definition of the qHGP HGκ,q(z) given as:

Definition 3. The q-Hermite–Genocchi polynomials HGκ,q(z) of degree κ are defined by

HG0,q(z) = 1, (67)

HGκ,q(z) = (−1)κ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) ... Hκ−1,q(z) H1,q(z)

1 1
2[2]q

1
2[3]q

... 1
2[κ]q

1
2[κ+1]q

0 1 [21]q
1

2[2]q
... [κ−1

1 ]q
1

2[κ−1]q
[κ1]q

1
2[κ]q

0 0 1 ... [κ−1
2 ]q

1
2[κ−2]q

[κ2]q
1

2[κ−1]q
. . . ... . .
. . . ... . .
0 0 0 ... 1 [ κ

κ−1]q
1

2[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (68)

κ = 1, 2, 3, ...,

where Hκ,q(z)(κ = 0, 1, 2, 3, ...) are the q-Hermite polynomials of degree κ.

Theorem 8. The q-Hermite–Genocchi polynomials HGκ,q(z) satisfy the following q-recurrence relations:

Dq,zHGκ,q(z) = [2]q[κ]qHGκ−1,q(z), (69)

D(k)
q,zHGκ,q(z) =

[2]kq[κ]q!
[κ − k]q! H

Gκ−k,q(z). (70)

Proof. Using a similar approach used in the proof of Theorem 6, we are led to the assertions in
Equations (69) and (70).

In the next section, we introduce a new class of the 2D q-Sheffer–Appell polynomials by means of
generating function and series representation.

4. 2D q-Sheffer–Appell Polynomials

Recently, Keleshteri and Mahmudov [27] introduced the 2D q-Appell polynomials (2DqAP)
{Aκ,q(z1, z2)}∞

κ=0, which are defined by means of the generating functions:

Aq(τ) eq(z1τ)Eq(z2τ) =
∞

∑
κ=0

Aκ,q(z1, z2)
τκ

[κ]q!
, 0 < q < 1, (71)

where

Aq(τ) =
∞

∑
κ=0

Aκ,q
τκ

[κ]q!
, Aq(τ) 	= 0; A0,q = 1 (72)

and Aκ,q := Aκ,q(0, 0) denotes the 2D q-Appell numbers.
Some members of the 2D q-Appell polynomials are listed in Table 2.
The approach used in the previous section is further exploited to introduce the 2D

q-Sheffer–Appell polynomials (2DqSAP) and the focus is on deriving its generating functions and
series definitions.

259



Symmetry 2019, 11, 159

Table 2. Some members of 2D q-Appell polynomials.

S. No. Aq(τ) Generating Functions Polynomials

I. Aq(τ) =
τ

(eq(τ)−1)
τ

(eq(τ)−1) eq(z1τ)Eq(z2τ) = ∑∞
κ=0 Bκ,q(z1, z2)

τκ

[κ]q ! The 2D q-Bernoulli polynomials [21,28]

II. Aq(τ) =
[2]q

(eq(τ)+1)
[2]q

(eq(τ)+1) eq(z1τ)Eq(z2τ) = ∑∞
κ=0 Eκ,q(z1, z2)

τκ

[κ]q ! The 2D q-Euler polynomials [21,28]

III. Aq(τ) =
[2]qτ

(eq(τ)+1)
[2]qτ

(eq(τ)+1) eq(z1τ)Eq(z2τ) = ∑∞
κ=0 Gκ,q(z1, z2)

τκ

[κ]q ! , The 2D q-Genocchi polynomials [21,28]

To establish the generating function for the 2DqSAP, the following result is proved:

Theorem 9. The following generating function for the 2D q-Sheffer–Appell polynomials sAκ,q(z1, z2)

holds true:

Aq(τ)φq(τ) eq(z1H(τ))Eq(z2τ) =
∞

∑
κ=0

sAκ,q(z1, z2)
τκ

[κ]q!
. (73)

Proof. By expanding the first q-exponential function eq(z1τ) in the left hand side of Equation (71)
and then replacing the powers of z1 i.e., z0

1, z1, z2
1, ..., zκ

1 by the corresponding polynomials
s0,q(z1), s1,q(z1), s2,q(z1), ..., sκ,q(z1) in the left hand side and z1 by s1,q(z1) in the right hand side
of the resultant equation, we have

Aq(τ)

(
1 + s1,q(z1)

τ

[1]q!
+ s2,q(z1)

τ2

[2]q!
+ ... + sκ,q(z1)

τκ

[κ]q!
+ ...

)
Eq(z2τ) =

∞

∑
κ=0

Aκ,q(s1,q(z1), z2)
τκ

[κ]q!
. (74)

Further, summing up the series in left hand side and then using Equation (18) in the resultant
equation, we get

Aq(τ)φq(τ) eq(z1H(τ))Eq(z2τ) =
∞

∑
κ=0

Aκ,q(s1,q(z1), z2)
τκ

[κ]q!
. (75)

Finally, denoting the resultant qSAP in the right hand side of the above equation by sAκ,q(z1, z2),
that is

Aκ,q(s1,q(z1), z2) = sAκ,q(z1, z2), (76)

the assertion in Equation (22) is proved.

Theorem 10. The 2D q-Sheffer–Appell polynomials sAκ,q(z1, z2) are defined by the following series definitions:

sAκ,q(z1, z2) =
κ

∑
ν=0

[
κ

ν

]
q

q
ν(ν−1)

2 zν
2sAκ,q(z1). (77)

Proof. Using Equations (11) and (1) in Equation (73), we get

∞

∑
κ=0

sAκ,q(z1)
τκ

[κ]q!

∞

∑
ν=0

q
ν(ν−1)

2 zν
2

τν

[ν]q!
=

∞

∑
κ=0

sAκ,q(z1, z2)
τκ

[κ]q!
. (78)

Now, using the Cauchy product rule in the left hand side of the above equation and then equating
the coefficients of like powers of τ in both sides of the resultant equation, we get the assertion in
Equation (77).

Since for φq(τ) = eq(−τ2), H(τ) = [2]qτ the qSP sκ,q(z) reduce to qHP Hκ,q(z), by making same
choices for the functions φq(τ) and H(τ) in Equations (73) and (77), we get
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Aq(τ)eq([2]qz1τ)eq(−τ2)Eq(z2τ) =
∞

∑
κ=0

HAκ,q(z1, z2)
τκ

[κ]q!
, (79)

HAκ,q(z1, z2) =
κ

∑
ν=0

[
κ

ν

]
q

q
ν(ν−1)

2 zν
2HAκ,q(z1). (80)

Certain members belonging to the 2D q-Appell family are given in Table 2. By making suitable
choices for the functions Aq(t) in Equations (79) and (80), the generating functions and series
definitions for the corresponding member belonging to the 2D q-Hermite–Appell family can be
obtained. The resultant 2D q-Hermite–Appell polynomials (2DqHAP) along with their generating
functions and series definitions are given in Table 3.

Table 3. Certain members belonging to the 2DqHAP HAκ,q(z1, z2).

S. No. Aq(τ) Generating Functions Series Definition Polynomials

I. τ
(eq(τ)−1)

τ
(eq(τ)−1) eq([2]qz1τ)eq(−τ2)Eq(z2τ) HBκ,q(z1, z2) The 2D q-Hermite–Bernoulli

= ∑∞
κ=0 HBκ,q(z1, z2)

τκ

[κ]q ! = ∑κ
ν=0 [

κ
ν]qq

ν(ν−1)
2 zν

2HBκ−ν,q(z1) polynomials

II. [2]q
(eq(τ)+1)

[2]q
(eq(τ)+1) eq([2]qz1τ)eq(−τ2)Eq(z2τ) HEκ,q(z1, z2) The 2D q-Hermite–Euler

= ∑∞
κ=0 HEκ,q(z1, z2)

τκ

[κ]q ! = ∑κ
ν=0 [

κ
ν]qq

ν(ν−1)
2 zν

2HEκ−ν,q(z1) polynomials

III. [2]qτ
(eq(τ)+1)

[2]qτ
(eq(τ)+1) eq([2]qz1τ)eq(−τ2)Eq(z2τ) HGκ,q(z1, z2) The 2D q-Hermite–Genocchi

= ∑∞
κ=0 HGκ,q(z1, z2)

τκ

[κ]q ! , = ∑κ
ν=0 [

κ
ν]qq

ν(ν−1)
2 zν

2HGκ−ν,q(z1) polynomials

5. Graphical Representation

In this section, the shapes of some members of the q-Sheffer–Appell polynomials and 2D
q-Sheffer–Appell polynomials are displayed with the help of Matlab.

To draw the graphs of qHBP HBκ,q(z), qHEP HEκ,q(z) and qHGP HGκ,q(z), we considered the
first four values of q-Hermite polynomials Hκ,q(z) [25]; the expressions of these polynomials are listed
in Table 4.

Table 4. Expressions of the first four Hκ,q(z).

κ 0 1 2 3

Hκ,q(z) 1 [2]qz [2]2qz2 − [2]q [2]3qz3 − [3]q[2]2qz

Next, setting κ = 3 in the determinant definitions in Equations (53), (61) and (68), we have

HB3,q(z) = (−1)3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) H3,q(z)

1 1
[2]q

1
[3]q

1
[4]q

0 1 [21]q
1

[2]q
[31]q

1
[3]q

0 0 1 [32]q
1

[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (81)

HE3,q(z) = (−1)3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) H3,q(z)

1 1
2

1
2

1
2

0 1 [21]q
1
2 [31]q

1
2

0 0 1 [32]q
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(82)
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and

HG3,q(z) = (−1)3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) H3,q(z)

1 1
2[2]q

1
2[3]q

1
2[4]q

0 1 [21]q
1

2[2]q
[31]q

1
2[3]q

0 0 1 [32]q
1

2[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (83)

Now, taking q = 1
3 and using the expressions of the Hκ,q(z) in Table 4, Equations (81)–(83) become

HB3, 1
3
(z) =

64
27

z3 − 52
27

z2 − 103
9

z +
1049
720

, (84)

HE3, 1
3
(z) =

64
27

z3 − 104
81

z2 − 26
9

z +
17
18

, (85)

HG3, 1
3
(z) =

64
27

z3 +
11
27

z2 − 931
324

z − 2129
5760

. (86)

Similarly, we can obtain the values of HBκ,q(z), HEκ,q(z) and HGκ,q(z) for κ = 1, 2 and q = 1
3 as:

For κ = 2, we get

HB2, 1
3
(z) =

16
9

z2 − 4
3

z − 199
156

, (87)

HE2, 1
3
(z) =

16
9

z2 − 8
9

z − 3
2

, (88)

HG2, 1
3
(z) =

16
9

z2 − 2
3

z − 931
624

. (89)

For κ = 1, we get

HB1, 1
3
(z) = −3

4
+

4
3

z, (90)

HE1, 1
3
(z) = −1

2
+

4
3

z, (91)

HG1, 1
3
(z) = −3

8
+

4
3

z. (92)

Further, setting κ = 3, q = 1
3 in the series definitions of HBκ,q(z1, z2), HEκ,q(z1, z2) and

HGκ,q(z1, z2) given in Table 3 and using the expressions of HBκ,q(z), HEκ,q(z) and HGκ,q(z) for
κ = 1, 2, 3 from Equations (84)–(92), we have

HB3, 1
3
(z1, z2) =

64
27

z3
1 − 52

27
z2

1 − 103
9

z1 +
1049
720

+
304
27

z2
1z2 − 76

9
z1z2 − 3781

468
z2

−19
36

z2
2 +

76
81

z1z2
2 +

1
729

z3
2, (93)

HE3, 1
3
(z1, z2) =

64
27

z3
1 − 104

81
z2

1 − 26
9

z1 +
17
18

+
304
27

z2
1z2 − 152

27
z1z2 − 19

2
z2 − 19

54
z2

2

+
76
81

z1z2
2 +

1
729

z3
2, (94)

HG3, 1
3
(z1, z2) =

64
27

z3
1 +

11
27

z2
1 − 931

324
z1 − 2129

5760
+

304
27

z2
1z2 − 38

9
z1z2 − 17689

1872
z2

−19
72

z2
2 +

76
81

z1z2
2 +

1
729

z3
2. (95)

Now, with the help of Matlab and using Equations (52), (60), (67), (84)–(95), we get the
following Figures 1–6.
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Figure 1. Graph of HBκ,q(z).
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Figure 2. Graph of HEκ,q(z).
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Figure 3. Graph of HGκ,q(z).
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Figure 4. Surface plot of HB3, 1
3
(z1, z2).
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Figure 5. Surface plot of HE3, 1
3
(z1, z2).
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Figure 6. Surface plot of HG3, 1
3
(z1, z2).

6. Further Remarks

It is worth noting that the results derived in the previous sections can be exploited to establish
further new relations.
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Let us consider the following relation

[2]−κ
q Dκ

q,zeq(−[2]qzτ) = (−τ)κeq(−[2]qzτ), (96)

which, on replacing κ by 2κ and multiplying both sides of the resultant equation by 1
[κ]q! , gives

1
[κ]q!

[2]−2κ
q D2κ

q,zeq(−[2]qzτ) =
1

[κ]q!
(−τ)2κeq(−[2]qzτ). (97)

Now, taking summation on both sides of the above equation and then multiplying both sides of
the resultant equation by τ

eq(τ)−1 and using Equation (49), we get

∞

∑
κ=0

HBκ,q(x)
τκ

[κ]q!
=

τ

eq(τ)− 1

∞

∑
κ=0

[2]−2κ
q

[κ]q!
D2κ

q,zeq([2]qxτ), (98)

where x = −z.
Similarly, we can obtain the following results:

∞

∑
κ=0

HEκ,q(x)
τκ

[κ]q!
=

[2]q
eq(τ) + 1

∞

∑
κ=0

[2]−2κ
q

[κ]q!
D2κ

q,zeq([2]qxτ), (99)

∞

∑
κ=0

HGκ,q(x)
τκ

[κ]q!
=

[2]q τ

eq(τ) + 1

∞

∑
κ=0

[2]−2κ
q

[κ]q!
D2κ

q,zeq([2]qxτ), (100)

where x = −z.

7. Conclusions

We would like to underline that the q-series and q-polynomials have many applications in different
fields of mathematics, physics and engineering. In the present article, we demonstrate how a new
replacement technique has been adopted to introduce mixed type q-special polynomials and different
method to establish their q-recurrence relation.

To extend this new and significant approach, the hybrid class of the q-Sheffer–Appell polynomials
and 2D q-Sheffer–Appell polynomials are introduced by means of series expansion and generating
functions. The determinant form related to q-Sheffer–Appell polynomials are derived, which are
important for the computational and applied purposes. This process can be used to establish further a
wide variety of formulas and new relations for several other q-special polynomials.

The q-difference equation for the two iterated q-Appell and mixed type q-Appell polynomials are
established in [29,30]. This aspect may be considered in future investigation.
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1. Introduction

Let N, R and C denote the sets of positive integers, real numbers and complex numbers, respectively.

Definition 1. A function f is called p-valent in a domain D ⊂ C if the equation f (z) = w has at most p roots
in D for every complex number w, and there is a complex number w0 such that f (z) = w0 has exactly p roots
in D.

Let A(p) denote the class of analytic functions in U = {z : z ∈ C and |z| < 1} of the form:

f (z) = zp +
∞

∑
n=1

ap+nzp+n (p ∈ N). (1)

For p = 1, we denote A := A(1).

Definition 2. A function f ∈ A(p) is said to be p-valently starlike in U if it satisfies:

Re
{

z f ′(z)
f (z)

}
> 0 (z ∈ U). (2)

We denote by S∗
p the subclass of A(p) consisting of all p-valently starlike functions in U.

Definition 3. If f ∈ A(p) satisfies: ∣∣∣∣arg
{

z f ′(z)
f (z)

}∣∣∣∣ < βπ

2
(z ∈ U) (3)

for some β ∈ (0, 1], then the function f is called p-valently strongly-starlike of order β in U. We denote this
class by SS∗

p(β).

For p = 1, the class SS∗
1(β) was introduced by Brannan and Kirwan [1]. It is clear that:

SS∗
p(β) ⊂ S∗

p and SS∗
p(1) = S∗

p .
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The strongly-starlike functions and related functions have been extensively studied by several
authors (see, e.g., [1–16]).

We say that for functions f and g analytic in U, g is subordinate to f , written g ≺ f , if there exists
a Schwarz function w such that g(z) = f (w(z)) for z ∈ U. In particular, if f is univalent in U, then:

g(z) ≺ f (z) (z ∈ U) ⇐⇒ g(0) = f (0) and g(U) ⊂ f (U).

In [17], Mocanu first introduced the class:

M(α) =

{
f ∈ A : Re

{
α

(
1 +

z f ′′(z)
f ′(z)

)
+ (1 − α)

z f ′(z)
f (z)

}
> 0, α ∈ R, z ∈ U

}
(4)

of α-convex functions, which give a continuous passage from convex to starlike functions. He proved
that every α-convex function is starlike. Recently, Nunokawa, Sokól and Trabka-Wieclaw [8] considered
the generalized α-convex function class:

M(α, β) =

{
f ∈ A :

∣∣∣∣arg
{

α

(
1 +

z f ′′(z)
f ′(z)

)
+ (1 − α)

z f ′(z)
f (z)

}∣∣∣∣ < βπ

2
, α ∈ R, β ∈ (0, 1], z ∈ U

}
.

In this paper, we shall further study the properties of the generalized α-convex functions. Several
sufficient conditions for functions to be p-valently strongly starlike are obtained.

The following lemmas will be required in our investigation.

Lemma 1 (See [18]). Let g be analytic and univalent in U. Furthermore, let θ and ϕ be analytic in a domain
D ⊇ g(U) with ϕ(w) 	= 0 for w ∈ g(U). Put:

Q(z) = zg′(z)ϕ(g(z)) and h(z) = θ(g(z)) + Q(z)

and suppose that
(i) Q is univalent starlike in U and
(ii) Re

{
zh′(z)
Q(z)

}
= Re

{
θ′(g(z))
ϕ(g(z)) +

zQ′(z)
Q(z)

}
> 0 (z ∈ U).

If q is analytic in U with q(0) = g(0), q(U) ⊂ D and:

θ(q(z)) + zq′(z)ϕ(q(z)) ≺ θ(g(z)) + zg′(z)ϕ(g(z)) = h(z) (z ∈ U), (5)

then q(z) ≺ g(z) (z ∈ U). The function g is the best dominant of (5).

Lemma 2 (See [19]). Let p(z) be an analytic function in U of the form:

p(z) = 1 +
∞

∑
n=m

cnzn, cm 	= 0, m ≥ 1,

with p(z) 	= 0 in U. If there exists a point z0, |z0| < 1, such that:

|arg{p(z)}| < π

2

for |z| < |z0| and:

|arg{p(z0)}| =
π

2
,

then:
z0 p′(z0)

p(z0)
= il,
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where:

l ≥ m
2

(
a +

1
a

)
when arg{p(z0)} =

π

2

and:

l ≤ −m
2

(
a +

1
a

)
when arg{p(z0)} = −π

2
,

where p(z0) = ±ia, a > 0.

2. Main Results

Theorem 1. Let λ0, λ, β, a ∈ R satisfy λ ≥ 0, λ0a ≥ 0, 0 < β ≤ 1 and |a| ≤ 1
β . If q is analytic in U with

q(0) = 1 and satisfies:

λ0(q(z))a + λq(z) +
zq′(z)
q(z)

≺ h(z) (z ∈ U), (6)

where:

h(z) = λ0

(
1 + z
1 − z

)aβ

+ λ

(
1 + z
1 − z

)β

+
2βz

1 − z2 (7)

is (close-to-convex) univalent in U, then:

|arg{q(z)}| < βπ

2
(z ∈ U). (8)

The bound β in (8) is sharp for the function q defined by:

q(z) =
(

1 + z
1 − z

)β

. (9)

Proof. We choose:

g(z) =
(

1 + z
1 − z

)β

, θ(w) = λ0wa + λw and ϕ(w) =
1
w

in Lemma 1. Then, the function g is analytic and convex univalent in U and:

|arg{g(z)}| < βπ

2
(z ∈ U). (10)

It is clear that ϕ and θ are analytic in a domain D, which contains g(U) and q(U) with ϕ(w) 	= 0
for w ∈ g(U). The function Q given by:

Q(z) = zg′(z)ϕ(g(z)) =
2βz

1 − z2

is univalent starlike. Further, we have:

θ(g(z)) + Q(z) = λ0

(
1 + z
1 − z

)aβ

+ λ

(
1 + z
1 − z

)β

+
2βz

1 − z2

= h(z),

and so:
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zh′(z)
Q(z)

=
θ′(g(z))
ϕ(g(z))

+
zQ′(z)
Q(z)

= λ0a(g(z))a + λg(z) +
zQ′(z)
Q(z)

. (11)

Furthermore, for |a| ≤ 1
β , we find that:

|arg {(g(z))a}| = |a|βπ

2
≤ π

2
(z ∈ U). (12)

Therefore, it follows from (10)–(12) that:

Re
{

zh′(z)
Q(z)

}
> 0 (z ∈ U).

The other conditions of Lemma 1 are also satisfied. Hence, we conclude that:

q(z) ≺ g(z) =
(

1 + z
1 − z

)β

(z ∈ U)

and the function g is the best dominant of (6).
Furthermore, for the function q defined by (9), we have:

λ0(q(z))a + λq(z) +
zq′(z)
q(z)

= h(z)

and it follows that the bound β in (8) is sharp. The proof of Theorem 1 is completed.

Theorem 2. Let α > 0, 0 < β < 1 and δ > 0. If f ∈ A(p) satisfies f (z) f ′(z) 	= 0 (0 < |z| < 1) and:∣∣∣∣∣arg

{
α

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
+

(
z f ′(z)
p f (z)

)δ
}∣∣∣∣∣ < βπ

2
(z ∈ U), (13)

then: ∣∣∣∣arg
{

z f ′(z)
f (z)

}∣∣∣∣ < βπ

2δ
(z ∈ U). (14)

In particular, if δ ≥ 1, then f is p-valently strongly starlike of order β
δ . The bound βπ

2 in (13) is the largest
number such that (14) holds true.

Proof. One can see that the condition (13) is a generalization of the condition (4). For f ∈ A(p)
satisfying f (z) f ′(z) 	= 0 (0 < |z| < 1), we define the function p(z) by:

p(z) =
(

z f ′(z)
p f (z)

)δ

(z ∈ U). (15)

Then, p(z) is analytic in U with p(0) = 1. The condition (13) becomes:∣∣∣∣arg
{

p(z) +
α

δ

zp′(z)
p(z)

}∣∣∣∣ < βπ

2
(z ∈ U). (16)

Putting:

λ0 = 0 and λ =
δ

α
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in Theorem 1 and using (16), we find that if:

α

δ

{
α

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
+

(
z f ′(z)
p f (z)

)δ
}

=
δ

α
p(z) +

zp′(z)
p(z)

≺ h(z), (17)

where:

h(z) =
δ

α

(
1 + z
1 − z

)β

+
2βz

1 − z2 (18)

is (close-to-convex) univalent in U, then (14) is true.
Letting 0 < θ < π and x = cot θ

2 , we deduce that:

arg{h(eiθ)} = arg

{
δ

α

(
1 + eiθ

1 − eiθ

)β

+
2βeiθ

1 − e2iθ

}

= arg
{

δ

α
xβe

βπi
2 +

βi
2

(
x +

1
x

)}

= arctan

⎧⎨⎩ δxβ sin
(

βπ
2

)
+ αβ

2

(
x + 1

x

)
δxβ cos

(
βπ
2

)
⎫⎬⎭ ≥ βπ

2
. (19)

Hence, in view of h(e−iθ) = h(eiθ), we deduce from (19) that h(U) contains the sector | arg w| < βπ
2 .

Consequently, if f ∈ A(p) satisfies (13), then the subordination (17) holds true.
For the function f defined by:

f (z) = exp

⎛⎝p
∫ z

0

1
t

(
1 + t
1 − t

) β
δ

dt

⎞⎠ ∈ A(p),

we find after some computations that f satisfies (14) and:

α

δ

{
α

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
+

(
z f ′(z)
p f (z)

)δ
}

= h(z),

which shows that the bound βπ
2 in (13) is the largest number such that (14) holds true. The proof of

Theorem 2 is completed.

Theorem 3. Let δ > 0 and α ∈ C. Assume that −π
2 < ϕ = arg{α} ≤ 0. If f ∈ A(p) satisfies f (z) f ′(z) 	= 0

(0 < |z| < 1) and:

− π

2
+ arctan

{ |α| sin ϕ

2δ + |α| cos ϕ

}
< arg

{
α

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
+

(
z f ′(z)
p f (z)

)δ
}

<
π

2
+ ϕ (20)

for z ∈ U, then: ∣∣∣∣arg
{

z f ′(z)
f (z)

}∣∣∣∣ < π

2δ
(z ∈ U).

In particular, if δ ≥ 1, then f is p-valently strongly starlike of order 1
δ .
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Proof. Define the function p(z) by (15). Then, the condition (20) becomes:

− π

2
+ arctan

{ |α| sin ϕ

2δ + |α| cos ϕ

}
< arg

{
p(z) +

α

δ

zp′(z)
p(z)

}
<

π

2
+ ϕ (z ∈ U). (21)

We want to prove that:

| arg{p(z)}| < π

2
(z ∈ U). (22)

If there exists a point z0 (|z0| < 1) such that:

| arg{p(z)}| < π

2
(|z| < |z0|)

and:
| arg{p(z0)}| =

π

2
,

then from Lemma 2, we have:
z0 p′(z0)

p(z0)
= il,

where p(z0) = ±ai, a > 0 and:

l ≥ m
2

(
a +

1
a

)
when arg{p(z0)} =

π

2

and:

l ≤ −m
2

(
a +

1
a

)
when arg{p(z0)} = −π

2
.

For the case arg{p(z0)} = −π
2 , we have l < 0 and:

arg
{

p(z0) +
α

δ

z0 p′(z0)

p(z0)

}
= arg

{
−ai +

lα
δ

i
}

= −π

2
+ arg

{
a − lα

δ

}

= −π

2
+ arctan

⎧⎨⎩ Im
(

a − lα
δ

)
Re

(
a − lα

δ

)
⎫⎬⎭ = −π

2
+ arctan

{ −l|α| sin ϕ

aδ − l|α| cos ϕ

}
(23)

≤ −π

2
+ arctan

⎧⎨⎩
1
2

(
a + 1

a

)
|α| sin ϕ

aδ + 1
2

(
a + 1

a

)
|α| cos ϕ

⎫⎬⎭
≤ −π

2
+ Q(α, ϕ),

where:

Q(α, ϕ) = max
a>0

{
arctan

( |α|(a2 + 1) sin ϕ

(2δ + |α| cos ϕ)a2 + |α| cos ϕ

)}
.

The function:

g(a) =
|α|(a2 + 1) sin ϕ

(2δ + |α| cos ϕ)a2 + |α| cos ϕ
, a > 0

has a positive derivative:

g′(a) =
−4aδ|α| sin ϕ

((2δ + |α| cos ϕ)a2 + |α| cos ϕ)2 ≥ 0 for − π

2
< ϕ ≤ 0,

hence:

Q(α, ϕ) = lim
a→∞

arctan{g(a)} = arctan
|α| sin ϕ

2δ + |α| cos ϕ
.

273



Symmetry 2019, 11, 76

Therefore, (23) becomes:

arg
{

p(z0) +
α

δ

zp′(z0)

p(z0)

}
≤ −π

2
+ arctan

{ |α| sin ϕ

2δ + |α| cos ϕ

}
,

which contradicts (21). Thus,
| arg{p(z)}| < π

2
(z ∈ U).

For the case arg{p(z0)} = π
2 , applying the same method as the above, we have l > 0 and:

arg
{

p(z0) +
α

δ

z0 p′(z0)

p(z0)

}
= arg

{
ai +

lα
δ

i
}

=
π

2
+ arg

{
a +

lα
δ

}
≥ π

2
+ ϕ.

This contradicts (21). Now, the proof of Theorem 3 is completed.

Remark 1. For ϕ = 0 and δ = 1, Theorem 3 becomes the known result in [17] that every α-convex function
is starlike.

Applying the same method as the above, we can prove the following theorem.

Theorem 4. Let δ > 0 and α ∈ C. Assume that 0 ≤ ϕ = arg{α} < π
2 . If f ∈ A(p) satisfies f (z) f ′(z) 	= 0

(0 < |z| < 1) and:

− π

2
+ ϕ < arg

{
α

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
+

(
z f ′(z)
p f (z)

)δ
}

<
π

2
+ arctan

{ |α| sin ϕ

2δ + |α| cos ϕ

}
(24)

for z ∈ U, then: ∣∣∣∣arg
{

z f ′(z)
f (z)

}∣∣∣∣ < π

2δ
(z ∈ U).

In particular, if δ ≥ 1, then f is p-valently strongly starlike of order 1
δ .

Theorem 5. Theorem 5. Let 0 < α < 1, 0 < β < 1 and β < δ ≤ 1. If f ∈ A(p) satisfies f (z) f ′(z) 	= 0
(0 < |z| < 1) and: ∣∣∣∣∣arg

{
α

(
1 +

z f ′′(z)
f ′(z)

)
+ (1 − α)

(
z f ′(z)
p f (z)

)δ
}∣∣∣∣∣ < βπ

2
(z ∈ U), (25)

then: ∣∣∣∣arg
{

z f ′(z)
f (z)

}∣∣∣∣ < βπ

2δ
(z ∈ U), (26)

or f is p-valently strongly starlike of order β
δ . The bound βπ

2 in (25) is the largest number such that (26)
holds true.

Proof. It is obvious that the condition (25) is a generalization of the condition (4). Defining the function
p(z) by (15), the condition (25) becomes:∣∣∣∣arg

{
pα(p(z))

1
δ + (1 − α)p(z) +

α

δ

zp′(z)
p(z)

}∣∣∣∣ < βπ

2
(z ∈ U). (27)

274



Symmetry 2019, 11, 76

Setting:

a =
1
δ

, λ0 = pδ and λ =
δ(1 − α)

α

in Theorem 1 and using (27), we see that if:

α

δ

{
α

(
1 +

z f ′′(z)
f ′(z)

)
+ (1 − α)

(
z f ′(z)
p f (z)

)δ
}

= pδ(p(z))
1
δ +

δ(1 − α)

α
p(z) +

zp′(z)
p(z)

≺ h(z), (28)

where:

h(z) = pδ

(
1 + z
1 − z

) β
δ

+
δ(1 − α)

α

(
1 + z
1 − z

)β

+
2βz

1 − z2 (29)

is (close-to-convex) univalent in U, then (26) holds true.
Letting 0 < θ < π and x = cot θ

2 , we have:

h(eiθ) = pδx
β
δ e

βπi
2δ +

δ(1 − α)

α
xβe

βπi
2 +

βi
2

(
x +

1
x

)
and:

arg
{

h(eiθ)
}
= arctan

⎧⎪⎨⎪⎩
pδx

β
δ sin

(
βπ
2δ

)
+ δ(1−α)

α xβ sin
(

βπ
2

)
+ β

2

(
x + 1

x

)
pδx

β
δ cos

(
βπ
2δ

)
+ δ(1−α)

α xβ cos
(

βπ
2

)
⎫⎪⎬⎪⎭ .

For x > 0, 0 < α < 1 and 0 < β
δ < 1, we deduce that:

arg
{

h(eiθ)
}

≥ arctan

⎧⎪⎨⎪⎩
pδx

β
δ sin

(
βπ
2δ

)
+ δ(1−α)

α xβ sin
(

βπ
2

)
pδx

β
δ cos

(
βπ
2δ

)
+ δ(1−α)

α xβ cos
(

βπ
2

)
⎫⎪⎬⎪⎭

= arctan

⎧⎪⎨⎪⎩tan
(

βπ

2

) pδx
β
δ cos

(
βπ
2δ

)
tan

(
βπ
2δ

)
cot

(
βπ
2

)
+ δ(1−α)

α xβ cos
(

βπ
2

)
pδx

β
δ cos

(
βπ
2δ

)
+ δ(1−α)

α xβ cos
(

βπ
2

)
⎫⎪⎬⎪⎭ (30)

≥ βπ

2
,

since:

tan
(

βπ

2δ

)
cot

(
βπ

2

)
≥ tan

(
βπ

2

)
cot

(
βπ

2

)
= 1 for

1
δ

≥ 1.

In view of the proof of Theorem 2, we find from (30) that h(U) contains the sector | arg w| < βπ
2 .

Hence, if f ∈ A(p) satisfies (25), then the subordination (28) holds true.
The sharpness part of the proof is similar to that in the proof of Theorem 2, and so, we omit it.

The proof of Theorem 5 is completed.
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Abstract: In the present paper, we study a generalization of the initial-boundary problem for the
inhomogeneous vibrating string equation. The initial conditions include the higher order derivatives
of the unknown function. The problem is studied under homogeneous boundary conditions of the
first kind. The uniqueness and existence of a regular solution of the problem are proved. To prove
the main result we use the spectral decomposition method.

Keywords: vibrating string equation; initial conditions; spectral decomposition; regular solution;
the uniqueness of the solution; the existence of a solution

1. Introduction

The differential equations are used to model the real world application problems in science and
engineering that involve several parameters as well as the change of variables with respect to others.
Most of these problems will require the solution of initial and boundary conditions, that is, the solution
to the differential equations are forced to satisfy certain conditions and data. However, to model most
of the real world problems is very complicated task and in many forms it is also difficult to find the
exact solution. Boundary value problems for the Laplace, Poisson and Helmholtz equations with
boundary conditions containing the higher order derivatives were studied in works by Bavrin [1],
Karachik [2–5], Sokolovskii [6]. In the papers [7–13], boundary problems, including higher derivatives
on the boundary, were studied for the Poisson, Helmholtz, and biharmonic equations. It should be
noted that unlike our work, in the mentioned papers [1–6,14], the higher order derivative is given on
the entire boundary. For an inhomogeneous heat equation, an initial-boundary problem containing a
higher order derivative in the presence of an initial condition was studied in [15]. Now we reconsider
the following equation

∂2u
∂t2 − ∂2u

∂x2 = f (x, t) (1)

in the domain Ω = {(x, y) | 0 < x < p, 0 < t < T} where f (x, t) is a given function. Then we try to
find a solution of the Equation (1) in the domain Ω which satisfies the following conditions

u(0, t) = 0, 0 ≤ t ≤ T, (2)

u(p, t) = 0, 0 ≤ t ≤ T, (3)

∂ku(x, 0)
∂tk = ϕk(x), 0 ≤ x ≤ p, (4)

Symmetry 2019, 11, 73; doi:10.3390/sym11010073 www.mdpi.com/journal/symmetry277
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∂k+1u(x, 0)
∂tk+1 = ψk(x), 0 ≤ x ≤ p, (5)

where k ≥ 1 is a fixed integer number. For the case k = 0 and f (x, t) = 0, the problem (1)–(5)
was studied in [16]. Further Tikhonov in [17] studied homogeneous heat equation with the

boundary condition
n
∑

k=0
ak

∂ku(0,t)
∂xk = 0 and the initial condition u(x, 0) = 0 in the domain

(0 < x < ∞, t > 0). Similarly, Bitsadze in [14] studied the Laplace equation in an n-dimensional
domain D under the condition

dmu
dνm = f (x), x ∈ ∂D

and proved its Fredholm property. There is also more related literature on the boundary conditions
problem, see for example ([18–25]). In the present paper, we study a generalized initial-boundary
problem (2)–(5) for the inhomogeneous vibrating string Equation (1). The initial conditions include
the higher order derivatives of the unknown function. The problem is studied under homogeneous
boundary conditions of the first kind. We prove the uniqueness and existence of a regular solution of
the problem. To solve the problem (1)–(5), we apply the spectral decomposition method.

2. The Uniqueness of Solution

Theorem 1. The solution of the problem (1)–(5) is unique if it exists.

Proof. Let f (x, t) = 0 in Ω, ϕk(x) = 0, ψk(x) = 0 in [0, p]. We show that the homogeneous
problem (1)–(5) has only the trivial solution. It is known [26], the functions

Xn(x) =

√
2
p

sin(λnx), λn =
nπ

p
, n = 1, 2, . . . (6)

form in L2(0, p) a complete orthonormal system. Following [27], we consider the functions

αn(t) =

p∫
0

u(x, t)Xn(x)dx, 0 ≤ t ≤ T, (7)

where u(x, t) is the solution of the homogeneous equation corresponding to the Equation (1).
Differentiating (7) twice with respect to t, we obtain from the corresponding homogeneous Equation (1)

α′′
n(t) + λ2

nαn(t) = 0. (8)

The solution of (8) has the form

αn(t) = an cos(λnt) + bn sin(λnt).

To find the unknown coefficients an and bn, we use the homogeneous conditions (4) and (5),
which lead to the following equations:

α
(k)
n (t) = 0, α

(k+1)
n (t) = 0. (9)

It is not difficult to verify that

α
(k)
n (t) = λk

n

[
an cos

(
πk
2

+ λnt
)
+ bn sin

(
πk
2

+ λnt
)]

,

α
(k+1)
n (t) = λk+1

n

[
an cos

(
π(k + 1)

2
+ λnt

)
+ bn sin

(
π(k + 1)

2
+ λnt

)]
.
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Using (9), we obtain the following system of equations to determine the unknown coefficients an

and bn:

an cos
πk
2

+ bn sin
πk
2

= 0,

an cos
π(k + 1)

2
+ bn sin

π(k + 1)
2

= 0,

whose determinant of coefficients is 1. Hence, that αn(t) = 0. By completeness of functions Xn(x),
the Equation (7) implies that u(x, t) = 0 in Ω.

3. The Existence of Solution

We search the solution of (1) in the form

u(x, t) =
∞

∑
n=1

un(t)Xn(x). (10)

Expand the functions f (x, t), ϕk(x), and ψk(x) in Fourier series by functions Xn(x):

f (x, t) =
∞

∑
n=1

fn(t)Xn(x), (11)

ϕk(x) =
∞

∑
n=1

ϕknXn(x), (12)

ψk(x) =
∞

∑
n=1

ψknXn(x), (13)

where

fn(t) =

p∫
0

f (x, t)Xn(x)dx, (14)

ϕkn =

p∫
0

ϕk(x)Xn(x)dx, (15)

ψkn =

p∫
0

ψk(x)Xn(x)dx. (16)

Substituting (10) and (11) into (1), we obtain

u′′
n(t) + λ2

nun(t) = fn(t).

It can be shown that the solution of this equation satisfying the conditions

u(k)
n (0) = ϕkn, u(k+1)

n (0) = ψkn,

is
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un(t) = ϕkn
λk

n
cos

(
πk
2 − λnt

)
− ψkn

λk+1
n

sin
(

πk
2 − λnt

)
+

[ k+1
2 ]−1

∑
s=0

(−1)s

λk+1−2s
n

f (k−1−2s)
n (0) sin

(
πk
2 − λnt

)
−

[ k
2 ]−1

∑
s=0

(−1)s

λk−2s
n

f (k−2−2s)
n (0) cos

(
πk
2 − λnt

)
+ 1

λn

t∫
0

fn(τ) sin(λn(t − τ))dτ.

(17)

Hereinafter
m
∑

s=0
(. . . ) = 0 for m < 0. Substituting (17) into (10), we get

u(x, t) =
∞
∑

n=1
Xn(x)

{
ϕkn
λk

n
cos

(
πk
2 − λnt

)
− ψkn

λk+1
n

sin
(

πk
2 − λnt

)
+

[ k+1
2 ]−1

∑
s=0

(−1)s

λk+1−2s
n

f (k−1−2s)
n (0) sin

(
πk
2 − λnt

)
−

[ k
2 ]−1

∑
s=0

(−1)s

λk−2s
n

f (k−2−2s)
n (0) cos

(
πk
2 − λnt

)
+ 1

λn

t∫
0

fn(τ) sin(λn(t − τ))dτ

}
.

(18)

Using (18) we find the following derivatives of u(x, t).

∂2u
∂t2 =

∞
∑

n=1
Xn(x)

{
− ϕkn

λk−2
n

cos
(

πk
2 − λnt

)
+ ψkn

λk−1
n

sin
(

πk
2 − λnt

)
−

[ k+1
2 ]−1

∑
s=0

(−1)s

λk−1−2s
n

f (k−1−2s)
n (0) sin

(
πk
2 − λnt

)
+

[ k
2 ]−1

∑
s=0

(−1)s

λk−2−2s
n

f (k−2−2s)
n (0) cos

(
πk
2 − λnt

)
+ fn(0) cos(λnt)

+ 1
λn

f ′n(0) sin(λnt) + 1
λn

t∫
0

f ′′n (τ) sin(λn(t − τ))dτ

}
.

(19)

∂2u
∂x2 =

∞
∑

n=1
Xn(x)

{
− ϕkn

λk−2
n

cos
(

πk
2 − λnt

)
+ ψkn

λk−1
n

sin
(

πk
2 − λnt

)
−

[ k+1
2 ]−1

∑
s=0

(−1)s

λk−1−2s
n

f (k−1−2s)
n (0) sin

(
πk
2 − λnt

)
+

[ k
2 ]−1

∑
s=0

(−1)s

λk−2−2s
n

f (k−2−2s)
n (0) cos

(
πk
2 − λnt

)
− fn(t)

+ fn(0) cos(λnt) + 1
λn

f ′n(0) sin(λnt) + 1
λn

t∫
0

f ′′n (τ) sin(λn(t − τ))dτ

}
.

(20)

∂ku
∂tk =

∞
∑

n=1
Xn(x)

{
ϕkn cos(λnt) + 1

λn
ψkn sin(λnt)

+ (−1)k

λn

t∫
0

f (k)n (τ) sin [πk + λn(t − τ)] dτ

}
,

(21)

∂k+1u
∂tk+1 =

∞
∑

n=1
Xn(x)

{
− λn ϕkn sin(λnt) + ψkn cos(λnt) + (−1)k

λn
f (k)n (0) sin(λnt)

+ (−1)k+1

λn

t∫
0

f (k+1)
n (0) sin [π(k + 1) + λn(t − τ)] dτ

}
.

(22)
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Next we need to prove the absolute and uniformly convergence of the series (18)–(22). Below we
prove several lemmas that are used in the proof of the existence theorem.

Lemma 1. Let f (x, t) ∈ C1 (Ω
)
, f (0, t) = f (p, t) = 0,

∂ f
∂x

∈ Lipα[0, p] uniformly with respect to t and

0 < α < 1. Then the series (11) converges absolutely and uniformly in Ω.

Proof. Integrating in parts (14) we find

fn(t) =
√

2p
nπ

p∫
0

∂ f (x, t)
∂x

cos(λnx)dx.

Then [28]

| fn(t)| ≤
c

n1+α
, c =

Kp
3
2+α

π
√

2
,

where K is the Hölder constant. Since the series
∞
∑

n=1

1
n1+α converges, therefore the series (11) converges

absolutely and uniformly in Ω.

Lemma 2. Let ϕk(x) ∈ W1
2 (0, p), ϕk(0) = ϕk(p) = 0. Then the series (12) converges absolutely and

uniformly in [0, p].

Proof. Integrating by parts (15) we obtain

ϕkn =
1

λn
ϕ
(1)
kn , ϕ

(1)
kn =

p∫
0

ϕ′
k(x)

√
2
p

cos(λnx)dx.

Using the Bessel inequality [29],
∞
∑

n=1

∣∣∣ϕ(1)
kn

∣∣∣2 ≤
∥∥ϕ′

k

∥∥2
L2(0,p) and the inequality

∞
∑

n=1
|ϕkn| =

p
π

∞
∑

n=1

1
n

∣∣∣ϕ(1)
kn

∣∣∣ and using the Hölder inequality for the sum [29] yields

∞

∑
n=1

1
n

∣∣∣ϕ(1)
kn

∣∣∣ ≤ (
∞

∑
n=1

1
n2

) 1
2
(

∞

∑
n=1

∣∣∣ϕ(1)
kn

∣∣∣2) 1
2

≤ π√
6

‖ϕ′
k‖L2(0,p).

Here the equality
∞
∑

n=1

1
n2 = π2

6 was used. This implies the absolutely and uniformly convergence

of the series (12) on [0, p].

Lemma 3. Let ψk(x) ∈ W1
2 (0, p), ψk(0) = ψk(p) = 0. Then the series (13) converges absolutely and

uniformly on [0, p].

The proof is similar to the proof of Lemma 3.

Lemma 4. Let ϕk(x) ∈ W1
2 (0, p), ϕk(0) = ϕk(p) = 0. Then the series

∞

∑
n=1

λn ϕknXn(x) sin(λnt) (23)

converges absolutely and uniformly in Ω.
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Proof. Integrating by parts (15) we obtain

ϕkn =
1

λ2
n

ϕ
(2)
kn , ϕ

(2)
kn =

p∫
0

ϕ′′
k (x)

√
2
p

sin(λnx)dx.

Using the Parseval equality [29],

∞

∑
n=1

∣∣∣ϕ(2)
kn

∣∣∣2 =
∥∥ϕ′′

k
∥∥2

L2(0,p) ,

we obtain

∞

∑
n=1

λn |ϕkn| =
∞

∑
n=1

1
λn

∣∣∣ϕ(2)
kn

∣∣∣ ≤ (
∞

∑
n=1

1
λ2

n

) 1
2
(

∞

∑
n=1

∣∣∣ϕ(2)
kn

∣∣∣2) 1
2

=
p√
6

∥∥ϕ′′
k
∥∥

L2(0,p) .

Hence, the series (23) converges absolutely and uniformly in Ω.

Lemma 5. If ∂k+1 f (x,t)
∂tk+1 ∈ C

(
Ω
)
, then the series

∞

∑
n=1

Xn(x)
λn

t∫
0

f (m)
n (τ) sin

[
π(k + m)

2
+ λn(t − m)

]
dτ, m = 1, 2, . . . , k + 1

converges absolutely and uniformly in Ω.

Proof. Applying the Hölder inequality for integrals [29], we get

1
λn

∣∣∣∣∣∣
t∫

0

f (m)
n (τ) sin

[
π(k + m)

2
+ λn(t − m)

]
dτ

∣∣∣∣∣∣ ≤
√

T
λn

∥∥∥ f (m)
n

∥∥∥
L2(0,T)

.

Now applying the Hölder inequality for sums and the Bessel inequality, we find

∞

∑
n=1

1
λn

∥∥∥ f (m)
n

∥∥∥
L2(0,T)

≤ p√
6

∥∥∥∥∂m f
∂tm

∥∥∥∥
L2(0,T)

.

Next, consider the following series

∞

∑
n=1

Xn(x)
[ k+1

2 ]−1

∑
s=0

(−1)s

λk+1−2s
n

f (k+1−2s)
n (0) sin

(
πk
2

− λnt
)

, (24)

∞

∑
n=1

Xn(x)
[ k

2 ]−1

∑
s=0

(−1)s

λk−2s
n

f (k−2−2s)
n (0) cos

(
πk
2

− λnt
)

, (25)

∞

∑
n=1

Xn(x)
[ k

2 ]−1

∑
s=0

(−1)s

λk−2−2s
n

f (k−2−2s)
n (0) cos

(
πk
2

− λnt
)

, (26)

∞

∑
n=1

Xn(x)
[ k+1

2 ]−1

∑
s=0

(−1)s

λk−1−2s
n

f (k−1−2s)
n (0) sin

(
πk
2

− λnt
)

. (27)
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Lemma 6. If ∂k−1 f (x,t)
∂tk−1 ∈ C

(
Ω
)
, k ≥ 1, then the series (24) converges absolutely and uniformly in Ω.

Proof. Consider the series
∞

∑
n=1

[ k+1
2 ]−1

∑
s=0

∣∣∣ f (k−1−2s)
n (0)

∣∣∣
λk+1−2s

n
. (28)

For s = 0 we have
∞
∑

n=1

∣∣∣ f (k−1)
n (0)

∣∣∣
λk+1

n
. The convergence of this series is obvious. Let s =

[
k+1

2

]
− 1. Then

(1) k − 1 − 2s =

⎧⎨⎩
1, if k is even,

0, if k is odd,
(2) k + 1 − 2s =

⎧⎨⎩
3, if k is even,

2, if k is odd.

Therefore, the series (28) converges and so the series in (24) converges absolutely and uniformly
in Ω.

Lemma 7. If ∂k−2 f (x,t)
∂tk−2 ∈ C

(
Ω
)
, k ≥ 2, then the series (25) converges absolutely and uniformly in Ω.

Proof. Consider the series
∞

∑
n=1

[ k
2 ]−1

∑
s=0

∣∣∣ f (k−2−2s)
n (0)

∣∣∣
λk−2s

n
. (29)

If k = 2, then s = 0, and
∞
∑

n=1

∣∣∣ f (k−2)
n (0)

∣∣∣
λk

n
converges. It is easy to check that if s = 0, 1, . . . ,

([
k
2

]
− 1

)
,

then k − 2 − 2s ≥ 0. Thus, the series in (29) converges. Therefore, the series (25) converges absolutely
and uniformly in Ω.

Lemma 8. Let ∂k−2 f (x,t)
∂tk−2 ∈ C

(
Ω
)
, k ≥ 2. If either k is odd or k is even and

∂ f (x, t)
∂x

∈ C
(
Ω
)

, f (0, t) = f (p, t) = 0, (30)

then the series (26) converges absolutely and uniformly in Ω.

Proof. The proof is completed by showing that the series

∞

∑
n=1

[ k
2 ]−1

∑
s=0

∣∣∣ f (k−2−2s)
n (0)

∣∣∣
λk−2−2s

n
(31)

is the convergent. Indeed, if we let k ≥ 2 and s =
[

k
2

]
− 1, then

k − 2 − 2s =

⎧⎨⎩
0, if k is even,

1, if k is odd.

Therefore, the series (31) converges for odd k. Then the series (26) converges absolutely and
uniformly in Ω. If k = 2, then s = 0 and the series (31) takes the form

∞

∑
n=1

| fn(0)|, fn(0) =

p∫
0

f (x, 0)Xn(x)dx. (32)

In general, for any even k, the term of
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[ k
2 ]−1

∑
s=0

∣∣∣ f k−2−2s
n (0)

∣∣∣
λk−2−2s

n

corresponding to s =
[

k
2

]
− 1 is | fn(0)|. For n = 1, 2, ..., these terms in (31) form the series (32).

Show that the series (32) converges. Indeed, integrating the last integral, we obtain by virtue of (30) that

fn(0) =
1

λn
f (1,0)
n (0), f (1,0)

n =

p∫
0

∂ f (x, 0)
∂x

√
2
p

cos(λnx)dx. (33)

By using the Bessel inequality

∞

∑
n=1

∣∣∣ f (1,0)
n (0)

∣∣∣2 ≤
∥∥∥∥∂ f (x, 0)

∂x

∥∥∥∥2

L2(0,p)
,

and therefore taking into account (33), we can see that

∞

∑
n=1

| fn(0)| =
∞

∑
n=1

1
λn

∣∣∣ f (1,0)
n (0)

∣∣∣
≤

(
∞

∑
n=1

1
λ2

n

) 1
2
(

∞

∑
n=1

∣∣∣ f (1,0)
n (0)

∣∣∣2) 1
2

≤ p√
6

∥∥∥∥∂ f (x, 0)
∂x

∥∥∥∥
L2(0,p)

.

Thus, the series (26) converges absolutely and uniformly in Ω for any even k.

Lemma 9. Let ∂k−1 f (x,t)
∂tk−1 ∈ C

(
Ω
)
, k ≥ 1. If either k is even or k is odd and conditions (30) are satisfied,

then the series (27) converges absolutely and uniformly in Ω.

Proof. In order to prove this Lemma it is sufficient to prove that the following series

∞

∑
n=1

[ k+1
2 ]−1

∑
s=0

∣∣∣ f (k−1−2s)
n (0)

∣∣∣
λk−1−2s

n

convergent. Indeed, for s =
[

k+1
2

]
− 1, we have

k − 1 − 2s =

⎧⎨⎩
0, if k is even,

1, if k is odd.

The rest of the proof runs as the proof of Lemma 8.

Theorem 2. Let

(1) f (x, t) ∈ C1 (Ω
)
, f (0, t) = f (p, t) = 0,

and
∂ f
∂x

∈ Lipα[0, p] uniformly with respect to t, 0 < α < 1;

(2)
∂k f (x, t)

∂tk ∈ C
(
Ω
)
,

∂k+1 f (x, t)
∂tk+1 ∈ L2 (Ω);

(3) ϕk(x) ∈ W2
2 (0, p), ϕk(0) = ϕk(p) = 0;

(4) ψk(x) ∈ W1
2 (0, p), ψk(0) = ψk(p) = 0.

Then the series (18)–(22) converge absolutely and uniformly in Ω, the solution (18) satisfies the Equation (1),
conditions (2)–(5), and u(x, t) ∈ C2,k+1

x,t
(
Ω
)
.
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Proof. The fact that the series (18)–(22) converge absolutely and uniformly follows from Lemmas
1–9. Properties of the function Xn(x) imply that (18) satisfies the conditions (2) and (3). Passing to
the limit as t → 0 in equalities (21) and (22), we can see that (18) satisfies the conditions (4) and (5).
Comparing series (19) and (20), we can see that (18) satisfies Equation (1). The fact that the series (20)
and (22) converge uniformly and absolutely in Ω imply that u(x, t) ∈ C2,k+1

x,t
(
Ω
)

and that (18) satisfies
the Equation (1).

4. Conclusions

We have studied and generalized the initial-boundary problem for the inhomogeneous vibrating
string equation. The problems studied in the present paper are the first work for hyperbolic equation
which contain higher order derivatives of unknown function in initial conditions. This problem
generalizes the classic initial-boundary value problems for hyperbolic equation. We have proved the
uniqueness and existence of a regular solution of the problem. To prove the main result we have used
the spectral decomposition method. In addition, we have explicitly presented the solution in the form
of series. We also state that the extension to the multi variables form is an open question.
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1. introduction

The one parameter Mittag–Leffler function Eα (z) defined by

Eα(z) =
∞

∑
m=0

zm

Γ (αm + 1)
(1)

was introduced by Mittag–Leffler [1]. This function of complex variable is entire. The series defined by
Equation (1) converges in C when Re(α) > 0. Consider that the function Eα,κ(z) which generalizes the
function Eα(z) is defined by

Eα,κ (z) =
∞

∑
m=0

zm

Γ (αm + κ)
, α, κ ∈ C, z ∈ C. (2)

It was introduced by Wiman [2] and was named as Mittag–Leffler type function. The series
in Equation (2) converges in C when Re (α) > 0 and Re (κ) > 0. Furthermore, the functions defined
in (1) and (2) are entire of order 1/Re (α) and of type 1, for more details, see [3]. The function Eα,κ (z)
and its analysis with its generalizations is increasingly becoming a rich research area in mathematics
and its related fields. A number of researchers studied and analyzed the function given in (2)
(see Wiman [2,4,5]). One can find this function in the study of kinetic equation of fractional order,
Lévy flights, random walks, super-diffusive transport as well as in investigations of complex systems.

Symmetry 2019, 11, 45; doi:10.3390/sym11010045 www.mdpi.com/journal/symmetry287
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In a similar manner, the advanced studies of these functions reflect and highlight many vital properties
of these functions. The function Eα,κ (z) generalizes many functions such as

E1,1(z) = ez, E1,2(z) =
ez − 1

z
,

E2,1(z) = cosh
(√

z
)

, E2,2(z) =
sinh

(√
z
)

√
z

.

The interested readers are suggested to go through [6–9].
Let A be the family of all functions g having the form

g (z) = z +
∞

∑
m=2

amzm, (3)

and are analytic in D = {z : |z| < 1} and S denote the family of univalent functions from A.
The families of functions which are convex, starlike and close-to-convex of order μ , respectively,
are defined as:

C (μ) =

{
g : g ∈ A and Re

(
1 +

zg
′′
(z)

g′ (z)

)
> μ, z ∈ D; 0 ≤ μ < 1

}
,

S∗ (μ) =

{
g : g ∈ A and Re

(
zg′ (z)
g (z)

)
> μ, z ∈ D; 0 ≤ μ < 1

}
,

and

K (μ) =

{
g : g ∈ A and Re

(
g′ (z)
h′ (z)

)
> μ, z ∈ D; 0 ≤ μ < 1; h ∈ C

}
.

It is clear that C∗ (0) = C, S∗ (0) = S∗ and K (0) = K. Consider the class H of all analytic
functions in D and μ < 1, Baricz [10] introduced the classes

Pη (μ) =
{

p : p ∈ H, p (0) = 1, Re
{

eiη (p (z)− μ)
}
> 0, z ∈ D, η ∈ R

}
and

Rη (μ) =
{

f : f ∈ A and Re
{

eiη ( f ′ (z)− μ
)}

> 0, z ∈ D, η ∈ R

}
.

For η = 0, we have the classes of analytic functions P0 (α) and R0 (α) respectively. Also for η = 0
and α = 0, we have the classes P and R.

For the functions g ∈ A given by (1) and h ∈ A given by

h(z) = z +
∞

∑
m=2

bmzm,

then the convolution (Hadamard product) of g and h is defined as:

(g ∗ h) (z) = z +
∞

∑
m=2

ambmzm, z ∈ D.

It is clear that the function Eα,κ (z) is not in class A. Recently, Bansal and Prajapat [11] considered
the normalization of the function Eα,κ (z) given as

Eα,κ (z) = Γ (κ) zEα,κ (z) = z +
∞

∑
m=1

Γ (κ) zm+1

Γ (αm + κ)
, α, κ ∈ C, Re(α) > 0, κ 	= 0, −1, · · · .
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In this article, we investigate some geometric properties of function Eα,κ (z) with real parameters
α and κ.

We need the following results in our investigations.

Lemma 1 ([12]). If g ∈ A and

∣∣zg′′ (z)
∣∣ < 1 − μ

4
, z ∈ D; 0 ≤ μ < 1,

then
Re

{
g′ (z)

}
>

1 + μ

2
, z ∈ D; 0 ≤ μ < 1.

Lemma 2 ([13]). Let κ ∈ C such that Re(κ) > 0, c ∈ C and |c| ≤ 1, c 	= −1. If h ∈ A satisfies∣∣∣∣c |z|2β +

(
1 − |z|2β zh′′(z)

βh′(z)

)∣∣∣∣ ≤ 1, z ∈ D,

then

Cβ(z) =

⎧⎨⎩β

z∫
0

tβ−1h′(t)dt

⎫⎬⎭
1/β

, z ∈ D

is analytic and univalent in D.

Lemma 3 ([14]). Let g (z) = z + a2z2 + ... + amzm + ..., be analytic in D and in addition 1 ≥ 2a2 ≥ ... ≥
mam ≥ ... ≥ 0 or 1 ≤ 2a2 ≤ ... ≤ mam ≤ ... ≤ 2, then g (z) is in class K with respect to the function
z → − log (1 − z) . Also if the function g (z) = z + 3a3 + ... + a2m−1z2m−1 + ..., which is odd and analytic in
D and satisfies in addition 1 ≥ 3a3 ≥ ... ≥ (2m + 1) a2m+1 ≥ ... ≥ 0 or 1 ≤ 3a3 ≤ ... ≤ (2m + 1) a2m+1 ≤
... ≤ 2, then g (z) ∈ S in D.

Lemma 4 ([[15]). If g(z) =
∞
∑

m=1
amzm−1, such that a1 = 1 and am ≥ 0, ∀m ≥ 2, is analytic in D and if

{am}∞
m=1 is a sequence which is decreasing, i.e., am+2 + am − 2am+1 ≥ 0 and am − am+1 ≥ 0, ∀m ≥ 1, then

Re

{
∞

∑
m=1

amzm−1

}
>

1
2

, ∀z ∈ D.

Lemma 5 ([15]). If am ≥ 0, {mam} and {mam − (m + 1)am+1} both are non-increasing, then the function g
defined by (3) is in S∗.

2. Starlikeness, Convexity, Close-to-Convexity

Theorem 1. Let α ≥ 3
2 and κ ≥ 3

2 . Then,

Re
{

Eα,κ (z)
z

}
>

1
2

, for z ∈ D.

Proof. For the proof of this result, we have to show that

{am}∞
m=1 =

{
Γ (κ)

Γ (α(m − 1) + κ)

}∞

m=1

is a decreasing sequence. Consider

289



Symmetry 2019, 11, 45

am − am+1 =
Γ (κ)

Γ (α(m − 1) + κ)
− Γ (κ)

Γ (αm + κ)

= Γ (κ)

{
Γ (αm + κ)− Γ (α(m − 1) + κ)

Γ (α(m − 1) + κ) Γ (αm + κ)

}
> 0,

where ∀ m ≥ 1, α ≥ 3
2 and κ ≥ 3

2 . Now, to show that {am}∞
m=1 is decreasing, we prove that

am + am+2 ≥ 2am+1.
Take

am − 2am+1 + am+2 =
Γ (κ)

Γ (α(m + 1) + κ)
+

Γ (κ)

Γ (α(m − 1) + κ)
− 2Γ (κ)

Γ (αm + κ)

= Γ (κ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ (αm + κ) Γ (α(m + 1) + κ)− 2Γ (α(m − 1) + κ) Γ (α(m + 1) + κ)

+Γ (α(m − 1) + κ) Γ (αm + κ)

Γ (α(m − 1) + κ) Γ (αm + κ) Γ (α(m + 1) + κ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= Γ (κ)

⎡⎢⎢⎢⎣
Γ (α(m + 1) + κ) {Γ (αm + κ)− 2Γ (α(m − 1) + κ)}

+Γ (α(m − 1) + κ) Γ (αm + κ)

Γ (α(m − 1) + κ) Γ (αm + κ) Γ (α(m + 1) + κ)

⎤⎥⎥⎥⎦ .

The above expression is non negative ∀ m ≥ 1, α ≥ 3
2 and κ ≥ 3

2 , which shows that {am}∞
m=1 is

decreasing and convex sequence. Now, from the Lemma 4, we have

Re

(
∞

∑
m=1

bmzm−1

)
>

1
2

, z ∈ D,

which is equivalent to

Re
(

Eα,κ (z)
z

)
>

1
2

, z ∈ D.

Theorem 2. Let α ≥ 2.67 and κ ≥ 1. Then, Eα,κ (z) is starlike in the open unit disc D.

Proof. To show that Eα,κ (z) is starlike in D, we prove that {mam} and {mam − (m + 1)am+1} both are
non-increasing in view of Lemma 5. Since am ≥ 0 for the normalized Mittag–Leffler function under
the given conditions, consider

mam − (m + 1)am+1 =
mΓ (κ)

Γ (α(m − 1) + κ)
− (m + 1)Γ (κ)

Γ (αm + κ)

= Γ (κ)

{
mΓ (αm + κ)− (m + 1)Γ (α(m − 1) + κ)

Γ (α(m − 1) + κ) Γ (αm + κ)

}
> 0

for m ≥ 1, α ≥ 2.67 and κ ≥ 1. Now,
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mam − 2(m + 1)am+1 + (m + 2) =
mΓ (κ)

Γ (α(m − 1) + κ)
− 2(m + 1)Γ (κ)

Γ (αm + κ)
+

(m + 2)Γ (κ)

Γ (α(m + 1) + κ)

= Γ (κ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2(m + 1)Γ (α(m − 1) + κ) Γ (α(m + 1) + κ) +

mΓ (αm + κ) Γ (α(m + 1) + κ) + (m + 2)Γ (α(m − 1) + κ) Γ (αm + κ)

Γ (α(m − 1) + κ) Γ (αm + κ) Γ (α(m + 1) + κ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= Γ (κ)

⎡⎢⎢⎢⎣
Γ (α(m + 1) + κ) {mΓ (αm + κ)− 2(m + 1)Γ (α(m − 1) + κ)}

+(m + 2)Γ (α(m − 1) + κ) Γ (αm + κ)

Γ (α(m − 1) + κ) Γ (αm + κ) Γ (α(m + 1) + κ)

⎤⎥⎥⎥⎦ .

The above relation is non-negative ∀ m ≥ 1, α ≥ 2.67 and κ ≥ 1. Thus, from Lemma 5, Eα,κ (z) is
starlike in D.

Theorem 3. Let α ≥ 3.323 and κ ≥ 1. Then,

Re
{

E′
α,κ (z)

}
>

1
2

, (z ∈ D) .

Proof. Consider

Eα,κ (z) = z +
∞

∑
m=2

Γ (κ) zm

Γ (α(m − 1) + κ)
,

E′
α,κ (z) = 1 +

∞

∑
m=2

mΓ (κ)

Γ (α(m − 1) + κ)
zm−1,

E′
α,κ (z) = 1 +

∞

∑
m=2

Amzm−1.

Here, Am = mΓ(κ)
Γ(α(m−1)+κ)

. By taking the same computations as in Theorem 2, we get the proof.

Theorem 4. If α ≥ 1 and κ ≥ 1, then z → Eα,κ (z) is in K with respect to the function − log (1 − z) .

Proof. Set

Eα,κ (z) = z +
∞

∑
m=2

am−1zm,

and we have am−1 > 0 for all m ≥ 2 and a1 = Γ(κ)
Γ(α+κ)

≤ 1. For the proof of this result, we use Lemma 3.
Therefore, we have to show that {mam−1}m≥2 is decreasing. Now,

mam−1 − (m + 1) am = Γ (κ)

[
m

Γ (α(m − 1) + κ)
− m + 1

Γ (αm + κ)

]
,

= Γ (κ)

[
mΓ (αm + κ)− (m + 1) Γ (α(m − 1) + κ)

Γ (α(m − 1) + κ) Γ (αm + κ)

]
> 0.

By restricting parameters, we note that mam−1 − (m + 1) am > 0 for all m ≥ 2. Thus, {mam−1}m≥2
is a decreasing sequence—hence the result.

Theorem 5. If α ≥ 1 and κ ≥ 1, then z → zEα,κ
(
z2) is in K respect to the function 1

2 log
(

1+z
1−z

)
.
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Proof. Set

zEα,κ

(
z2
)
= z +

∞

∑
m=2

A2m−1z2m−1.

Here, A2m−1 = am−1 = Γ(κ)
Γ(α(m−1)+κ)

for all m ≥ 2. In addition, it is clear that a1 ≤ 1. Mainly,
we have to show that {(2m − 1) am−1}m≥2 is decreasing. Now,

(2m − 1) am−1 − (2m + 1) am = Γ (κ)

[
(2m − 1)

Γ (α(m − 1) + κ)
− (2m + 1)

Γ (αm + κ)

]
,

= Γ (κ)

[
(2m − 1) Γ (αm + κ)− (2m + 1) Γ (α(m − 1) + κ)

Γ (α(m − 1) + κ) Γ (αm + κ)

]
> 0.

By using conditions on parameters, we observe that (2m − 1) am−1 − (2m + 1) am > 0 for all
m ≥ 2. Thus, {(2m − 1) am−1}m≥2 is a decreasing sequence. By applying Lemma 3, we have the
required result.

Theorem 6. If α ≥ 1 and κ ≥ 3.214319744, then Eα,κ (z) ∈ S∗ in D.

Proof. Let p (z) =
zE′

α,κ (z)
Eα,κ (z)

, z ∈ D. Then, the function p is analytic in D with p (0) = 1. To prove Eα,κ (z)
is starlike in D, we just prove that Rep (z) > 0 in z ∈ D. For this, it is enough to show |p (z)− 1| < 1
for z ∈ D. By using the inequalities

Γ (κ)

Γ (αm + κ)
≤ 1

(κ)m
, α ≥ 1, κ ≥ 1, m ∈ N,

m (κ)m ≤ 2m−1κ (κ + 1)m−1 , κ ≥ 1, m ∈ N,

we have ∣∣∣∣E′
α,κ (z)−

Eα,κ (z)
z

∣∣∣∣ =

∣∣∣∣∣ ∞

∑
m=1

Γ (κ)

Γ (αm + κ)
mzm

∣∣∣∣∣
≤

∞

∑
m=1

2m−1

κ (κ + 1)m−1

≤ 1
κ

∞

∑
m=1

(
2

κ + 1

)m−1

=
κ + 1

κ (κ − 1)
, (κ > 1) . (4)

Furthermore, using reverse triangle inequality and the inequality (κ)m ≤ (κ)m , we obtain∣∣∣∣Eα,κ (z)
z

∣∣∣∣ =

∣∣∣∣∣1 + ∞

∑
m=1

Γ (κ)

Γ (αm + κ)
zm

∣∣∣∣∣
≥ 1 −

∞

∑
m=1

Γ (κ)

Γ (αm + κ)

≥ 1 −
∞

∑
m=1

1
(κ)m

≥ 1 − 1
κ

∞

∑
m=1

(
1

κ + 1

)m−1

=
κ2 − κ − 1

κ2 (κ > 0) . (5)
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By combining (4) and (5), we get∣∣∣∣ zE′
α,κ (z)

Eα,κ (z)
− 1

∣∣∣∣ ≤ κ (κ + 1)
(κ − 1) (κ2 − κ − 1)

. (6)

Therefore, Eα,κ (z) ∈ S∗ in D if κ(κ+1)
(κ−1)(κ2−κ−1) ≤ 1. In other words, we have to show that

κ3 − 3κ2 − κ + 1 ≥ 0. The inequality is satisfied for κ ≥ 3.214319744. Hence, Eα,κ (z) is starlike
in D.

Remark 1. Recently, Bansal and Prajpat [11] proved that Eα,κ (z) is starlike, if α ≥ 1 and
κ ≥ (3 +

√
17)/2 ≈ 3.56155281. The above result improves the result in [11].

Theorem 7. If α ≥ 1 and κ ≥ 3.56155281, then Eα,κ (z) ∈ C in D.

Proof. Let p (z) = 1 + zE′′
α,κ(z)

E′
α,κ(z)

, z ∈ D. Then, p (z) is analytic in D with p (0) = 1. To show that Eα,κ (z)
is convex in D, it is enough to prove that |p (z)− 1| < 1, z ∈ D. By using the inequalities

Γ (κ)

Γ (αm + κ)
≤ 1

(κ)m
, α ≥ 1, κ ≥ 1, m ∈ N,

2m (m + 1) (κ)m ≤ 4m−1κ (κ + 1)m−1 , κ ≥ 1, m ∈ N,

we have

∣∣zE′′
α,κ (z)

∣∣ =

∣∣∣∣∣ ∞

∑
m=1

Γ (κ)

Γ (αm + κ)
m (m + 1) zm

∣∣∣∣∣
≤

∞

∑
m=1

4m−1

2κ (κ + 1)m−1

≤ 2
κ

∞

∑
m=1

(
4

κ + 1

)m−1

=
2 (κ + 1)
κ (κ − 3)

, (κ > 3) . (7)

Furthermore, using the inequality m (κ)m ≤ 2m−1 (κ)m , then we have

∣∣E′
α,κ (z)

∣∣ =

∣∣∣∣∣1 + ∞

∑
m=1

(m + 1)
Γ (κ)

Γ (αm + κ)
zm

∣∣∣∣∣
≥ 1 −

∞

∑ (m + 1)
m=1

Γ (κ)

Γ (αm + κ)

≥ 1 −
∞

∑
m=1

1
(κ)m

≥ 1 − 2
κ

∞

∑
m=1

(
2

κ + 1

)m−1

=
κ2 − 3κ − 2

κ (κ − 1)
(κ > 0) . (8)

From (7) and (8), we get ∣∣∣∣ zE′′
α,κ (z)

E′
α,κ (z)

∣∣∣∣ ≤ 2
(
κ2 − 1

)
(κ − 1) (κ2 − 3κ − 2)

. (9)
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This implies that Eα,κ (z) ∈ C in D if
2(κ2−1)

(κ−1)(κ2−3κ−2) ≤ 1. To prove our result, we have to show that

κ3 − 6κ2 + 7κ + 6 ≥ 0. The inequality is satisfied for κ ≥ 3.5615528. Hence, Eα,κ (z) is convex in D.

Consider the integral operator Fγ : D → C, where γ ∈ C, γ 	= 0,

Fγ (z) =

⎧⎨⎩γ

z∫
0

tγ−2Eα,κ (t) dt

⎫⎬⎭ , z ∈ D.

Here, Fγ ∈ A. We prove that Fγ ∈ S in D.

Theorem 8. Let M ∈ R+ such that |Eα,κ (z)| ≤ M in D. If

|γ − 1|+ κ (κ + 1)
(κ − 1) (κ2 − κ − 1)

+
M
|γ| ≤ 1,

then Fγ ∈ S in D.

Proof. A calculation gives

zF′′
γ (z)

F′
γ (z)

=
zE′

α,κ (z)
Eα,κ (z)

+
zγ−1

γ
Eα,κ (z) + γ − 2, z ∈ D.

Since Eα,κ (z) ∈ A, then by Schwarz Lemma, triangle inequality and (6), we obtain

(
1 − |z|2

) zF′′
γ (z)

F′
γ (z)

≤
(

1 − |z|2
) [

|γ − 1|+
∣∣∣∣ zE′

α,κ (z)
Eα,κ (z)

− 1
∣∣∣∣+ |z|γ−1

|γ|

∣∣∣∣Eα,κ (z)
z

∣∣∣∣
]

≤
(

1 − |z|2
) [

|γ − 1|+ κ (κ + 1)
(κ − 1) (κ2 − κ − 1)

+
M
|γ|

]
.

By using Lemma 2, Fγ ∈ S in D.

Theorem 9. Let α ≥ 1, μ ∈ [0, 1) and z ∈ D.

(i) If κ >
(11−3μ)+

√
μ2−12μ+17

2(1−μ)
, then Eα,κ (z) ∈ K

(
1+μ

2

)
.

(ii) If & < 1 − {(κ+2)(κ+α0)(κ+α0−1)+(κ+1)}
κ(κ+1)(κ+α0)(κ+α0−1) , then Eα,κ(z)

z ∈ P (μ) .

(iii) If (1 − μ) κ3 + (2μ − 3) κ2 − κ + (1 − μ) > 0, then Eα,κ (z) ∈ S∗ (μ) .
(iv) If (1 − μ) κ3 + (6μ − 8) κ2 + (7 − 7μ) κ + (8 − 6μ) > 0, then Eα,κ (z) ∈ C (μ) .

Proof. (i) Using (7) and Lemma 1, we get

∣∣zE′′
α,κ (z)

∣∣ ≤ 2 (κ + 1)
κ (κ − 3)

<
1 − μ

4
,

where 0 ≤ μ < 1 − 8(κ+1)
κ(κ−3) and κ >

(11−3μ)+
√

μ2−12μ+17
2(1−μ)

. This shows that Eα,κ (z) ∈ K
(

1+μ
2

)
.

(ii) To prove Eα,κ(z)
z ∈ P (μ) , we have to show that |g(z)− 1| < 1, where g(z) = {Eα,κ(z)/z}−μ

(1−μ)
.

By using triangle inequality with

Γ (κ)

Γ (αm + κ)
≤ 1

(κ)m
, m ∈ N,

(κ)m > κ (κ + α0)
m−1 , (κ > 0; m ∈ N\{1, 2}) ,
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(see [16]), where
α0 ≈ 1.302775637...

is the largest root of the equation
α2 + α − 3 = 0,

we have

|g(z)− 1| =

∣∣∣∣∣ 1
(1 − μ)

∞

∑
m=1

Γ (κ)

Γ (αm + κ)
zm

∣∣∣∣∣
≤ 1

(1 − μ)

∞

∑
m=1

1
(κ)m

≤ 1
(1 − μ)

{
1
κ
+

1
κ (κ + 1)

+
∞

∑
m=3

1

κ (κ + α0)
m−1

}

=
1

(1 − μ)

{(κ + 2) (κ + α0) (κ + α0 − 1) + (κ + 1)}
κ (κ + 1) (κ + α0) (κ + α0 − 1)

.

This implies that Eα,κ(z)
z ∈ P (μ) , for 0 < μ < 1 − {(κ+2)(κ+α0)(κ+α0−1)+(κ+1)}

κ(κ+1)(κ+α0)(κ+α0−1) .

(iii) We use the inequality
∣∣∣ zE′

α,κ(z)
Eα,κ(z)

− 1
∣∣∣ < 1 − μ to show the starlikeness of order μ for the function

Eα,κ (z) . By using (4) and (5), we have∣∣∣∣ zE′
α,κ (z)

Eα,κ (z)
− 1

∣∣∣∣ ≤ κ (κ + 1)
(κ − 1) (κ2 − κ − 1)

< 1 − μ.

This implies that

μ < 1 − κ (κ + 1)
(κ − 1) (κ2 − κ − 1)

.

This completes the proof.

(iv) We use the inequality
∣∣∣ zE′′

α,κ(z)
E′

α,κ(z)

∣∣∣ < 1 − μ to show that Eα,κ (z) ∈ C (μ) . By using (7) and (8),
we have ∣∣∣∣ zE′′

α,κ (z)
E′

α,κ (z)

∣∣∣∣ ≤ 2
(
κ2 − 1

)
(κ − 3) (κ2 − 3κ − 2)

< 1 − μ.

This implies that

μ < 1 − 2
(
κ2 − 1

)
(κ − 3) (κ2 − 3κ − 2)

,

hence the result.

Substituting μ = 0 in Theorem 9, we obtained the following results.

Corollary 1. Let α ≥ 1, z ∈ D.
(i) If κ > 11+

√
17

2 , then Eα,κ (z) ∈ K
(

1
2

)
.

(ii) If {(κ+2)(κ+α0)(κ+α0−1)+(κ+1)}
κ(κ+1)(κ+α0)(κ+α0−1) < 1, then Eα,κ(z)

z ∈ P .

(iii) If κ3 − 3κ2 − κ + 1 > 0, then Eα,κ (z) ∈ S∗.
(iv) If κ3 − 8κ2 + 7κ + 8 > 0, then Eα,κ (z) ∈ C.

Remark 2. It is clear that Eα,κ (z) ∈ K
(

1
2

)
when α ≥ 1, κ > 7.56155 and Eα,κ (z) ∈ C when α ≥ 1,

κ > 6.796963. It concludes that our results improve the results of ([17], corollary 2.1).
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3. Hardy Space of Mittag–Leffler Function

Consider the class H of analytic functions in D = {z : |z| < 1} and H∞ denote the space bounded
functions on H. Let g ∈ H, set

Mq (r, g) =

⎧⎪⎨⎪⎩
(

1
2π

2π∫
0

∣∣g (reiθ)∣∣q dθ

)1/q

, 0 < q < ∞,

max {|g (z)| : |z| ≤ r} , q = ∞.

If Mq (r, g) is bounded for r ∈ [0, 1) , then g ∈ Hq. It is clear that

H∞ ⊂ Hp ⊂ Hq, 0 < p < q < ∞.

For some details, see [18]. It is also known [18] that, if Re (g′ (z)) > 0 in D, then{
g′ ∈ Hp, p < 1,

g ∈ Hp/(1−p), 0 < p < 1.

Hardy spaces of certain special functions are studied in [10,19,20].

Lemma 6 ([21]). P0 (μ) ∗ P0 (η) ⊂ P0 (γ) , where γ = 1 − 2 (1 − μ) (1 − η) and μ, η < 1. The value γ

can not be improved.

Lemma 7 ([22]). For μ, η < 1 and γ = 1 − 2 (1 − μ) (1 − η) , we have R0 (μ) ∗ R0 (η) ⊂ R0 (γ) ,
or equivalently P0 (μ) ∗ P0 (η) ⊂ P0 (γ) .

Lemma 8 ([23]). If the function g, convex of order μ, where μ ∈ [0, 1), is not of the form

g (z) =

{
l + dz

(
1 − zeiς)2μ−1 , μ 	= 1/2,

l + d log
(
1 − zeiς) , μ = 1/2,

for d, l ∈ C, and ς ∈ R, then the following statements are true:
(i) There exist δ = δ (g) > 0 such that g′ ∈ Hδ+1/[2(1−μ)].
(ii) If μ ∈ [0, 1/2) , then there exists τ = τ (g) > 0 such that g ∈ Hτ+1/(1−2μ).
(iii) If μ ≥ 1/2, then g ∈ H∞.

Theorem 10. Let μ ∈ [0, 1), (1 − μ) κ3 + (6μ − 8) κ2 + (7 − 7μ) κ + (8 − 6μ) > 0.
(i) If μ ∈ [0, 1/2) , then Eα,κ (z) ∈ H1/(1−2μ).
(ii) If μ ≥ 1/2, then Eα,κ (z) ∈ H∞.

Proof. By using the definition of the hypergeometric function

2F1 (a, b, c; z) =
∞

∑
m=0

(a)m (b)m

(c)m
zm

m!
,

we have

l +
dz(

1 − zeiς
)1−2μ

= l + dz2F1

(
1, 1 − 2α, 1; zeiς

)
,

= l + d
∞

∑
m=0

(1 − 2α)m
m!

eiςmzm+1,

296



Symmetry 2019, 11, 45

for l, d ∈ C, μ 	= 1/2 and for real ς. On the other hand,

l + d log
(

1 − zeiγ
)

= l − dz2F1

(
1, 1, 2; zeiς

)
,

= l − d
∞

∑
m=0

1
m + 1

eiςmzm+1.

Therefore, the function Eα,κ (z) is not of the form of l + dz
(
1 − zeiγ)2μ−1

(for μ 	= 1/2) and
l + d log

(
1 − zeiγ) (for μ = 1/2) . We know that, by part (iv) of Theorem 9, Eα,κ (z) ∈ C (μ) . Therefore,

by using Lemma 8, we have the required result.

Theorem 11. Let {(κ+2)(κ+α0)(κ+α0−1)+(κ+1)}
κ(κ+1)(κ+α0)(κ+α0−1) < 1 and f ∈ D. Then, convolution Eα,κ ∗ f is in H∞ ∩ R.

Proof. Let h (z) = Eα,κ (z) ∗ g (z) . Then, h′ (z) = Eα,κ(z)
z ∗ g′ (z) . Using the Corollary 1 part ii, we have

Eα,κ(z)
z ∈ P . As g ∈ R; therefore, by using Lemma 6 h ∈ R. Now, the function Eα,κ(z)

z is complete;
therefore, h (z) is complete. This implies that h (z) is bounded. Thus, we have the required result.

Theorem 12. Let & < 1 − {(κ+2)(κ+α0)(κ+α0−1)+(κ+1)}
κ(κ+1)(κ+α0)(κ+α0−1) , μ ∈ [0, 1) and z ∈ D. If g ∈ P (η) , then Eα,κ (z) ∗

g ∈ R (γ) , where γ = 1 − 2 (1 − μ) (1 − η) .

Proof. Let h (z) = Eα,κ (z) ∗ g (z) . Then, it is clear that h′ (z) = Eα,κ(z)
z ∗ g′ (z) . Using Theorem 9 part

(ii), we have Eα,κ(z)
z ∈ P (μ) . As g ∈ R, therefore, by using Lemma 6 and the fact that g′ ∈ P (η) ,

we have h′ (z) ∈ P (γ) , where .γ = 1 − 2 (1 − μ) (1 − η) . Consequently, h ∈ R (γ) .

Corollary 2. Let μ ∈ [0, 1) and & < 1 − {(κ+2)(κ+α0)(κ+α0−1)+(κ+1)}
κ(κ+1)(κ+α0)(κ+α0−1) . If g ∈ R (η),

η = (1 − 2μ) / (2 − 2μ) , then Eα,κ (z) ∗ g ∈ R (0) .

Corollary 3. Let μ ∈ [0, 1) and {(κ+2)(κ+α0)(κ+α0−1)+(κ+1)}
κ(κ+1)(κ+α0)(κ+α0−1) < 1. If g ∈ R (1/2), then Eα,κ (z) ∗ g ∈ R (0) .

4. Applications

Now, we present some applications of the above theorems. It is clear that

E1,2 (z) = ez − 1, E1,3 (z) =
2ez − z − 1

z
, E1,4 (z) =

6ez − 3z2, −6z − 6
z2 .

From Theorem 9, we get the following:

Corollary 4. (i) If 0 ≤ μ < μ0, where μ0 ≈ 0.26759, then E1,2 (z) ∈ P (μ) .
(ii) If 0 ≤ μ < μ1, where μ1 ≈ 0.55988, then E1,3 (z) ∈ P (μ) .
(iii) If 0 ≤ μ < μ2, where μ2 ≈ 0.68904, then E1,4 (z) ∈ P (μ) .

Corollary 5. If 0 ≤ μ < μ3, where μ3 ≈ 0.39393, then E1,4 (z) ∈ S∗ (μ) .

Corollary 6. (i) Let 0 ≤ μ < μ4, where μ4 ≈ 0.2675930. If g ∈ R (η), η = (1 − 2μ) / (2 − 2μ) ,
then E1,2 (z) ∗ g ∈ R (0) .

(ii) Let 0 ≤ μ < μ5, where μ5 ≈ 0.55987780. If g ∈ R (η), η = (1 − 2μ) / (2 − 2μ) , then E1,3 (z) ∗
g ∈ R (0) .

(iii) Let 0 ≤ μ < μ6, where μ6 ≈ 0.68904320. If g ∈ R (η), η = (1 − 2μ) / (2 − 2μ) , then E1,4 (z) ∗
g ∈ R (0) .
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5. Conclusions

In this paper, we have studied certain geometric properties of Mittag-Leffler functions such as
starlikeness, convexity and close-to-convexity. We have also found the Hardy spaces of Mittag-Leffler
functions. Further, we have improved some results in the literature.
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Abstract: Demonstrating the striking symmetry between calculus and q-calculus, we obtain q-analogues
of the Bateman, Pasternack, Sylvester, and Cesàro polynomials. Using these, we also obtain q-analogues
for some of their generating functions. Our q-generating functions are given in terms of the basic
hypergeometric series 4φ5, 5φ5, 4φ3, 3φ2, 2φ1, and q-Pochhammer symbols. Starting with our q-generating
functions, we are also able to find some new classical generating functions for the Pasternack and
Bateman polynomials.
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1. Introduction

We will adopt the following notations for sets: N := {1, 2, 3, . . .}, N0 := {0, 1, 2, . . .}, and C is the
set of complex numbers. We also adopt the conventions that an empty sum vanishes and the empty
product is unity.

The generalized hypergeometric series rFs is given by [1] (1.4.1)

rFs

(
a1, . . . , ar

b1, . . . , bs
; z
)
=

∞

∑
n=0

(a1)n · · · (ar)n

(b1)n · · · (bs)n

zn

n!
,

where |z| < 1, the Pochhammer symbol (rising factorial) is defined by (a)n := (a)(a+ 1) · · · (a+ n − 1),
and the (bi) are such that these denominator factors never vanish. A q-analogue of the hypergeometric
series rFs is the basic hypergeometric series [2]

rφs

(
a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣∣∣ q, z

)
=

∞

∑
n=0

(a1; q)n(a2; q)n · · · (ar; q)n

(b1; q)n(b2; q)n · · · (bs; q)n

[
(−1)nq

n(n−1)
2

]1+s−r zn

(q; q)n
, (1)

where q 	= 0 when r > s + 1. We refer to [2] for convergence properties of the series, however note that
(bi) is such that the denominator factors never vanish. This occurs when bi = q−m for some m ∈ N0.
Further note the important limit [1] (p. 15)

lim
q↑1

rφs

(
qa1 , qa2 , . . . , qar

qb1 , qb2 , . . . , qbs

∣∣∣∣∣ q, (q − 1)1+s−rz

)
= rFs

(
a1, a2, . . . , ar

b1, b2, . . . , bs
; z

)
. (2)

Symmetry 2018, 10, 758; doi:10.3390/sym10120758 www.mdpi.com/journal/symmetry300



Symmetry 2018, 10, 758

The q-Pochhammer symbol with non-negative integer subscript is defined by

(a; q)0 = 1, (a; q)n = (1 − a)(1 − q) · · · (1 − aqn−1), n ∈ N.

Some useful properties of the q-Pochhammer symbols that we will take advantage of with n ∈ N0

include [1] (1.8.18)

(q−n; q)k =
(q; q)n

(q; q)n−k
(−1)kq

k(k−1)
2 −nk, k = 0, 1, . . . , n (3)

and [1] (1.8.21-22)

(a; q)2n = (a
1
2 ; q)n(−a

1
2 ; q)n((aq)

1
2 ; q)n(−(aq)

1
2 ; q)n. (4)

Furthermore, one has [1] (p. 12)

(a; q)∞ :=
∞

∏
k=1

(1 − aqk−1),

and a generalization of the q-Pochhammer symbol for arbitrary λ ∈ C is given by [1] (1.8.9)

(a; q)λ :=
(a; q)∞

(aqλ; q)∞
, |q| < 1, (5)

where the principal value of qλ is taken. Note that, from (5), it follows that, for a, α, β ∈ C,

(a; q)α+β = (a; q)α(aqα; q)β.

We need to define some other q-analogues, such as the q-analogue of a (real) number [a]q, and the
q-factorial [n]q!. For the q-number one has [1] (1.8.1)

[a]q :=
1 − qa

1 − q
,

where q 	= 0, q 	= 1, and the q-factorial [2] (1.2.44)

[0]q! = 1, [n]q! =
n

∏
k=1

[k]q, n ∈ N.

We also will need a q-analogue of the binomial theorem [2] (1.3.2)

1φ0

(
a
−

∣∣∣∣∣ q, z

)
=

∞

∑
k=0

(a; q)k
(q; q)k

zk =
(az; q)∞

(z; q)∞
, |z| < 1, |q| < 1. (6)

The q-binomial coefficient is defined for a, b ∈ C, [2] (I.40)[
a
b

]
q

:=
(qb+1; q)∞(qa−b+1; q)∞

(q; q)∞(qa+1; q)∞
,

which specializes if n ∈ N0, k = 0, 1, . . . , n, to [2] (I.39)[
n
k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.
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Mathematical and Physical Applications

H. Bateman introduced in [3], the hypergeometric polynomial which we refer to in this paper
as the Bateman polynomials. The goal of his research in the direction of these polynomials was in
trying to better understand some radiation and conduction problems in which one requires the
inverse of the Laplace transform. Our generalized q-generating functions for the Bateman and
Pasternack (generalized Bateman) polynomials may very well be useful to the study of q-analogues
of these radiation and conduction problems. Sylvester (1879) [4] investigated his polynomials and
showed that the numbers ϕn(

1
4 ) can be used for the computation of the numbers of different terms

in the determinant of a skew-symmetric matrix of degree 2n. Similarly, ϕn(
1
8 ) is significant for the

computation of the number of different terms in a determinant of degree 4n, which is skew-symmetric
with respect to both diagonals (see [5] (pp. 255–256)). Cesàro polynomials g(s)n (z) are in fact the sth
mean of the first n partial sums of 1 + x + x2 + . . . (see [6] (p. 185)). Our generalizations should apply
in q-generalizations of all of these problems, such as for the q-Laplace transform and for q-Bernstein
polynomials.

2. The Bateman, Sylvester, Pasternack, and Cesàro Polynomials

H. Bateman introduced in [3], the generalized hypergeometric polynomial:

Zn(z) = 2F2

(
−n, n + 1

1, 1

∣∣∣∣∣ z

)
.

By using [7] (Theorem 48), we obtain the generating function

∞

∑
n=0

Zn(z) tn =
1

1 − t 1F1

(
1
2
1

∣∣∣∣∣ −4zt
(1 − t)2

)
.

Using the above information, the Bateman polynomials are defined as [8] (p. 25)

Bn(z) = 3F2

(
−n, n + 1, z+1

2
1, 1

∣∣∣∣∣ 1

)
.

He also obtained the generating functions:

∞

∑
n=0

Bn(z) tn =
1

1 − t 2F1

(
1
2 , z+1

2
1

∣∣∣∣∣ −4t
(1 − t)2

)
,

∞

∑
n=0

(Bn(z − 2)− Bn(z)) tn =
2t

(1 − t)3 2F1

(
3
2 , z+1

2
2

∣∣∣∣∣ −4t
(1 − t)2

)
.

Lemma 1. Let t ∈ C. Then the following relation holds:

∞

∑
n=0

Bm(−2n − 1)
tn

n!
= etZm(−t). (7)

The Bateman polynomial Bn was generalized by Pasternack in [9]. He defines the polynomial
Bm

n as

Bm
n (z) = 3F2

(
−n, n + 1, z+m+1

2
1, m + 1

∣∣∣∣∣ 1

)
for m ∈ C\{−1}. These polynomials reduce to the Bateman polynomials when m = 0. Further
information regarding such polynomials and their connection with (classical) orthogonal polynomials
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can be found in [10]. Indeed, we can write the Pasternack polynomials in terms of the continuous
Hahn polynomials as follows [10] (p. 893):

Bm
n (z) =

1
in(m + 1)n

pn

(−iz
2

;
1 + m

2
,

1 − m
2

,
1 − m

2
,

1 + m
2

)
.

We also consider the Sylvester polynomials, defined as (see [6] (p. 185))

ϕn(z) =
zn

n! 2F0

(
−n, z
−

∣∣∣∣∣− 1
z

)
.

Notice that we also can write the Sylvester polynomials in terms of (classical) orthogonal
polynomials [1] (p. 48)

ϕn(z) = (−1)nL(−z−n)
n (x) =

zn

n!
Cn(−z; z).

Here L(α)
n and Cn represent the Laguerre and Charlier polynomials. It is also known that the Sylvester

polynomials satisfy the generating functions

∞

∑
n=0

ϕn(z) tn =
ezt

(1 − t)z ,

∞

∑
n=0

(λ)n ϕn(z) tn =
1

(1 − zt)λ 2F0

(
λ, z
−

∣∣∣∣∣ t
1 − zt

)
.

The Cesàro polynomials are defined as [6] (p. 449)

g(s)n (z) =
(1 + s)n

n! 2F1

(
−n, 1
−s − n

∣∣∣∣∣ z

)
.

Observe that this family can be written in terms of Jacobi polynomials [6] (p. 449) as

g(s)n (z) = P(s+1,−s−n−1)
n (2z − 1). (8)

Furthermore, they satisfy the generating functions: [11] (4.2)

∞

∑
n=0

g(s)n (z) tn = (1 − t)−s−1(1 − zt)−1, (9)

∞

∑
n=0

(
n + �

�

)
g(s)n+�(z) tn = (1 − t)−s−1−�(1 − zt)−1g(s)�

(
z(1 − t)
1 − zt

)
. (10)

The aim of this paper is to obtain the q-analogue of all these families of polynomials as well as
the q-analogues of the generating functions stated above. The structure of this paper is as follows.
In Section 2, we give some preliminaries on q-calculus and we define some q-analogues of the Bateman,
Sylvester, Pasternack, and Cesàro polynomials. In Section 3, we state and prove most (see Remark 1
below) of the q-analogues of the generating functions associated with the q-Bateman, q-Sylvester,
q-Pasternack, and q-Cesàro polynomials.

3. The q-Analogues of the Bateman, Sylvester, Pasternack, and Cesàro Polynomials

Taking into account the q-definitions in Section 1 and the polynomials introduced therein,
we define the q-Bateman polynomial as
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Zn(z; q) = 2φ2

(
q−n, qn+1

q, q

∣∣∣∣∣ q, qnz

)
,

Bn(z; q) = 3φ2

(
q−n, qn+1, q

1+z
2

q, q

∣∣∣∣∣ q, qn

)
,

define the q-Pasternack polynomial as

Bm
n (z; q) = 3φ2

(
q−n, qn+1, q

1+z+m
2

q, qm+1

∣∣∣∣∣ q, qn

)
,

define the q-Sylvester polynomial as

ϕn(z; q) =
zn

(q; q)n
2φ0

(
q−n, qz

−

∣∣∣∣∣ q, qnz−1

)
,

and define the q-Cesàro polynomial as

g(s)n (z; q) =
(qs+1; q)n

(q; q)n
2φ1

(
q−n, q
q−s−n

∣∣∣∣∣ q, z

)
.

Lemma 2. The q-Cesàro polynomial can be written as

g(s)n (z; q) =
n

∑
k=0

[
k + s

s

]
q

(zqs)n−k. (11)

4. The Generating Functions

Theorem 1. Let q, t, z ∈ C, |q| < 1, |t| < 1, |z| < 1. Then the q-Bateman polynomials satisfy the following
generating functions:

∞

∑
n=0

Bn(z; q) tn =
1

1 − t 5φ5

⎛⎝ −q, q
1
2 , −q

1
2 , q

z+1
2 , 0

q, qt
1
2 , −qt

1
2 , (qt)

1
2 , −(qt)

1
2

∣∣∣∣∣∣ q, t

⎞⎠ , (12)

∞

∑
n=0

Zn(z; q) tn =
1

1 − t 4φ5

⎛⎝ −q, q
1
2 , −q

1
2 , 0

q, qt
1
2 , −qt

1
2 , (qt)

1
2 , −(qt)

1
2

∣∣∣∣∣∣ q, zt

⎞⎠ , (13)

∞

∑
n=0

(
Bn(z − 2; q)− Bn(z; q)

)
tn =

(1 + q)q
z−1

2 t
(t; q)3

5φ5

⎛⎝ −q2, q
3
2 , −q

3
2 , q

z+1
2 , 0

q2, q2t
1
2 , −q2t

1
2 , (q3t)

1
2 , −(q3t)

1
2

∣∣∣∣∣∣ q, qt

⎞⎠ . (14)

Proof. Let us start by proving Identity (12). One has

∞

∑
n=0

Bn(z; q) tn =
∞

∑
n=0

n

∑
k=0

(q−n; q)k(qn+1; q)k(q
z+1

2 ; q)k
(q; q)k(q; q)k(q; q)k

(qkt)n.

Using (3), we obtain

∞

∑
n=0

Bn(z; q) tn =
∞

∑
n=0

n

∑
k=0

(q; q)n+k(q
z+1

2 ; q)k
(q; q)n−k(q; q)k(q; q)k(q; q)k

(−1)kq
k(k−1)

2 tn.
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Next, we rearrange the double summation and set n (→ n + k, obtaining

∞

∑
n=0

Bn(z; q) tn =
∞

∑
k=0

∞

∑
n=0

(q; q)n+2k(q
z+1

2 ; q)k
(q; q)n(q; q)k(q; q)k(q; q)k

(−1)kq
k(k−1)

2 tn+k

=
∞

∑
k=0

(q; q)2k(q
z+1

2 ; q)k
(q; q)k(q; q)k(q; q)k

(−t)kq
k(k−1)

2
∞

∑
n=0

(q2k+1; q)n

(q; q)n
tn.

By using (4) and the q-analogue of the binomial theorem (6), we obtain

=
∞

∑
k=0

(−q; q)k(q
1
2 ; q)k(−q

1
2 ; q)k(q

z+1
2 ; q)k

(q; q)k(q; q)k
(−t)kq

k(k−1)
2

(q2k+1t; q)∞

(t; q)∞

=
∞

∑
k=0

(−q; q)k(q
1
2 ; q)k(−q

1
2 ; q)k(q

z+1
2 ; q)k

(t; q)2k+1(q; q)k(q; q)k
(−t)kq

k(k−1)
2

=
1

1 − t

∞

∑
k=0

(−q; q)k(q
1
2 ; q)k(−q

1
2 ; q)k(q

z+1
2 ; q)k

(qt; q)2k(q; q)k(q; q)k
(−t)kq

k(k−1)
2

=
1

1 − t

∞

∑
k=0

(−q; q)k(q
1
2 ; q)k(−q

1
2 ; q)k(q

z+1
2 ; q)k

(q; q)k((qt)
1
2 ; q)k(−(qt)

1
2 ; q)k(qt

1
2 ; q)k(−qt

1
2 ; q)k

(−1)kq
k(k−1)

2
tk

(q; q)k
.

Hence, the identity follows. In order to prove Identity (14), one has

∞

∑
n=0

(
Bn(z − 2; q)− Bn(z; q)

)
tn =

∞

∑
n=0

n

∑
k=0

(q−n; q)k(qn+1; q)k
(q; q)k(q; q)k(q; q)k

qnk
(
(q

z−1
2 ; q)k − (q

z+1
2 ; q)k

)
tn

=
∞

∑
n=0

n

∑
k=0

(q−n; q)k(qn+1; q)k
(q; q)k(q; q)k(q; q)k

qnk(q
z+1

2 ; q)k−1(1 − qk)(−q
z−1

2 )tn

=
∞

∑
n=0

n

∑
k=0

(q; q)n+k(q
z+1

2 ; q)k−1(−1)k−1q
z−1

2 q
k(k−1)

2

(q; q)n−k(q; q)k−1(q; q)k(q; q)k
tn.

Taking into account that the above expression vanishes at k = 0, we set k (→ k + 1, rearrange the double
sum, and set n (→ n + k, yielding

=
∞

∑
k=0

∞

∑
n=0

(q; q)n+2k+1(q
z+1

2 ; q)k(−1)kq
z−1

2 q
k(k+1)

2

(q; q)n−1(q; q)k(q; q)k+1(q; q)k+1
tn+k.

Here, again, the series vanishes at n = 0, so we set n (→ n + 1. Applying some basic identities of
q-Pochhammer symbols, we obtain

= (1 + q)q
z−1

2 t
∞

∑
k=0

∞

∑
n=0

(q3; q)n+2k(q
z+1

2 ; q)k(−1)kq
k(k−1)

2

(q; q)n(q; q)k(q2; q)k(q2; q)k
(qt)ktn

=(1 + q)q
z−1

2 t
∞

∑
k=0

(q3; q)2k(q
z+1

2 ; q)k
(q; q)k(q2; q)k(q2; q)k

(−1)kq
k(k−1)

2 (qt)k
∞

∑
n=0

(q3+2k; q)n

(q; q)n
tn.
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Applying again the q-analogue of the binomial theorem (6) and simplifying, we obtain

=(1 + q)q
z−1

2 t
∞

∑
k=0

(q3; q)2k(q
z+1

2 ; q)k
(q; q)k(q2; q)k(q2; q)k

(−1)kq
k(k−1)

2 (qt)k 1
(t; q)3+2k

=(1 + q)q
z−1

2 t
∞

∑
k=0

(q
3
2 ; q)k(−q

3
2 ; q)k(−q2; q)k(q

z+1
2 ; q)k

(q; q)k(q2; q)k
(−1)kq

k(k−1)
2 (qt)k 1

(t; q)3+2k

=
(1 + q)
(t; q)3

q
z−1

2 t
∞

∑
k=0

(q
3
2 ; q)k(−q

3
2 ; q)k(−q2; q)k(q

z+1
2 ; q)k(−1)kq

k(k−1)
2

(q; q)k(q2; q)k((tq3)
1
2 ; q)k(−(tq3)

1
2 ; q)k(q2t

1
2 ; q)k(−q2t

1
2 ; q)k

(qt)k.

Therefore, the identity follows. Let us prove the generating function Equation (14). We have

∞

∑
n=0

Zn(z; q) tn =
∞

∑
n=0

n

∑
k=0

(q−n; q)k(qn+1; q)k(−1)kq
k(k−1)

2

(q; q)k(q; q)k(q; q)k
zkqnktn

=
∞

∑
n=0

n

∑
k=0

(q; q)n+kqk(k−1)

(q; q)n−k(q; q)k(q; q)k(q; q)k
zktn.

As in the previous identities, we rearrange the double sums and set n (→ n + k, obtaining

=
∞

∑
k=0

∞

∑
n=0

(q; q)n+2kqk(k−1)

(q; q)n(q; q)k(q; q)k(q; q)k
zktn+k =

∞

∑
k=0

(q; q)2kqk(k−1)

(q; q)k(q; q)k(q; q)k
(zt)k

∞

∑
n=0

(q2k+1; q)n

(q; q)n
tn

=
∞

∑
k=0

(q; q)2kqk(k−1)

(q; q)k(q; q)k(q; q)k
(zt)k 1

(t; q)2k+1
=

1
1 − t

∞

∑
k=0

(−q; q)k(q
1
2 ; q)(−q

1
2 ; q)qk(k−1)

(q; q)k(q; q)k(tq; q)2k
(zt)k

=
1

1 − t

∞

∑
k=0

(−q; q)k(q
1
2 ; q)(−q

1
2 ; q)qk(k−1)

(q; q)k(q; q)k((tq)
1
2 ; q)k(−(tq)

1
2 ; q)k(qt

1
2 ; q)k(−qt

1
2 ; q)k

(zt)k.

Hence, the identity follows since
(
(−1)kq

k(k−1)
2

)2
= qk(k−1). Note that, in order for the generating

functions to converge, one must require |t| < 1. Furthermore, one must also have that the denominator
parameters of the basic hypergeometric series must not be equal to a factor of q−m for some m ∈ N0.
This requires that |t| < |q|−1, which is greater than unity since |q| < 1, so |t| < 1 suffices. Since |t| < 1,
then |z| < 1 as well. This completes the proof.

Theorem 2. Let j, m ∈ N0, q, t, λ ∈ C, |q| < 1, |t| < 1. Then the following identities hold:

∞

∑
n=0

B
j
m(−2n − j − 1; q)

(qλ; q)n

(q; q)n
tn =

1
(t; q)λ

4φ3

(
q−m, qm+1, qλ, 0

q, qj+1, qt−1

∣∣∣∣∣ q, qm

)
, (15)

∞

∑
n=0

B
j
m(−2n − j − 1; q) tn =

1
1 − t 3φ2

(
q−m, qm+1, 0

qj+1, qt−1

∣∣∣∣∣ q, qm

)
, (16)

∞

∑
n=0

Bm(−2n − 1; q)
tn

(q; q)n
=

1
(t; q)∞

4φ3

(
q−m, qm+1, 0, 0

q, q, qt−1

∣∣∣∣∣ q, qm

)
, (17)

where the principal value of qλ is taken.
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Proof. Let us prove (15). Setting z = −2n − 1 − j in the q-Pasternack polynomial, and using their basic
hypergeometric expansion, we have

∞

∑
n=0

B
j
m(−2n−1− j; q)

(qλ; q)n

(q; q)n
tn =

∞

∑
n=0

n

∑
k=0

(q−m; q)k(qm+1; q)k(q−n; q)k

(q; q)k(q; q)k(qj+1; q)k
qnktn (qλ; q)n

(q; q)n

=
∞

∑
n=0

(qλ; q)ntn

(q; q)n

min(m,n)

∑
k=0

(q−m; q)k(qm+1; q)k(q−n; q)kqmk

(q; q)k(q; q)k(qj+1; q)k

=
m

∑
k=0

(q−m; q)k(qm+1; q)k(qλ; q)k(tqm)k

(q; q)k(q; q)k(q; q)k(qj+1; q)k

∞

∑
n=0

(q−n−k; q)k(qλ+k; q)ntn

(qk+1; q)n

=
m

∑
k=0

(q−m; q)k(qm+1; q)k(qλ; q)k(−t)kqmk+(k
2)−k2

(q; q)k(q; q)k(qj+1; q)k

∞

∑
n=0

(qλ+k; q)ntnq−nk

(q; q)n

=
m

∑
k=0

(q−m; q)k(qm+1; q)k(qλ; q)k(−t)kqmk+(k
2)−k2

(q; q)k(q; q)k(qj+1; q)k
1φ0

(
qλ+k

−

∣∣∣∣∣ q, tq−k

)

=
1

(t; q)λ
4φ3

(
q−m, qm+1, qλ, 0

q, qj+1, qt−1

∣∣∣∣∣ q, t

)
,

where we have used (5), (6) [1] (1.8.6), which completes the proof of (15). Observe that, if we set λ = 1
in (15), we obtain (16). Since |q| < 1, taking the limit λ → ∞ yields (17). Note that, in order for the
generating functions to converge, one must require |t| < 1. This completes the proof.

Setting t (→ t(1 − q) and taking the q ↑ 1 limit of (17) produces Lemma 1 since

lim
q↑1

(1 − q)n

(q; q)n
=

1
n!

, lim
q↑1

1
(t(1 − q); q)∞

= et,

lim
q↑1

4φ3

(
q−m, qm+1, 0, 0

q, q, q
(1−q)t

∣∣∣∣∣ q, qm

)
= 2F2

(
−m, m + 1

1, 1

∣∣∣∣∣− t

)
,

which follows easily by expanding the denominator factor involving t and using (2).

In fact, we are now able to obtain new classical generating functions for the Pasternack and
Bateman polynomials by taking the q ↑ 1 limit in (15), (16).

Corollary 1. Let j, m ∈ N0, t, λ ∈ C. Then the following identities hold:

∞

∑
n=0

B
j
m(−2n − 1 − j)

(λ)n

n!
tn =

1
(1 − t)λ 3F2

(
−m, m + 1, λ

1, j + 1
;

−t
1 − t

)
, (18)

∞

∑
n=0

Bm(−2n − 1)
(λ)n

n!
tn =

1
(1 − t)λ 3F2

(
−m, m + 1, λ

1, 1
;

−t
1 − t

)
, (19)

∞

∑
n=0

B
j
m(−2n − 1 − j) tn =

1
1 − t 2F1

(
−m, m + 1

j + 1
;

−t
1 − t

)
, (20)

∞

∑
n=0

Bm(−2n − 1) tn =
1

1 − t
Pm

(
1 + t
1 − t

)
, (21)

where Pm(x) is the Legendre polynomial [1] (Section 9.8.3).
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Proof. In (15), take the q ↑ 1 limit. Note that

(t; q)λ =
(t; q)∞

(tqλ; q)∞
= 1φ0

(
q−λ

−

∣∣∣∣∣ q, tqλ

)
.

Thus, by using (2),

lim
q↑1

(t; q)λ = 1F0

(
−λ

−

∣∣∣∣∣ t

)
= (1 − t)λ.

Hence by expanding the denominator factor involving t using (2) in (15) produces (18). Setting j = 0
and λ = 1 in (18), produces (19), (20), respectively. Setting j = 0 in (20) produces (21), by noting [1]
(9.8.62).

Theorem 3. Let m ∈ N0, q, t, z ∈ C, |q| < 1, |t| < 1. Then the q-Pasternack polynomials satisfy the following
generating function:

∞

∑
n=0

Bm
n (z; q) tn =

1
1 − t 5φ5

⎛⎝ −q, q
1
2 , −q

1
2 , q

z+m+1
2 , 0

qm+1, qt
1
2 , −qt

1
2 , (qt)

1
2 , −(qt)

1
2

∣∣∣∣∣∣ q, t

⎞⎠ . (22)

Proof. Taking into account the expression of the basic hypergeometric series for these polynomials,
we have

∞

∑
n=0

Bm
n (z; q) tn =

∞

∑
n=0

n

∑
k=0

(q−n; q)k(qn+1; q)k(q
z+m+1

2 ; q)k
(q; q)k(q; q)k(qm+1; q)k

(qkt)n

=
∞

∑
n=0

n

∑
k=0

(q; q)n+k(q
z+m+1

2 ; q)k
(q; q)n−k(q; q)k(q; q)k(qm+1; q)k

(−1)kq
k(k−1)

2 tn

=
∞

∑
k=0

∞

∑
n=0

(q; q)n+2k(q
z+m+1

2 ; q)k
(q; q)n(q; q)k(q; q)k(qm+1; q)k

(−1)kq
k(k−1)

2 tn+k

=
∞

∑
k=0

(q; q)2k(q
z+m+1

2 ; q)k
(q; q)k(q; q)k(qm+1; q)k

(−1)kq
k(k−1)

2 tk (q
2k+1t; q)∞

(t; q)∞

=
1

1 − t

∞

∑
k=0

(q; q)2k(q
z+m+1

2 ; q)k
(q; q)k(q; q)k(qm+1; q)k(qt; q)2k

(−1)kq
k(k−1)

2 tk

=
1

1 − t

∞

∑
k=0

(q
1
2 ; q)k(−q

1
2 ; q)k, (−q; q)k(q

z+m+1
2 ; q)k (−1)kq

k(k−1)
2

(q; q)k(qm+1; q)k((qt)
1
2 ; q)k(−(qt)

1
2 ; q)k(qt

1
2 ; q)k(−qt

1
2 ; q)k

tk,

which completes the proof. Note that upon comparison with (1), one requires the vanishing numerator

element in the basic hypergeometric series due to the factor (−1)kq
k(k−1)

2 in the sum, so it is not of
type 4φ5.

Observe that we obtain (12) by setting m = 0 in (22).
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Theorem 4. Let q, t, z, λ ∈ C, |q| < 1, |t| < 1. Then the q-Sylvester polynomials satisfy the following
generating functions:

∞

∑
n=0

(qλ; q)n ϕn(z; q) tn =
1

(zt; q)λ
2φ1

(
qλ, qz

ztqλ

∣∣∣∣∣ q, t

)
, (23)

∞

∑
n=0

ϕn(z; q) tn =
1

(t; q)z(zt; q)∞
, (24)

where the principal values of qz and qλ are taken.

Proof. Let us prove the generating function (23) by using an analogous method as before, namely

∞

∑
n=0

(qλ; q)n ϕn(z; q) tn =
∞

∑
n=0

n

∑
k=0

(q−n; q)k(qz; q)k(−1)kq− k(k−1)
2 (qλ; q)n

(q; q)n(q; q)k
qnkzn−ktn

=
∞

∑
n=0

n

∑
k=0

(qz; q)k(qλ; q)n

(q; q)n−k(q; q)k
zn−ktn =

∞

∑
k=0

∞

∑
n=0

(qz; q)k(qλ; q)n+k
(q; q)n(q; q)k

zntn+k

=
∞

∑
k=0

(qz; q)k(qλ; q)k
(q; q)k

tk
∞

∑
n=0

(qλ+k; q)n(zt)n

(q; q)n
=

∞

∑
k=0

(qz; q)k(qλ; q)k
(q; q)k(zt; q)λ+k

tk

=
1

(zt; q)λ

∞

∑
k=0

(qz; q)k(qλ; q)k

(q; q)k(ztqλ; q)k
tk.

Since |q| < 1, (24) follows from taking λ → ∞ and applying the q-binomial theorem.

Now we find the q-analogue of the first generating function for the q-Cesàro polynomials (9).

Theorem 5. Let t, z, s ∈ C, |t| < 1, |z| < 1. Then the q-Cesàro polynomials satisfy the following
generating function:

∞

∑
n=0

g(s)n (z; q) tn =
1

(1 − tzqs)(t; q)s+1
.

Proof. Let us prove this by using (11) and some basic properties of the q-Pochhammer symbols and
the q-binomial coefficient. One has

∞

∑
n=0

g(s)n (z; q) tn =
∞

∑
n=0

n

∑
k=0

[
k + s

s

]
q

(zqs)n−ktn =
∞

∑
n=0

n

∑
k=0

[
n − k + s

s

]
q

(zqs)ktn

=
∞

∑
k=0

(tzqs)k
∞

∑
n=0

[
n + s

s

]
q

tn =
1

(1 − tzqs)(t; q)s+1
,

where we have used the geometric series, (5), and (6), which completes the proof.

The demonstration that we obtain (9) upon taking the limit q ↑ 1 follows by using (5) and then (6).

Remark 1. We were unable to find the q-analogue of the second generating function (10) for the q-Cesàro
polynomials. The method which Agarwal and Manocha [11] used to obtain (10) does not seem to
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straightforwardly generate a corresponding q-analogue. Furthermore, using (8), one can see that (10) is
equivalent to the following generating function for Jacobi polynomials [12] (3.15)

∞

∑
n=0

(
m + n

m

)
P(α,β−n)

m+n (x)tn = (1 − t)β(1 − 1
2 (x + 1)t)−α−β−m−1P(α,β)

m

(
x − 1

2 (x + 1)t
1 − 1

2 (x + 1)t

)
. (25)

Unfortunately, this formula does not seem amenable to a natural q-analogue. Note that (25) is given with a
misprint in [6] (p. 165, Problem 9(ii)).

Remark 2. It has been mentioned by a referee that Theorems 4, 5 can be derived from the results contained
in [13]. However, it is not clear to the authors how to go from the q-Bernoulli polynomials to the q-Sylvester and
q-Cesàro polynomials. Moreover, the generating functions for q-Sylvester and q-Cesàro polynomials do not look
similar to the generating functions given in [13].

5. Conclusions

In this paper, we introduced several q-polynomials and derived q-analogues of most of the known
generating functions for these polynomials. In particular, this was accomplished for the Bateman,
Sylvester, Pasternack, and Cesàro polynomials. In Corollary 1, we also were able to find new classical
generating functions, by taking q ↑ 1 limits of the q-generating functions we obtained. We were unable
to find a q-analogue for the classical generating function for q-Cesàro polynomials (10) (see Remark 1).
This would be an interesting project for the future. It would be interesting to see if it is possible to use
q-calculus to obtain q-analogues of the results obtained in [3].

Remark 3. Note that we recently discovered that the Ph.D. thesis of Mohammad Asif [14] (Chapter 4), under the
direction of Prof. Mumtaz Ahmad Khan, contains some of the material that appears in this manuscript. Asif treats
both q-Bateman polynomials, the q-Pasternack polynomials, and the q-Cesàro polynomials, all of which are
defined in precisely the same way, although Asif uses different notations to display these polynomials. Asif also
treats q-Shively pseudo–Laguerre polynomials and q-Gottlieb polynomials. Asif does not treat the q-Sylvester
polynomials. It should be noted, however, that Asif arrives at the wrong conclusions for the lower parameters in
Theorem 1 and in (17). His notation may or may not be at fault in his representation of Theorem 5. He does find
the correct result for Theorem 3.
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Abstract: Taking inspiration principally from some of the latest research, we develop a new series
representation for the λ-generalized Hurwitz-Lerch zeta functions. This representation led to
important new results. The Fourier transform played a foundational role in this work. The duality
property of the Fourier transform became significant for checking the consistency of the results.
Some known data has been verified as special cases of the results obtained in this investigation.
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λ-generalized Hurwitz-Lerch zeta functions; derivative properties; series representation

1. Introduction

The Hurwitz-Lerch zeta function has always been remained a focal point for numerous
investigators because of its influence on analytic number theory and further practical disciplines.
Recently, Srivastava [1] offered a substantially innovative class of Hurwitz-Lerch zeta functions, namely,
λ-generalized Hurwitz-Lerch zeta functions. The exploration of its diverse forms has garnered notable
concern, and numerous papers have consequently been presented on this subject. Jankov et al. [2]
and Srivastava et al. [3] have offered inequalities by considering diverse cases of these functions.
Srivastava et al. [4], have presented a nonlinear operator connected to λ-generalized Hurwitz-Lerch
zeta functions, in order to investigate the inclusion properties of the definite subclass of a special type
of meromorphic functions. Srivastava and Gaboury [5] have considered new expansion formulas for
such functions (see, for related data, [6,7]; see also more systematically supplementary revisions cited
in these publications). Luo and Raina [8] have discussed an interesting series representation. They also
acquired some new inequalities comprising Srivastava’s λ-generalized Hurwitz-Lerch zeta functions.

By taking inspiration from all these outcomes, in our current investigation, we consistently present
all the special cases of this newly concentrated family of Srivastava’s λ-generalized Hurwitz-Lerch
zeta functions in the form of a table. On the one hand, we take account of extended Fermi-Dirac
and Bose-Einstein functions defined by Srivastava et al. [9], and on the other, we focus on the
close relationship of these functions with the family of zeta and related functions. The purpose
of this analysis is to discover some fascinating innovative outcomes for Srivastava’s λ-generalized
Hurwitz-Lerch zeta functions and their different cases by succeeding the methodology of Chaudhry &
Qadir [10], Tassaddiq & Qadir [11,12], Tassaddiq [13], Lail & Qadir [14], and Tassaddiq [15]. In these
articles [10–15], the authors have investigated new representations for gamma, generalized gamma,
extended Fermi-Dirac and Bose-Einstein functions, and Hypergeometric functions, respectively, in
terms of complex delta functions. More recently, Tassaddiq [16] has obtained some new results for
Srivastava’s λ-generalized Hurwitz-Lerch zeta functions by using its Mellin transform representation.

In the present work, we acquire a different representation for the recently introduced family of the
λ-generalized Hurwitz-Lerch zeta functions in terms of complex delta functions. We validate this over
the space of entire test functions denoted by Z. In the usual sense, we can think of a function being

Symmetry 2018, 10, 733; doi:10.3390/sym10120733 www.mdpi.com/journal/symmetry312
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defined in the form of an integral or a series of some variables, or in terms of elementary functions.
Nevertheless, it requires consideration as an object in itself, characterized by an integral or a series.
This is the only possibility to study the function further than its original domain of description. This is
necessary for diverse applications of any function. This concern comes to be principally significant
while talking about the concept of higher transcendental functions. Such functions have different
series, asymptotic, and integral representations to express functions in diverse domains and to give
more simple proofs of its properties when compared to others. Therefore, our new representation
is a powerful modeling tool that generalizes the domain of the λ-generalized Hurwitz-Lerch zeta
functions from complex numbers to complex functions. It applies to functionals that depend on
functions, rather than functions that depend on numbers. Since the methodology used is new, therefore
each general result in this paper has the capacity to obtain similar new results for well-studied
functions. It provides a computational technique to evaluate integrals of the products of these functions.
The stability of the results is confirmed by means of classical methods. In any case, this investigation
evidence is meaningful for delivering substantial and innovative results. The approach used is simple
and interesting.

Next, we will present the basic definitions and preliminaries by dividing this section into two
sections, namely (Section 2.1) and (Section 2.2). In Section 2.1, we discuss preliminaries related
to Srivastava’s λ-generalized Hurwitz-Lerch zeta functions, while in Section 2.2, we discuss basic
preliminaries relevant with distributions (generalized functions) that are necessary to understand the
results presented in this paper. The organization of the ensuing sections of this paper is as follows: We
present a new representation of the λ-generalized Hurwitz-Lerch zeta functions in Section 3. We achieve
analogous outcomes for new associated functions. We discuss the convergence and consequences
of new representation in Section 4. We present the Fourier transform representation in Section 5.
We check the validity of the results achieved by new representation in Section 5. We summarize our
present analysis in the last Section 6. Some interesting new formulae created by giving variations to
different parameters are presented in Appendix A.

2. Materials and Methods

2.1. Srivastava’s λ-Generalized Hurwitz-Lerch Zeta Functions

Consider the ordinary symbolizations

N := {1, 2, . . .}; N0 := N ∪ {0}; Z− := {−1, −2, . . .}; Z−
0 := Z− ∪ {0} (1)

where Z− is the set of negative integers. The symbols R, R+, and C symbolize the sets of real, positive
real, and complex numbers, individually throughout the paper.

The standard Fox-Wright function is an extension for the generalized hypergeometric function
that is defined by ([8] (p. 2219) Equation (1)) (see also [3], (p. 516), Equation (1)) and [17] p. (493),
Equation (2))

pΨ∗
q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; z

]
=

∞
∑

χ=0

([λp])ρpχ

([μq])σqχ

zχ

χ!(
λj, μk ∈ Candρj, σk ∈ R+(j = 1, . . . , p; k = 1, . . . , q)

)
.

(2)

Pochammar symbols
([

λp
])

ρpχ
:= [λ1]ρp

χ . . .
[
λp
]

ρpχ
are the shifted factorial, defined in terms

of the basic gamma function as follows:

(λ)ρ = Γ(λ+ρ)
Γ(λ)

=

{
1(ρ = 0, ρ ∈ C� {0})

λ(λ + 1) . . . (λ + χ − 1)(ρ = χ ∈ N; λ ∈ C),

Δ :=
q
∑

j=1
σj −

p
∑

j=1
ρjand∇ :=

(
p
∏

j=1
ρ
−ρj
j

)
·
(

q
∏

j=1
σ

σj
j

)
.

(3)
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The series given by (2) converges in the complete complex z-plane for Δ > −1; and if Δ = 0,
the series (2) converges for specific values of |z| < ∇. For more a comprehensive exchange of such
functions, we refer the interested reader to see the references [18–23].

Srivastava’s λ-generalized Hurwitz-Lerch zeta function as presented by ([1], p. 1487, Equation (4))

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; b, λ) :=

1
Γ(s)

∫ ∞
0 ts−1exp

(
−at − b

tλ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; ze−t

]
dt

(min[�(a), �(s)] > 0; �(b) � 0; λ � 0)

(4)

are central for this research paper. Luo and Raina obtained the following series representation ([8],
p. 2221, Equation (6))

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; b, λ) = 1
λΓ(s)

∞
∑

χ=0

([λp])ρpχ

([μq])σqχ

1
χ! Z

s
λ
1
λ

(a + χ)λb zχ

(χ+a)s

( λj ∈ R(j = 1, . . . , p)andμj ∈ R\Z − 0(j = 1, . . . , q); ρj > 0(j, . . . , p); σj > 0(j = 1, . . . , q); 1 + Δ ≥ 0 )

(5)

so that, obviously, one can get the following association with extended Hurwitz-Lerch zeta functions
([17], p. 503, Equation (6.2)) (see also [3,24])

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; 0, λ) = Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a) = ebΦ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; b, 0). (6)

By making use of Equations (4)–(6), we list all the items in the subsequent table that are
straightforward to achieve in view of different values of the parameters as specified column and
row wise on the next page.

Now if we go through the previous research, we notice that the different cases of λ-generalized
Hurwitz-Lerch zeta functions specified in the third column and second row, explicitly Θλ

μ (∓z, s, a; b),
have been defined and explored by [25], (p. 90), Equation (1.6), and [26]. Some of its most interesting
versions were studied and considered by [27]. The original class of zeta functions specifically
and explicitly is: Hurwitz-Lerch zeta function Φ(±z, s, a), [28], (p. 27), Equation (1.11), extended
Fermi-Dirac Θa(x; s), [9], (p. 9), Equation (3.14), extended Bose- Einstein Ψa(x; s), [9], (p. 115),
Equation (4.4), Fermi-Dirac Fs(x), [9], p. 109, Equation (1.12)], Bose-Einstein Bs(x), [9], (p. 109),
Equation (1.12), Polylogarithm φ(z, s), [28], (Chapter 1], Hurwitz zeta ζ(s, a) [28], (Chapter 1), and
Riemann zeta functions ζ(s), [28] (Chapter 1), respectively are listed in the last column of Table 1. Two

of the items in the first row specifically Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(±z, s, a) are defined by [1], (p. 1486), Equation
1.11 (see also [17]) and Φ∗

μ(±z, s, a) defined by [29], p. 100, Equation (1.5). The extended Riemann zeta
ζb(s) [30], (p. 308) and Hurwitz zeta functions ζb(s, a) [30], (p. 308) are noticeable in the last two rows.
For additional comprehensive study of zeta and related functions, we refer the reader to [1–32] and
related discussions therein.
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2.2. Distributions and Test Functions

Continuous linear functionals that act on some space of test functions are commonly known as
generalized functions (or distributions). These are the elements of the corresponding dual space of
test functions. A review of such elements is significant, because they not only have locally integrable
functions, but also consist of additional objects that are not regular distributions. Consequently, several
actions such as integration, differentiation, and limits that are defined for functions can be applied to
functionals. A delta functional commonly used in singular distribution is defined by

〈δ(u − a),ϕ(t)〉 = ϕ(a)(∀ϕ ∈ D, a ∈ R), (7)

where for a non-zero a, δ(−u) = δ(u); δ(au) = δ(t)
|a| .

A multi-volume presentation [33] (Vol. I-V) by Gelfand and Shilov is a great treatise on such
functions. The commonly used spaces of test functions are the spaces of compact support functions
denoted by D, and the space of rapidly decaying functions denoted by S, that also have derivatives of
all orders. The spaces D′ and S′ are the dual spaces of D and S. Spaces S and S′ are closed under the
Fourier transform, but D and D′ are not. The Fourier transform of the elements of D′ are continuous
linear functionals acting on the elements of z that comprises of entire functions such that their Fourier
transforms are in D [34]. The entire function ϕεz does not vanish on some interval a < u < b, but
vanishes universally. Accordingly

z′ ⊃ S′ ⊃ S ⊃ z; D ∩ z ≡ 0; D′ ⊃ S′ ⊃ S ⊃ D. (8)

The elements of Z consist of entire analytic functions satisfying the following set of inequalities

|sqϕ(s)| ≤ Cqea|τ|; (q = 0, 1, 2, . . . .) (9)

where the constants a and Cq may depend on ϕ. By ([33], Vol 1, p. 169, Equation (8)), we take the
Fourier transform of exponential function

F
[
eαt; ω

]
= 2πδ(ω − iα) (10)

as an example of distribution that is an element of z′ and for ∀g ∈ z′ ([33], (p. 159), Equation (4)), see
also ([34], p. 201, Equation (9))

g(s + b) =
∞

∑
r=0

g(r)(s)
br

r!
. (11)

So that we have the following basic identity

δ(s + b) =
∞

∑
r=0

δ(r)(s)
br

r!
; 〈δ(r)(s),ϕ(s)〉 = (−1)rϕ(r)(0). (12)

For an additional extensive study of these spaces, we refer the reader to [33] (Vol. I–V), [34,35]
and the related bibliography therein.

Throughout this investigation, conditions on the parameters will be considered standard as given
in (1)–(6) unless otherwise stated.
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3. Results

New Series Representation of the λ-Generalized Hurwitz-Lerch Zeta Functions

Theorem 1. λ-generalized Hurwitz-Lerch zeta functions have the following representation

Γ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; b, λ)

= 2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(z)χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ).
(13)

Proof: Let us first replace t = ey and s = σ + iτ in Equation (4), then we get

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a) =

= 1
Γ(s)

∫ ∞
−∞ ey(σ+iτ)exp

(
−aey − b

eλy

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; z exp(−ey)

]
dt,

(min[�(a), �(s)] > 0).

(14)

Now, writing the series form of the Fox-Wright function

pΨ∗
q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; zexp(−ey)

]
=

∞

∑
χ=0

([
λp
])

ρpχ([
μq
])

σqχ

zχ

χ!
exp(−χey) (15)

and then collecting and expanding the exponential terms

eσyexp
(
−(a + χ)ey − b

eλy

)
=

∞

∑
ξ,ψ=0

([
λp
])

ρpχ([
μq
])

σqχ

(z)χ

χ!
(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
, (16)

we get

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; b, λ)

=
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(z)χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ!

∫ ∞
−∞ eiτye(σ+ξ−ψλ)ydy.

(17)

The order of summation and integration is interchangeable due to uniform convergence of the
integral. By using Equation (10), we get∫ ∞

−∞ eiτye(σ+ξ−ψλ)ydy = F
[
e(σ+ξ−ψλ)y; τ

]
= 2πδ(τ–i(σ + ξ − ψλ))

= 2πδ
[

1
i (iτ − (σ + ξ − ψλ))

]
= 2π|i|δ(σ + iτ + ξ − ψλ) = 2πδ(s + ξ − ψλ).

(18)

The above Equations (17) and (18) lead to the required result. �

Remark 1. We can get analogous outcomes for further associated functions as enumerated row-wise in Table 1,
in view of altered parameter values in the form of following corollaries.

Corollary 1. λ-Generalized Extended Fermi-Dirac functions have the following representation

Γ(s)Θ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s, a; b, λ)

= 2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(−e−x)
χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ)
(19)
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and λ-Generalized Extended Bose-Einstein functions have the following representation

Γ(s)Ψ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s, a; b, λ)

= 2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(e−x)
χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ).
(20)

Proof. This holds by simply replacing z −→ ±e−x on both sides of (13) and by means of the
corresponding item specified in column 2 and row 2 of Table 1. �

Corollary 2. λ-Generalized Fermi-Dirac functions have the following representation

Γ(s)F
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s; b, λ)

= 2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(−e−x)
χ

χ!
(−(χ+1))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ)
(21)

and λ-Generalized Extended Bose-Einstein functions have the following representation

Γ(s)B
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s; b, λ)

= 2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(e−x)
χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ).
(22)

Proof. Both results hold by simply replacing z −→ ±e−x; a −→ 1 on both sides of (13) and in view of
defined item from Table 1 reliable on these parameter values. �

Corollary 3. λ-Generalized Polylogarithm functions has the following representation

Γ(s)φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s; b, λ)

= 2πz
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(z)χ

χ!
(−(χ+1))ξ

ξ!
(−b)ψ

ψ! δ(s + ξ − λψ).
(23)

Proof. This holds by simply replacing a −→ 1 on both sides of (13) and using the precise element
from Table 1 equivalent to these constraint values. �

Corollary 4. λ-Generalized Hurwitz zeta functions has the following representation

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(s, a; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

([
λp
])

ρpχ([
μq
])

σqχ

1
χ!

(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ). (24)

Proof. This holds by simply replacing z −→ 1 on both sides of (13) and, in view of particular items
from Table 1, stable with these parameter values. �

Corollary 5. λ-Generalized Riemann zeta functions has the following representation

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(s; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

([
λp
])

ρpχ([
μq
])

σqχ

1
χ!

(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ). (25)
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Proof. This holds by simply replacing z −→ 1; a −→ 1 on both sides of (13) and, in view of certain
components from Table 1, is firm with these considered values. �

Remark 2. We can get similar representations for other special cases of these functions by considering different
parameter variations in view of Table 1 column-wise.

By putting λ = 0 in the above results (13), and in view of the relation (6), we get the following
new results:

Γ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(z)χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ). (26)

Next by considering b = 0 in (26), we get the following results:

Γ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(z)χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ). (27)

Considering, p − 1 = q = 0; (λ1 = μ; ρ1 = 1), the above Equation (13) would reduce immediately to
the following form

Γ(s)Θλ
μ (z, s, a; b) = 2π

∞

∑
χ,ξ,ψ=0

(μ)χ

(z)χ

χ!
(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ). (28)

Next, specifying μ = 1 in (28), one can get the following new result as special case

Γ(s)Θ(z, s, a; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(z)χ (−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ). (29)

Next, again by giving variations to different parameters, we can get similar representations for
other special cases of these functions.

By putting λ = 0 in the above result (29), we get the following new result

Γ(s)Φ(z, s, a; b) = 2πeb
∞

∑
χ,ξ=0

(z)χ (−(χ + a))ξ

ξ!
δ(s + ξ). (30)

By putting b = 0 in (30), we get the following results for the original family of Hurwitz-Lerch
zeta function and its special cases ([13], Chapter 4):

Γ(s)Φ(z, s, a) = 2π
∞

∑
χ,ξ=0

(z)χ (−(χ + a))ξ

ξ!
δ(s + ξ), (31)

Γ(s)φ(z, s) = 2πz
∞

∑
χ,ξ=0

(z)χ (−(χ + 1))ξ

ξ!
δ(s + ξ), (32)

Γ(s)ζ(s, a) = 2π
∞

∑
χ,ξ=0

(−(χ + a))ξ

ξ!
δ(s + ξ), (33)

Γ(s)ζ(s) = 2π
∞

∑
χ,ξ=0

(−(χ + 1))ξ

ξ!
δ(s + ξ). (34)
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Remark 3. Note that we have obtained a demonstration given in the form of complex delta functions that is
only meaningful in the sense of distributions once defined as an inner product with some suitable function. For
example, divide both sides of (34) in the usual sense

1 =

∞
∑

χ,ξ=0

(−(χ+1))ξ

ξ! δ(s + ξ)

Γ(s)ζ(s)
. (35)

In addition, we get

1 =
∞

∑
χ,ξ=0

(−(χ + 1))ξ

ξ!
1

Γ(−ξ)ζ(−ξ)
, (36)

where the product Γ(−ξ)ζ(−ξ) contributes only for even values of ξ, because zeros of zeta cancel the
poles of gamma functions while for other values of ξ, the right-hand side sum will vanish due to Γ(−ξ)

in the reciprocal. Therefore, we get

1 =
∞

∑
χ,ξ=1

(χ)2ξ

(2ξ)!
+ 0 =⇒ 1 =

∞

∑
χ=0

cosh(χ) =⇒ 1 = ∞ (37)

that leads to an obvious contradiction.
Meanwhile, if we consider the inner product

〈Γ(s)ζ(s),
1

Γ(s)ζ(s)
〉 =

∞

∑
χ,ξ=0

(−(χ + 1))ξ

ξ!
〈δ(s + ξ),

1
Γ(s)ζ(s)

〉 (38)

then we get ∫
sεC

1ds =
∞

∑
χ,ξ=0

(−(χ + 1))ξ

ξ!
1

Γ(−ξ)ζ(−ξ)
. (39)

Due to the reason as stated above we get

∫
sεC

1ds =
∞

∑
χ,ξ=1

(χ)2ξ

(2ξ)!
+ 0, (40)

∫
sεC

1ds =
∫ +∞

−∞
1ds =

∞

∑
χ=0

cosh(χ), (41)

and both sides diverge. Therefore, we need to be very rigorous in selecting a class of functions for
which this representation is meaningful or convergent.

4. Convergence and Applications of New Series Representation

The representation of the λ -generalized Hurwitz-Lerch zeta function

Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; b, λ)

and related functions is attained in the form of the series of delta function that is defined simply if
converges as distributions or generalized functions. Therefore, these new representations are well
defined for the functions for which these infinite series converge. Meanwhile, the complex delta
function acts as a continuous linear functional on the space Z. Hence, it is straightforward that the
series of delta functions are obviously the continuous linear functionals acting on the space Z. (The

320



Symmetry 2018, 10, 733

results may also be true for some larger spaces, but here in our present investigation, we are just
restricting to Z). Therefore, ∀Λ(s)εZ, we get from (13)

〈Γ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; b, λ), Λ(s)〉 =

2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(z)χ

χ!
(−(χ+a)ξ

ξ!
(−b)ψ

ψ! 〈δ(s + ξ − λψ), Λ(s)〉; (∀Λ(s)εZ)

=
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(z)χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! Λ(λψ − ξ).

(42)

Here, in the above equation, we have used the shifting property of delta functions as follows

〈δ(s + ξ − λψ), Λ(s)〉 = Λ(λψ − ξ), (43)

which being the elements of space Z are slowly increasing (bounded by a polynomial) test functions
and note that sum over the coefficients is

sumoverthecoefficients =
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(z)χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ!

= exp(−a − b)pΨ∗
q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; z
e

]
,

(44)

which is finite and well defined. Therefore, by using the famous Abel convergent test or by ([35],
Proposition 1, p. 46), it is obvious that new series given by (13) converges for ∀Λ(s)εZ, which leads to
a similar fact for its special and other related cases given in Section 3 and Appendix A.

As already mentioned, in our present investigation, we proved the convergence for slowly
increasing functions, but it can now be observed that the series converges for a larger space of
functions. Therefore, the condition is necessary and not sufficient, that means for ∀Λ(s)εZ, the series
is convergent but if the series is convergent, then Λ(s) may belong to some other large space for which
delta function is meaningful.

Next, by using the new representation of Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; b, λ), we can find some new
integral formulae and verify them by using classical Fourier transform. First, we consider a simple
example of a specific set of functions

Λ(s) = ωsβ(ω 	= 0; s ∈ C;βεR). (45)

By taking the inner product of these functions with (13) and using the basic (shift) property of
delta functions, we get∫

sεC ωsβΓ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; b, λ)ds =

2π
∞
∑

χ,ξ,ψ=0

([λp])ρpχ

([μq])σqχ

(z)χ

χ!
(−(χ+a))ξ

ξ!
(−b)ψ

ψ! ω(λψ−ξ)β

= 2πexp
(
−aω−β − b

ω−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; z.exp
(
−ω−β

)]
.

(46)

Similarly, by considering the action of Λ(s) for representations (19)–(34), we can get the following
new results:∫

sεC ωsβΓ(s)Θ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s, a; b, λ)ds

= 2πexp
(
−aω−β − b

ω−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; −exp
(
−x − ω−β

)]
;

(47)

321



Symmetry 2018, 10, 733

∫
sεC ωsβΓ(s)Ψ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s, a; b, λ)ds

= 2πexp
(
−aω−β − b

ω−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; exp
(
−x − ω−β

)]
;

(48)

∫
sεC ωsβΓ(s)F

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s; b, λ)ds

= 2πexp
(
−ω−β − b

ω−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; −exp
(
−x − ω−β

)]
;

(49)

∫
sεC ωsβΓ(s)B

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s; b, λ)ds

= 2πexp
(
−ω−β − b

ω−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; exp
(
−x − ω−β

)]
;

(50)

∫
sεC ωsβΓ(s)φ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s; b, λ)ds

= 2πz.exp
(
−ω−β − b

ω−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; zexp
(
−ω−β

)]
;

(51)

∫
sεC ωsβΓ(s)ζ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(s, a; b; λ)ds

= 2πexp
(
−aω−β − b

ω−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; exp
(
−ω−β

)]
;

(52)

∫
sεC ωsβΓ(s)ζ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(s; b, λ)ds

= 2πexp
(
−ω−β − b

ω−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; exp
(
−ω−β

)]
.

(53)

By putting b = 0, in (46), we get the following new results: (and if we put λ = 0, we get eb times
the following results (54)):∫

sεC ωsβΓ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a)ds =
∞
∑

χ,ξ=0

(z)χ

χ!
(−(χ+a))ξ

ξ! ω(λψ−ξ)β

= 2πexp
(
−aω−β

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; z.exp
(
−ω−β

)]
.

(54)

By considering p − 1 = q = 0 (λ1 = μ; ρ1 = 1), b 	= 0 in Equation (46) we can get the following

∫
sεC

ωsβΓ(s)Θλ
μ (z, s, a; b)ds =

2πexp
(
−(a − 1)ω−β − b

ω−λβ

)
(exp(ω−β)− z)μ . (55)

Taking b = 0 in the above results (55) leads to the following new result:

∫
sεC

ωsβΓ(s)Φ∗
μ(z, s, a)ds =

2πexp
(
−(a − 1)ω−β

)
(exp(ω−β)− z)μ . (56)

By considering other parametric values as, p − 1 = q = 0; λ1 = μ; ρ1 = 1; b 	= 0; λ = μ = 1 the
above result (54) shrinks instantly to the subsequent result:

∫
sεC

ωsβΓ(s)Φb(z, s, a)ds =
2πexp

(
−(a − 1)ω−β − b

ω−λβ

)
(exp(ω−β)− z)

. (57)
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Next, by putting b = 0 in the above Equations (57), we get the following [13], (Chapter 4):

∫
sεC

ωsβΓ(s)Φ(z, s, a)ds =
exp

(
−(a − 1)ω−β

)
(exp(ω−β)− z)

. (58)

Remark 4. Results obtained in this section give insights for further new results. For example, consider ω = 1
e ,

then we get the Laplace transform of the λ-generalized Hurwitz-Lerch zeta functions and the related family of
functions. Before going on further with this new representation, we consider the consistency of the new results
in the subsequent section.

5. Fourier Transform Representation

The main purpose of this section is to verify the consistency of the results obtained by the
new series representation with the classical Fourier transform representation. Different transform
representations have always been of interest for such functions.

By replacing t = ey and s = σ + iτ in Equation (4), the Fourier transform representation of
λ-generalized Hurwitz-Lerch zeta functions is

Γ(s)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s, a; b, λ)

=
√

2πF
[

eσyexp
(
−aey − b

eλy

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; zexp(−ey)

]
; τ

]
(min[�(a), �(s)] > 0; �(b) � 0; λ � 0).

(59)

Similarly for the λ-generalized extended Fermi-Dirac functions

Γ(s)Θ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s, a; b, λ)

=
√

2πF
[

eσyexp
(
−aey − b

eλy

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; −e−xexp(−ey)

]
; τ

]
(min[�(a), �(s)] > 0; �(b) � 0; λ � 0)

(60)

and Extended Bose-Einstein Functions

Γ(s)Ψ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s, a; b, λ)

=
√

2πF
[

eσyexp
(
−aey − b

eλy

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; e−xexp(−ey)

]
; τ

]
(min[�(a), �(s)] > 0; �(b) � 0; λ � 0).

(61)

For λ-generalized Fermi-Dirac functions

Γ(s)F
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s; b, λ)

=
√

2πF
[

eσyexp
(
−ey − b

eλy

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; −e−xexp(−ey)

]
; τ

]
(min[�(a), �(s)] > 0; �(b) � 0; λ � 0)

(62)
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and Bose-Einstein functions

Γ(s)B
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s; b, λ)

=
√

2πF
[

eσyexp
(
−ey − b

eλy

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; e−xexp(−ey)

]
; τ

]
(min[�(a), �(s)] > 0; �(b) � 0; λ � 0).

(63)

For λ-generalized Polylogarithm functions

Γ(s)φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s; b, λ)

=
√

2πF
[

zeσyexp
(
−ey − b

eλy

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; zexp(−ey)

]
; τ

]
(min[�(a), �(s)] > 0; �(b) � 0; λ � 0)

(64)

For λ-generalized Hurwitz zeta functions

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(s, a; b, λ)

=
√

2πF
[

eσyexp
(
−aey − b

eλy

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; exp(−ey)

]
; τ

]
(min[�(a), �(s)] > 0; �(b) � 0; λ � 0).

(65)

For λ-generalized Riemann zeta functions

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(s; b, λ)

=
√

2πF
[

eσyexp
(
−ey − b

eλy

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; exp(−ey)

]
; τ

]
(min[�(a), �(s)] > 0; �(b) � 0; λ � 0).

(66)

Similarly, by giving variations to different parameters, we can get similar representations for other
special cases of these functions in consideration of Table 1.

6. Verification of the Results Obtained by New Representation

For the Fourier transform of any function f(t), duality property holds as

F
[√

2πF [f(t); τ];β
]
= 2πf(−β). (67)

Hence, from (59)–(66), by applying (67), we obtain the following

F
{

Γ(σ + iτ)Φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, σ + iτ, a; b, λ);β
}
=

F
{

√
2πF

{
eσye

−aey− b
eλy pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; ze−ey

]
; τ

}
;β

}
= f(−β)

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; zexp
(
−e−β

)]
(min[�(a), �(s)] > 0; �(b) � 0; λ � 0),

(68)

Or
∫ +∞
−∞ eiτβΓ(σ + iτ)Φ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, σ + iτ, a; b, λ)dτ

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; zexp
(
−e−β

)]
,

(69)
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which is the special case of our main result (46) for w = e; s = σ + iτ and verifies that results obtained
by the new representation are consistent with the classical results.

If we put β = 0 in the above equation (69), we get the following integral:∫ +∞
−∞ Γ(σ + iτ)Φ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, σ + iτ, a; b, λ)dτ

= 2πe−a−bpΨ∗
q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; z
e

]
,

(70)

which is also a specific case of our main result (46). It shows that our new representation produces new
results that cannot be found by other methods, but special cases of our obtained results are consistent
with the classical results.

Similarly, by considering different parametric values in the above equations and as given in Table 1
in Section 2, we can get the following list of integrals: (one can also note that results obtained by new
representation are not only more general than the results obtained by Fourier transform representation
but also consistent with the special cases of these results)∫ +∞

−∞ eiτβΓ(σ + iτ)Ψ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, σ + iτ, a; b, λ)dτ

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; e−xexp
(
−e−β

)]
;

(71)

∫ +∞
−∞ eiτβΓ(σ + iτ)Θ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, σ + iτ, a; b, λ)dτ

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; −e−xexp
(
−e−β

)]
;

(72)

∫ +∞
−∞ eiτβΓ(σ + iτ)B

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, σ + iτ; b, λ)dτ

= 2πe−σβexp
(
−e−β − b

e−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; e−xexp
(
−e−β

)]
;

(73)

∫ +∞
−∞ eiτβΓ(σ + iτ)F

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, σ + iτ; b, λ)dτ

= 2πe−σβexp
(
−e−β − b

e−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; −e−xexp
(
−e−β

)]
;

(74)

∫ +∞
−∞ eiτβΓ(σ + iτ)φ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, σ + iτ; b, λ)dτ

= 2πze−σβexp
(
−e−β − b

e−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; zexp
(
−e−β

)]
;

(75)

∫ +∞
−∞ eiτβΓ(σ + iτ)ζ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(σ + iτ, a; b, λ)dτ

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; exp
(
−e−β

)]
;

(76)

∫ +∞
−∞ eiτβΓ(σ + iτ)ζ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(σ + iτ; b, λ)dτ

= 2πe−σβexp
(
−ae−β − b

e−λβ

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; exp
(
−e−β

)]
;

(77)

∫ +∞
−∞ eiτβΓ(σ + iτ)Φ

(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, σ + iτ, a)dτ

= 2πe−σβexp
(
−ae−β − b

)
pΨ∗

q

[
(λ1, ρ1), . . . ,

(
λp, ρp

)
(μ1, σ1), . . . , (μq, σq)

; zexp
(
−e−β

)]
.

(78)
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For β = 0, the above results (68)–(78) yield some interesting and simple integral formulae.
To confirm the consistency of the results obtained by new representation, it can be noted that the results
obtained in this Section (68)–(78) can be generated as special cases of (46)–(48) for ω = e, s = σ + iτ
and vice versa. These are straightforward to obtain by using a basic fact of the Fourier transform and
therefore to test the consistency of new representations as they become more important.

7. Discussion and Future Directions

The confluence of distributions (generalized functions) with classical integral transformations has
become a remarkably influential tool in the theory of partial differential equations. It has solved various
physical and engineering problems that cannot be solved by using classical methods. In this paper, we
obtained a new representation for the newly defined family of the λ-generalized Hurwitz-Lerch zeta
functions in terms of complex delta functions such that the definition of these functions is formalized
over the space of entire test functions denoted by Z. This is significant for advancing the foundations of
distributional (generalized function) concepts for such higher transcendental functions and enhancing
their applications to solve real-world problems. The Riemann hypothesis is a famous and unsolved
problem at present in analytic number theory [31]. It states that "all the non-trivial zeros of the zeta
function lie on the real line s = 1/2′′. These zeros appear symmetrically as complex conjugates on
this line. The integrals of the zeta function and its generalizations are essential in the investigation
of Riemann hypothesis and for the study of zeta functions. Such integrals are also important for
the study of distributions in statistical inference and reliability theory [1,26,32]. By using this new
definition of the λ-generalized Hurwitz-Lerch zeta functions, one can find such integrals in a simple
and uniform way.

λ-generalized Hurwitz-Lerch zeta functions systematically oversimplify the functions of the
zeta family and provide understanding for some other potential new members of this family that
are not found in the literature. This element is very useful for achieving new results from one
main result. Our main result generates at once significant new results for a class of well-studied
functions by applying the methodology of this paper. The Fermi-Dirac and Bose-Einstein functions
arose in the distribution functions for quantum statistics that deals with two particular kinds of spin
symmetry, namely, bosons and fermions. Their close connection considered in this investigation with
the λ-generalized Hurwitz-Lerch zeta functions have provided some significant new results for these
functions that directly develop the future applications of these representations in quantum physics
and related fields. The technique to obtain the results by using new representation explores a required
simplicity that is always desirous. These are some straightforward examples. It is expected that the
approach developed in this investigation will be doubtlessly significant for further exploration of these
higher transcendental functions in future research.
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Appendix A New Results by Considering Special Cases for Section 2 in View of Table 1

Γ(s)Θ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s, a) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ); (A1)

Γ(s)Ψ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s, a) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ); (A2)
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Γ(s)B
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ); (A3)

Γ(s)F
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(−e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ); (A4)

Γ(s)φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s) = 2πzeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(z)χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ); (A5)

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(s, a) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

1
χ!

(−(χ + a))ξ

ξ!
δ(s + ξ); (A6)

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(s) = 2πeb
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

1
χ!

(−(χ + 1))ξ

ξ!
δ(s + ξ); (A7)

Γ(s)Θ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s, a) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A8)

Γ(s)Ψ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s, a) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A9)

Γ(s)B
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A10)

Γ(s)F
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(x, s) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(−e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A11)

Γ(s)φ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(z, s) = 2πz
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

(z)χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A12)

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(s, a) = 2π
∞
∑

χ,ξ=0

([λp])ρpχ

([μq])σqχ

1
χ!

(−(χ+a))ξ

ξ! δ(s + ξ) (A13)

Γ(s)ζ
(ρ1,...,ρp,σ1,...,σq)
λ1,...,λp,μ1,...,,μq

(s) = 2π
∞

∑
χ,ξ=0

([
λp
])

ρpχ([
μq
])

σqχ

1
χ!

(−(χ + 1))ξ

ξ!
δ(s + ξ) (A14)

Γ(s)Θλ
μ (x, s, a; b) = 2π

∞

∑
χ,ξ,ψ=0

(μ)χ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A15)

Γ(s)Ψλ
μ (x, s, a; b) = 2π

∞

∑
χ,ξ,ψ=0

(μ)χ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A16)

Γ(s)Bλ
μ (x, s; b) = 2π

∞

∑
χ,ξ,ψ=0

(μ)χ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A17)

Γ(s)Fλ
μ (x, s; b) = 2π

∞

∑
χ,ξ,ψ=0

(μ)χ

(−e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A18)

Γ(s)φλ
μ (z, s; b) = 2πz

∞

∑
χ,ξ,ψ=0

(μ)χ

(z)χ

χ!
(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A19)
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Γ(s)ζλ
μ (s, a; b, a) = 2π

∞

∑
χ,ξ,ψ=0

(μ)χ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A20)

Γ(s)ζλ
μ (s; b) = 2π

∞

∑
χ,ξ,ψ=0

(μ)χ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A21)

Γ(s)Φ∗
μ(z, s, a, b) = 2πeb

∞

∑
χ,ξ=0

(μ)χ

(z)χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A22)

Γ(s)Θ∗
μ(x, s, a, b) = 2πeb

∞

∑
χ,ξ=0

(μ)χ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A23)

Γ(s)Ψ∗
μ(x, s, a, b) = 2πeb

∞

∑
χ,ξ=0

(μ)χ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A24)

Γ(s)B∗
μ(x, s, b) = 2πeb

∞

∑
χ,ξ=0

(μ)χ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A25)

Γ(s)F∗
μ(x, s, b) = 2πeb

∞

∑
χ,ξ=0

(μ)χ

(e−x)
χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A26)

Γ(s)φ∗
μ(z, s; b, λ) = 2πebz

∞

∑
χ,ξ=0

(μ)χ

(z)χ

χ!
(−(χ + 1))ξ

ξ!
δ(s + ξ) (A27)

Γ(s)ζ∗
μ(s, a; b) = 2πeb

∞

∑
χ,ξ=0

(μ)χ

1
χ!

(−(χ + a))ξ

ξ!
δ(s + ξ) (A28)

Γ(s)ζ∗
μ(s; b) = 2πeb

∞

∑
χ,ξ=0

(μ)χ

1
χ!

(−(χ + 1))ξ

ξ!
δ(s + ξ) (A29)

Γ(s)Φ∗
μ(z, s, a) = 2π

∞

∑
χ,ξ=0

(μ)χ

(z)χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A30)

Γ(s)Θ∗
μ(x, s, a) = 2π

∞

∑
χ,ξ=0

(μ)χ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A31)

Γ(s)Ψ∗
μ(x, s, a) = 2π

∞

∑
χ,ξ=0

(μ)χ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A32)

Γ(s)B∗
μ(x, s) = 2π

∞

∑
χ,ξ=0

(μ)χ

(e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A33)

Γ(s)F∗
μ(x, s) = 2π

∞

∑
χ,ξ=0

(μ)χ

(−e−x)
χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A34)

Γ(s)φ∗
μ(z, s; b, λ) = 2πz

∞

∑
χ,ξ=0

(μ)χ

(z)χ

χ!
(−(χ + a))ξ

ξ!
δ(s + ξ) (A35)

Γ(s)ζ∗
μ(s, a) = 2π

∞

∑
χ,ξ=0

(μ)χ

1
χ!

(−(χ + a))ξ

ξ!
δ(s + ξ) (A36)

Γ(s)ζ∗
μ(s) = 2π

∞

∑
χ,ξ=0

(μ)χ

1
χ!

(−(χ + 1))ξ

ξ!
δ(s + ξ) (A37)
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Γ(s)Θ(x, s, a; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(
−e−x)χ (−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A38)

Γ(s)Ψ(x, s, a; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(
e−x)χ (−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A39)

Γ(s)B(x, s; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(
e−x)χ (−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A40)

Γ(s)F(x, s; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(
−e−x)χ (−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A41)

Γ(s)φ(z, s; b, λ) = 2πz
∞

∑
χ,ξ,ψ=0

(z)χ (−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A42)

Γ(s)ζ(s, a; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(−(χ + a))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A43)

Γ(s)ζ(s; b, λ) = 2π
∞

∑
χ,ξ,ψ=0

(−(χ + 1))ξ

ξ!
(−b)ψ

ψ!
δ(s + ξ − λψ) (A44)

Γ(s)Φ(z, s, a; b) = 2πeb
∞

∑
χ,ξ=0

(z)χ (−(χ + a))ξ

ξ!
δ(s + ξ) (A45)

Γ(s)Θ(x, s, a; b) = 2πeb
∞

∑
χ,ξ=0

(
−e−x)χ (−(χ + a))ξ

ξ!
δ(s + ξ) (A46)

Γ(s)Ψ(x, s, a; b) = 2πeb
∞

∑
χ,ξ=0

(
e−x)χ (−(χ + a))ξ

ξ!
δ(s + ξ) (A47)

Γ(s)F(x, s; b) = 2πeb
∞

∑
χ,ξ=0

(
−e−x)χ (−(χ + 1))ξ

ξ!
δ(s + ξ) (A48)

Γ(s)B(x, s; b) = 2πeb
∞

∑
χ,ξ=0

(
e−x)χ (−(χ + 1))ξ

ξ!
δ(s + ξ) (A49)

φ(z, s; b) = 2πzeb
∞

∑
χ,ξ=0

(z)χ (−(χ + 1))ξ

ξ!
δ(s + ξ) (A50)

Γ(s)ζ(s, a; b) = 2πeb
∞

∑
χ,ξ=0

(−(χ + a))ξ

ξ!
δ(s + ξ) (A51)

Γ(s)ζ(s; b) = 2πeb
∞

∑
χ,ξ=0

(−(χ + 1))ξ

ξ!
δ(s + ξ) (A52)
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Abstract: In this article, we propose a different generalization of (p, q)-BBH operators and carry
statistical approximation properties of the introduced operators towards a function which has to
be approximated where (p, q)-integers contains symmetric property. We establish a Korovkin
approximation theorem in the statistical sense and obtain the statistical rates of convergence.
Furthermore, we also introduce a bivariate extension of proposed operators and carry many
statistical approximation results. The extra parameter p plays an important role to symmetrize
the q-BBH operators.
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1. Introduction

The q-analog of Bleiman, Butzer and Hahn operators (BBH) [1] is defined by:

Lq
n( f ; x) =

1
�

q
n(x)

n

∑
k=0

f

(
[k]q

[n − k + 1]qqk

)
q

k(k−1)
2

[
n
k

]
q

xk, (1)

where �
q
n(x) = ∏n−1

k=0 (1 + qsx).
For q = 1, the sequence of q-BBH operators (1) reduces to the classical BBH-operators [2] in which

authors investigated pointwise convergence properties of the BBH-operators in a compact sub-interval
of R+.

Let Hω denote the space of all real-valued functions f defined on the semi-axis R+ [3], where ω is
the usual modulus of continuity satisfying

| f (x)− f (y)| ≤ ω

(∣∣∣∣ x
1 + x

− y
1 + y

∣∣∣∣)
for any x, y ≥ 0.

Gadjiev and Çakar [3] established the Korovkin type theorem which gives the convergence for
the sequence of linear positive operators (LPO) to the functions in Hω.

Now, we recollect the following theorem:

Symmetry 2018, 10, 731; doi:10.3390/sym10120731 www.mdpi.com/journal/symmetry332
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Theorem 1 ([3]). Let {An} be the sequence of LPOs from Hω into CB(R+) such that

lim
n→∞

∥∥∥∥An

((
t

1 + t

)v
; x
)

−
(

x
1 + x

)v∥∥∥∥
CB

= 0, v = 0, 1, 2,

then, for any function f ∈ Hω

lim
n→∞

‖An( f )− f ‖CB = 0.

(p, q)-calculus, also called post-quantum calculus, is a generalization of q-calculus which has lots
of applications in quantum physics. In approximation theory, the very first (p, q)-type generalization of
Bernstein polynomials was introduced by Mursaleen et al. [4] using (p, q)-calculus and improved the
said operators (see Erratum [4]). The theory of semigroups of the linear operators is used in order to
prove the existence and uniqueness of a weak solutions of boundary value problems in thermoelasticity
of dipolar bodies (see [5,6]).

Recently, a very nice application and usage of extra parameter p has been discussed in [7] in
the computer-aided geometric design. In that paper, authors applied these (p, q)-Bernstein bases to
construct (p, q)-Bézier curves which are further generalizations of q-Bézier curves [8]. For more results
on LPOs and its (p, q)-analogues, one can refer to [9–15].

Now, we provide some notations on (p, q)-calculus.
[n]p,q stands for (p, q)-integers defined as

[n]p,q = pn−1 + pn−2q + pn−3q2 · · ·+ qn−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn − qn

p − q
(p 	= q 	= 1),

1 − qn

1 − q
(p = 1),

n (p = q = 1),

(2)

(ax + by)n
p,q :=

n

∑
j=0

p
(n−j)(n−j−1)

2 q
j(j−1)

2

[
n
j

]
p,q

an−jbjxn−jyj,

(x + y)n
p,q = (x + y)(px + qy)(p2x + q2y) · · · (pn−1x + qn−1y),

(1 − x)n
p,q = (1 − x)(p − qx)(p2 − q2x) · · · (pn−1 − qn−1x),

and the binomial coefficients in (p, q)-calculus are given by[
n
j

]
p,q

=
[n]p,q!

[j]p,q![n − j]p,q!
.

By easy computation, we have the relation given below:

qj[n − j + 1]p,q = [n + 1]p,q − pn−j+1[j]p,q.

Authors suggest the readers [16–19].
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The (p, q)-analogue of BBH operators was introduced by Mursaleen et al. in [20] as follows:

Lp,q
n ( f ; x)

=
1

�
p,q
n (x)

n

∑
j=0

f

(
pn−j+1[j]p,q

[n − j + 1]p,qqj

)
p

(n−j)(n−j−1)
2 q

j(j−1)
2

[
n
j

]
p,q

xj, (3)

where x ≥ 0, 0 < q < p ≤ 1, �p,q
n (x) = ∏n−1

s=0 (ps + qsx) and function f is defined on the semi axis
R+. If we put p = 1, we get the q-BBH operators (1). In that paper, authors established different
approximation properties of the sequence of operators (3).

Theorem 2 ([20]). Let p = (pn), q = (qn) satisfying lim
n→∞

pn = 1, lim
n→∞

qn = 1 for 0 < qn < pn ≤ 1 and if

Lpn ,qn
n ( f ; x) is defined by Label (3). Then, for any function f ∈ Hω,

lim
n→∞

‖Lpn ,qn
n f − f ‖CB = 0.

Mursaleen and Nasiruzzaman constructed bivariate (p, q)-BBH operators [21] and studied many
nice properties based on that sequence of operators and also given some generalization of that sequence
of bivariate operators introducing one more parameter γ in the operators.

The statistical convergence is another notion of convergence, which was introduced by Fast [22]
nearly fifty years ago and now this is a very active area of research. The statistical limit of a sequence
is an extension of the idea of limit of sequence in an ordinary sense. The natural density of K ⊂ N is
defined as:

δ(K) = lim
n

1
n
{k ≤ n : k ∈ K}

whenever the limit exists (see [23,24]). The sequence x = (xk) is said to be statistically convergent to a
number L means if, for every ε > 0,

δ{k : |xk − L| ≥ ε} = 0,

and it is denoted by st − limk xk = L. It can be easily seen that every convergent sequence is statistically
convergent but not conversely.

Now, we will state some preliminary results on positive linear operators:

Proposition 1 ([25]). If L is an operator, linear and positive, then, for every x ∈ X, we have

|L f | ≤ L(| f |). (4)

Proposition 2 ([25]). (Hölder’s inequality for LPOs). Let L : X → Y be an operator, linear and positive, and
let 1/p + 1/q = 1, where p, q > 1 are real numbers. Then, for every f , g ∈ X

L(| f · g|) ≤ (L(| f |p))
1
p · (L(|g|q))

1
q . (5)

Remark 1 ([25]). A particular case of Proposition 2 is the Cauchy–Schwarz’s inequality for LPOs, which is
obtained from Hölder’s inequality for p = q = 2 as:

|L( f · g; x)| ≤
√

L( f 2; x) ·
√

L(g2; x). (6)

We have organized the rest of the paper as follows. In Section 2, we have constructed (p, q)-BBH
operators and calculated some auxiliary results. In Sections 3 and 4, Korovkin type results and rate of
convergence are established in statistical sense, respectively. Section 5 is devoted to the construction of
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the bivariate (p, q)-BBH operators. In Section 6, we have computed rate of statistical convergence for
the bivariate (p, q)-BBH operators.

2. Construction of Operators and Moment Estimation

Ersan and Doğru [26] introduced a generalization of (1) and studied different statistical
approximation properties of the operators towards a function f which has to be approximated. Inspired
with the work of Ersan and Doğru [26], we construct a (p, q)-analogue generalization of the sequence
of operators defined in [26] or, on the other hand, we generalize the operators introduced in [20]
as follows:

∀x ≥ 0, 0 < q < p ≤ 1, let us define a sequence of (p, q)-BBH operators as follows:

Bp,q
n ( f ; x)

=
q/p

ζ
p,q
n (x)

n

∑
j=0

f

(
pn−j+1[j]p,q

[n − j + 1]p,qqj

)
p

(n−j)(n−j−1)
2 q

j(j−1)
2

[
n
j

]
p,q

xj, (7)

where

ζ
p,q
n (x) =

n−1

∏
s=0

(ps + qsx) =
n

∑
j=0

p
(n−j)(n−j−1)

2 q
j(j−1)

2

[
n
j

]
p,q

xj. (8)

It is easy to verify that, if p = q = 1, the operators turn into the classical BBH operators.
The sequence of operators (7) is of course more generalized than (1), and it is more flexible than (1).

We need the following lemma to our main result:

Lemma 1. Let the sequence of operators be given by (7). Then,

Bp,q
n (1; x) =

q
p

(9)

for any x ≥ 0, 0 < q < p ≤ 1.

Proof. The proof is obvious with the help of the relation (8), so we skip the proof.

Lemma 2. Let the sequence of operators be given by (7). Then,

Bp,q
n

(
t

1 + t
; x
)
=

q[n]p,q

[n + 1]p,q

x
1 + x

(10)

for any x ≥ 0, 0 < q < p ≤ 1.

Proof. Let t = pn−j+1[j]p,q

[n−j+1]p,qqj , then t
1+t =

pn−j+1[j]p,q
[n+1]p,q

, so

Bp,q
n

(
t

1 + t
; x
)

=
q/p

ζ
p,q
n (x)

[n]p,q

[n + 1]p,q

n

∑
j=1

pn−j+1 p
(n−j)(n−j−1)

2 q
j(j−1)

2

[
n − 1
j − 1

]
p,q

xj

=
q/p

ζ
p,q
n (x)

[n]p,qx
[n + 1]p,q

n−1

∑
j=0

pn−j p
(n−j−2)(n−j−1)

2 q
j(j+1)

2

[
n − 1

j

]
p,q

xj

=
q/p

ζ
p,q
n (x)

pn[n]p,qx
[n + 1]p,q

n−1

∑
j=0

p
(n−j−1)(n−j−2)

2 q
j(j−1)

2

[
n − 1

j

]
p,q

(
qx
p

)j
.
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By using (8), the result can be easily obtained.

Lemma 3. Let the sequence of operators be given by (7). Then,

Bp,q
n

((
t

1 + t

)2
; x

)
=

pq3[n]p,q[n − 1]p,q

[n + 1]2p,q

x2

(1 + x)(p + qx)
+

pnq[n]p,q

[n + 1]2p,q

x
1 + x

(11)

for any x ≥ 0, 0 < q < p ≤ 1.

Proof. It is easy to verify that

[j]p,q = pj−1 + q[j − 1]p,q; [j]2p,q = q[j]p,q[j − 1]p,q + pj−1[j]p,q. (12)

With the help of (12), we can have

Bp,q
n

((
t

1 + t

)2
; x

)

=
q/p

ζ
p,q
n (x)

⎧⎨⎩ q[n]p,q[n − 1]p,q

[n + 1]2p,q

n

∑
j=2

p2n−2j+2 p
(n−j)(n−j−1)

2 q
j(j−1)

2

[
n − 2
j − 2

]
p,q

xj

+
[n]p,q

[n + 1]2p,q

n

∑
j=1

p2n−2j+2 pj−1 p
(n−j)(n−j−1)

2 q
j(j−1)

2

[
n − 1
j − 1

]
p,q

xj

⎫⎬⎭
=

q/p
ζ

p,q
n (x)

⎧⎨⎩ q[n]p,q[n − 1]p,q

[n + 1]2p,q

n−2

∑
j=0

p2n−2j−2 p
(n−j−2)(n−j−3)

2 q
(j+2)(j+1)

2

[
n − 2

j

]
p,q

xj+2

+
[n]p,q

[n + 1]2p,q

n−1

∑
j=0

p2n−2j pj p
(n−j−1)(n−j−2)

2 q
(j+1)j

2

[
n − 1

j

]
p,q

xj+1

⎫⎬⎭
=

q/p
ζ

p,q
n (x)

⎧⎨⎩ p2n−2q2[n]p,q[n − 1]p,q

[n + 1]2p,q
x2

n−2

∑
j=0

p
(n−j−2)(n−j−3)

2 q
j(j−1)

2

[
n − 2

j

]
p,q

(
q2x
p2

)j

+
p2n[n]p,q

[n + 1]2p,q
x

n−1

∑
j=0

p
(n−j−1)(n−j−2)

2 q
j(j−1)

2

[
n − 1

j

]
p,q

(
qx
p

)j
⎫⎬⎭ .

Now, using (8), we can get the desired result.

3. Korovkin Type Statistical Approximation Properties

In this section, we obtain the Korovkin type statistical approximation theorem for our sequence of
operators (7). Let us give the following theorem:

Theorem 3. [3] Let {An} be the sequence of LPOs from Hω into CB(R+) such that

st − lim
n

∥∥∥∥An

((
t

1 + t

)ν

; x
)

−
(

x
1 + x

)ν∥∥∥∥
CB

= 0, ν = 0, 1, 2.

Then, for any function f ∈ Hω,

st − lim
n

‖An( f )− f ‖CB = 0.
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Let us take p = (pn) and q = (qn) such that

st − lim
n

pn = 1, st − lim
n

qn = 1. (13)

Theorem 4. Let Bp,q
n ( f ; x) be the sequence of operators (7) and the sequences p = (pn) and q = (qn) satisfy

the assumption (13) for 0 < qn < pn ≤ 1. Then, for any function f ∈ Hω,

st − lim
n

‖Bp,q
n ( f ; .)− f ‖ = 0.

Proof. For ν = 0 and using (9), we can have

st − lim
n

‖Bpn ,qn
n (1; x)− 1‖ = st − lim

n

∣∣∣∣ qn

pn
− 1

∣∣∣∣ .

By (13), the following can be easily verified, which is

st − lim
n

‖Bpn ,qn
n (1; x)− 1‖ = 0.

For ν = 1 and using (10), we get∥∥∥∥Bpn ,qn
n

(
t

1 + t
; x
)

− x
1 + x

∥∥∥∥ ≤
∣∣∣∣qn

[n]pn ,qn

[n + 1]pn ,qn

− 1
∣∣∣∣ = 1 − qn

[n]pn ,qn

[n + 1]pn ,qn

.

For a given ε > 0, let us define the following sets:

U =

{
n :

∥∥∥∥Bpn ,qn
n

(
t

1 + t
; x
)

− x
1 + x

∥∥∥∥ ≥ ε

}
,

and

U′ =
{

n : 1 − qn
[n]pn ,qn

[n + 1]pn ,qn

≥ ε

}
.

It is easily perceived that U ⊂ U′, so we can write

δ

{
k ≤ n :

∥∥∥∥Bpn ,qn
n

(
t

1 + t
; x
)

− x
1 + x

∥∥∥∥ ≥ ε

}
≤ δ

{
k ≤ n : 1 − qn

[n]pn ,qn

[n + 1]pn ,qn

≥ ε

}
.

On using (13), it is clear that

st − lim
n

(
1 − qn

[n]pn ,qn

[n + 1]pn ,qn

)
= 0.

Thus,

δ

{
k ≤ n : 1 − qn

[n]pn ,qn

[n + 1]pn ,qn

≥ ε

}
= 0;

then,

st − lim
n

∥∥∥∥Bpn ,qn
n

(
t

1 + t
; x
)

− x
1 + x

∥∥∥∥ = 0.
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Lastly, for ν = 2 and using (11), we obtain∥∥∥∥∥Bpn ,qn
n

(
t

1 + t
; x
)2

−
(

x
1 + x

)2
∥∥∥∥∥

=

∥∥∥∥∥ pnq3
n[n]pn ,qn [n − 1]pn ,qn

[n + 1]2pn ,qn

x2

(1 + x)(pn + qnx)
+

pn
nqn[n]pn ,qn

[n + 1]2pn ,qn

x
1 + x

− 1

∥∥∥∥∥
≤
∣∣∣∣∣ pnq2

n[n]pn ,qn [n − 1]pn ,qn

[n + 1]2pn ,qn

− 1

∣∣∣∣∣+
∣∣∣∣∣ pn

nqn[n]pn ,qn

[n + 1]2pn ,qn

∣∣∣∣∣ . (14)

Using [n + 1]pn ,qn = pn[n]pn ,qn + qn
n, the following can be easily justified that

[n]pn ,qn [n − 1]pn ,qn

[n + 1]2pn ,qn

=
1
p3

n

(
1 − 2qn

n + pnqn−1
n

[n + 1]pn ,qn

+
q2n

n + pnq2n−1
n

[n + 1]2pn ,qn

)
.

Substituting it in (14), we can have∥∥∥∥∥Bpn ,qn
n

((
t

1 + t

)2
; x

)
−
(

x
1 + x

)2
∥∥∥∥∥

≤
∣∣∣∣ q2

n
p2

n
− 1

∣∣∣∣+
∣∣∣∣∣ q2

n
p2

n

(
2qn

n + pnqn−1
n

[n + 1]pn ,qn

− q2n
n + pnq2n−1

n
[n + 1]2pn ,qn

)∣∣∣∣∣+
∣∣∣∣∣ pn

nqn[n]pn ,qn

[n + 1]2pn ,qn

∣∣∣∣∣
≤ q2

n
p2

n
− 1 +

q2
n

p2
n

(
2qn

n + pnqn−1
n

[n + 1]pn ,qn

− q2n
n + pnq2n−1

n
[n + 1]2pn ,qn

)
+

pn
n

[n + 1]pn ,qn

− p2n
n

[n + 1]2pn ,qn

.

If we choose αn = q2
n

p2
n
− 1, βn = q2

n
p2

n

(
2qn

n+pnqn−1
n

[n+1]pn ,qn
− q2n

n +pnq2n−1
n

[n+1]2pn ,qn

)
, and

γn = pn
n

[n+1]pn ,qn
− p2n

n
[n+1]2pn ,qn

, then by (13), we have

st − lim
n

αn = st − lim
n

βn = st − lim
n

γn = 0. (15)

For any given ε > 0, now we define four sets as follows:

U =

{
n :

∥∥∥∥∥Bpn ,qn
n

((
t

1 + t

)2
; x

)
−
(

x
1 + x

)2
∥∥∥∥∥ ≥ ε

}
,

U1 =
{

n : αn ≥ ε

3

}
, U2 =

{
n : βn ≥ ε

3

}
, U3 =

{
n : γn ≥ ε

3

}
.

It is obvious that U ⊂ U1 ∪ U2 ∪ U3. Then, we obtain

δ

{
k ≤ n :

∥∥∥∥∥Bpn ,qn
n

((
t

1 + t

)2
; x

)
−
(

x
1 + x

)2
∥∥∥∥∥ ≥ ε

}
≤ δ

{
k ≤ n : αn ≥ ε

3

}
+ δ

{
k ≤ n : βn ≥ ε

3

}
+ δ

{
k ≤ n : γn ≥ ε

3

}
.

It is clear that the right-hand side of the above inequality is zero by (15); then,

st − lim
n

∥∥∥∥∥Bpn ,qn
n

((
t

1 + t

)2
; x

)
−
(

x
1 + x

)2
∥∥∥∥∥ = 0.

Hence, the proof is completed.

338



Symmetry 2018, 10, 731

4. Rates of Statistical Convergence

This section is devoted to find rates of statistical convergence of operators (7).
The modulus of continuity for the space of functions f ∈ Hω [1] is defined by

ω̃( f ; δ) = sup
x,t≥0, | t

1+t − x
1+x |≤δ

| f (t)− f (x)|,

where ω̃( f ; δ) satisfies the following conditions: ∀ f ∈ Hω(R+)

1. lim
δ→0

ω̃( f ; δ) = 0,

2. | f (t)− f (x)| ≤ ω̃( f ; δ)

(
t

1+t − x
1+x

δ + 1
)

.

Theorem 5. Let p = (pn) and q = (qn) be the sequences satisfying (13) and 0 < qn < pn ≤ 1, we have

|Bpn ,qn
n ( f ; x)− f (x)| ≤ ω̃( f ;

√
δn(x))

(
qn

pn
+ 1

)
,

where

δn(x)

=

(
x

1 + x

)2
(

q4
n(1 + x)

pn + qnx
[n]pn ,qn [n − 1]pn ,qn

[n + 1]2pn ,qn

− 2q2
n[n]pn ,qn

pn[n + 1]2pn ,qn

+
q2

n
p2

n

)

+
pn−1

n q2
n[n]pn ,qn

[n + 1]2pn ,qn

x
1 + x

. (16)

Proof.

|Bpn ,qn
n ( f ; x)− f (x)|

≤ Bpn ,qn
n (| f (t)− f (x)|; x)

≤ ω̃( f ; δ)

{
Bpn ,qn

n (1; x) +
1
δ
Bpn ,qn

n

(∣∣∣∣ t
1 + t

− x
1 + x

∣∣∣∣ ; x
)}

.

By using the Cauchy–Schwarz inequality (see (6)) and using (9)–(11), we have

|Bpn ,qn
n ( f ; x)− f (x)|

≤ ω̃( f ; δn)

⎛⎝ qn

pn
+

1
δn

{(
Bpn ,qn

n

(
t

1 + t
− x

1 + x

)2
; x

)} 1
2 (

Bpn ,qn
n (12; x)

) 1
2

⎞⎠
≤ ω̃( f ; δn)

(
qn

pn
+

1
δn

{(
x

1 + x

)2
(

q4
n(1 + x)

pn + qnx
[n]pn ,qn [n − 1]pn ,qn

[n + 1]2pn ,qn

− 2q2
n[n]pn ,qn

pn[n + 1]2pn ,qn

+
q2

n
p2

n

)
+

pn−1
n q2

n[n]pn ,qn

[n + 1]2pn ,qn

x
1 + x

} 1
2
⎞⎠ .

Thus, it is obvious that, by choosing δn as in (16), the theorem is proved.

Notice that, by conditions in (13), st − lim
n

= 0. Then, we have

st − lim
n

ω̃( f ; δn) = 0.
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This provides us the pointwise rate of statistical convergence of the sequence of operators
Bpn ,qn

n ( f ; x) to f (x).
Now, we will contribute an estimate related to the rate of approximation by means of Lipschitz

type maximal functions.
Lenze [27] introduced a Lipschitz type maximal function as

f̃α(x) = sup
t>0, t 	=x

f (t)− f (x)
|x − t|α .

The Lipschitz type maximal function space on E ⊂ R+ is defined in [1] as follows:

W̃α,E =

{
f : sup(1 + x)α f̃α(x) ≤ M

1
(1 + y)α

; x ≥ 0 and y ∈ E
}

,

where function f is bounded and continuous on R+, 0 < α ≤ 1 and M is a positive constant.

Theorem 6. If Bpn ,qn
n ( f ; x) is defined by (7), then ∀ f ∈ W̃α,E, we have

|Bpn ,qn
n ( f ; x)− f (x)| ≤ M

(
ρn(x)

α
2

(
qn

pn

) 2−α
2

+
2qn

pn
d(x, E)

)
,

where

ρn(x) =
(

x
1 + x

)2
(

pnq3
n(1 + x)

pn + qnx
[n]pn ,qn [n − 1]pn ,qn

[n + 1]2pn ,qn

− 2qn[n]pn ,qn

pn[n + 1]2pn ,qn

+
qn

pn

)

+
pn

nqn[n]pn ,qn

[n + 1]2pn ,qn

x
1 + x

.

Proof. A similar technique used in Theorem 7 in [26] will be taken to provide the proof. Letting
x ≥ 0, (x, x0) ∈ R+ × E, it is understood that

| f − f (x)| ≤ | f − f (x0)|+ | f (x0)− f (x)|.

Since Bpn ,qn
n ( f ; x) is a linear and positive operator, f ∈ W̃α,E, using the previous inequality,

we have

|Bpn ,qn
n ( f ; x)− f (x)|
≤ Bpn ,qn

n (| f − f (x0)|; x) + | f (x0)− f (x)|Bpn ,qn
n (1; x)

≤ M
(
Bpn ,qn

n

(∣∣∣∣ t
1 + t

− x0

1 + x0

∣∣∣∣α ; x
)
+

|x − x0|α
(1 + x)α(1 + x0)α

Bpn ,qn
n (1; x)

)
. (17)

Consequently, we obtain

Bpn ,qn
n

(∣∣∣∣ t
1 + t

− x0

1 + x0

∣∣∣∣α ; x
)

≤ Bpn ,qn
n

(∣∣∣∣ t
1 + t

− x
1 + x

∣∣∣∣α ; x
)
+

|x − x0|α
(1 + x)α(1 + x0)α

Bpn ,qn
n (1; x).
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Using the Hölder’s inequality (see (5)) with p = 2
α and q = 2

2−α and using (9)–(11), we have

Bpn ,qn
n

(∣∣∣∣ t
1 + t

− x
1 + x

∣∣∣∣α ; x
)

≤ Bpn ,qn
n

((
t

1 + t
− x

1 + x

)2
; x

) α
2

(Bpn ,qn
n (12; x))

2−α
2

+
|x − x0|α

(1 + x)α(1 + x0)α
Bpn ,qn

n (1; x)

= ρn(x)
α
2

(
qn

pn

) 2−α
2

+
qn

pn

|x − x0|α
(1 + x)α(1 + x0)α

.

If the above result is substituted in (17), we will get our desired result. Hence, the theorem
is proved.

Corollary 1. If Bpn ,qn
n ( f ; x) is defined by (7) and take E = R+ implies d(x, E) = 0, then a special case of

Theorem 6 can be obtained as the following result: ∀ f ∈ W̃α,R+

|Bpn ,qn
n ( f ; x)− f (x)| ≤ Mρn(x)

α
2

(
qn

pn

) 2−α
2

,

where ρn(x) is the same as in Theorem 6.

5. Construction of the Bivariate Operators

In this section, we define a bivariate version of operators (7) and study their approximation
properties.

For R2
+ = [0, ∞)× [0, ∞), f : R2

+ → R and 0 < qn1 , qn2 < pn1 , pn2 ≤ 1, let us define the bivariate
case of the operators (7) as follows:

Bpn1 pn2 ,qn1 qn2
n1,n2 ( f ; x)

=
qn1 /pn1

ζ
pn1 ,qn1
n1 (x)

qn2 /pn2

ζ
pn2 ,qn2
n2 (y)

n1

∑
j1=0

n2

∑
j2=0

f

⎛⎝ pn1−j1+1
n1 [j1]pn1 ,qn1

[n1 − j1 + 1]pn1 ,qn1
qj1

n1

,
pn2−j2+1

n2 [j2]pn2 ,qn2

[n2 − j2 + 1]pn2 ,qn2
qj2

n2

⎞⎠
× p

(n1−j1)(n1−j1−1)
2

n1 q
j1(j1−1)

2
n1 p

(n2−j2)(n2−j2−1)
2

n2 q
j2(j2−1)

2
n2

[
n1

j1

]
pn1 ,qn1

[
n2

j2

]
pn2 ,qn2

xj1 yj2 , (18)

where ζ
pn1 ,qn1
n1 (x) = ∏n1−1

s=0 (ps
n1
+ qs

n1
x) and ζ

pn2 ,qn2
n2 (y) = ∏n2−1

s=0 (ps
n2
+ qs

n2
y).

For K = l2 = [0, ∞)× [0, ∞), the modulus of continuity for bivariate case is defined by

| f (s, t)− f (x, y)| ≤ ω2

(
f :

∣∣∣∣ s
1 + s

− x
1 + x

∣∣∣∣ ,
∣∣∣∣ t
1 + t

− y
1 + y

∣∣∣∣)
for each f ∈ Hω2 . Details of the modulus of continuity for the bivariate case can be found in [28].

Now, we will investigate Korovkin type approximation properties by using the following
test functions:

e0(u, v) = 1, e1(u, v) =
u

1 + u
, e2(u, v) =

v
1 + v

, e3(u, v) =
(

u
1 + u

)2
+

(
v

1 + v

)2
.

Lemma 4.

1. Bpn1 pn2 ,qn1 qn2
n1,n2 (e0; x, y) =

qn1 qn2
pn1 pn2

,
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2. Bpn1 pn2 ,qn1 qn2
n1,n2 (e1; x, y) =

qn1 qn2 [n1]pn1 ,qn1
pn2 [n1+1]pn1 ,qn1

x
1+x ,

3. Bpn1 pn2 ,qn1 qn2
n1,n2 (e2; x, y) =

qn1 qn2 [n2]pn2 ,qn2
pn1 [n2+1]pn2 ,qn2

y
1+y ,

4. Bpn1 pn2 ,qn1 qn2
n1,n2 (e3; x, y)

=
q4

n1
qn2

pn2

[n1]pn1 ,qn1
[n1−1]pn1 ,qn1

[n1+1]2pn1 ,qn1

x2

(1+x)(pn1+qn1 x) +
p

n1−1
n1 q2

n1
qn2

pn2

[n1]pn1 ,qn1
[n1+1]2pn1 ,qn1

x
1+x

+
qn1 q4

n2
pn1

[n2]pn2 ,qn2
[n2−1]pn2 ,qn2

[n2+1]2pn2 ,qn2

y2

(1+y)(pn2+qn2 y) +
pn2−1

n2 qn1 q2
n2

pn1

[n2]pn2 ,qn2
[n2+1]2pn2 ,qn2

y
1+y .

Let (pn1), (pn2), (qn1) and (qn2) be the sequences that converge statistically to 1 but not convergent
in ordinary sense, so it can be written as for 0 < qn1 , qn2 < pn1 , pn2 ≤ 1,

st − lim
n1

pn1 = st − lim
n2

pn2 = st − lim
n1

qn1 = st − lim
n2

qn2 = 1. (19)

Now, with condition (19), let us show the statistical convergence of the sequence of bivariate
operators (18).

Theorem 7. Let (pn1), (pn2), (qn1) and (qn2) be the sequences satisfying the condition (19) and let
Bpn1 pn2 ,qn1 qn2

n1,n2 ( f ; x) be the sequence of bivariate positive linear operators acting from Hω2(R
2
+) into CB(R+).

Then, for any f ∈ Hω2 ,
st − lim

n1,n2
‖Bpn1 pn2 ,qn1 qn2

n1,n2 ( f )− f ‖ = 0.

Proof. Using Lemma 4, the proof can be achieved similarly the proof of Theorem 4.

6. Rates of Convergence of the Bivariate Operators

For f ∈ Hω2(R
2
+), modulus of continuity for bivariate case is defined as follows [28]:

ω̃( f ; δ1, δ2) = sup
x,s≥0

{
| f (s, t)− f (x, y)|;

∣∣∣∣ s
1 + s

− x
1 + x

∣∣∣∣ ≤ δ1,∣∣∣∣ t
1 + t

− y
1 + y

∣∣∣∣ ≤ δ2, (s, t) ∈ R2
+, (x, y) ∈ R2

+

}
.

Here, ω̃( f ; δ1, δ2) satisfies the conditions:

ω̃( f ; δ1, δ2) → 0 if δ1 δ2 tend to 0, and

| f (s, t)− f (x, y)| ≤ ω̃( f ; δ1, δ2)

(
1 +

∣∣ s
1+s − x

1+x

∣∣
δ1

)⎛⎝1 +

∣∣∣ t
1+t − y

1+y

∣∣∣
δ2

⎞⎠ . (20)

Now, we give the rate of the statistical convergence of the bivariate operators (18) by means of
modulus of continuity in Hω2 :

Theorem 8. Let (pn1), (pn2), (qn1) and (qn2) be the sequences satisfying the condition (19). Then, we have

|Bpn1 pn2 ,qn1 qn2
n1,n2 ( f ; x, y)− f (x, y)| ≤ 4ω

(
f ;
√

δn1(x)
√

δn2(y)
)

, (21)

where

δn1(x) = Bpn1 pn2 ,qn1 qn2
n1,n2

((
s

1 + s
− x

1 + x

)2
; x, y

)
, (22)
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δn2(y) = Bpn1 pn2 ,qn1 qn2
n1,n2

((
t

1 + t
− y

1 + y

)2
; x, y

)
. (23)

Proof. By using (20), we have

|Bpn1 pn2 ,qn1 qn2
n1,n2 ( f ; x, y)− f (x, y)| ≤ ω̃( f ; δ1, δ2)

×
{
Bpn1 pn2 ,qn1 qn2

n1,n2 (e0; x, y) +
1

δn1

Bpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ s
1 + s

− x
1 + x

∣∣∣∣ ; x, y
)}

×
{
Bpn1 pn2 ,qn1 qn2

n1,n2 (e0; x, y) +
1

δn2

Bpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ t
1 + t

− y
1 + y

∣∣∣∣ ; x, y
)}

. (24)

Using Cauchy–Schwarz inequality (see (6)), we have

Bpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ s
1 + s

− x
1 + x

∣∣∣∣ ; x, y
)

≤
{

Bpn1 pn2 ,qn1 qn2
n1,n2

((
s

1 + s
− x

1 + x

)2
; x, y

)} 1
2

{Bpn1 pn2 ,qn1 qn2
n1,n2 (e2

0; x, y)} 1
2 ,

and

Bpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ t
1 + t

− y
1 + y

∣∣∣∣ ; x, y
)

≤
{

Bpn1 pn2 ,qn1 qn2
n1,n2

((
t

1 + t
− y

1 + y

)2
; x, y

)} 1
2

{Bpn1 pn2 ,qn1 qn2
n1,n2 (e2

0; x, y)} 1
2 .

Putting above inequalities in (24) and choosing δn1(x) and δn2(y) as in (22) and (23), respectively,
we get our desired result (21). The theorem is completed.

In the end, we will present the rates of statistical convergence of the bivariate operators (18) by
means of Lipschitz type maximal functions.

Let us give the Lipschitz type maximal function space for the bivariate case on E × E ⊂ R+ ×R+ as

W̃α1,α2,E2 =

{
f : sup(1 + s)α1(1 + t)α2 f̃α1,α2(x, y) ≤ M

1
(1 + x)α1

1
(1 + y)α2

;

x, y ≥ 0, (s, t) ∈ E2
}

. (25)

Here, f is a bounded and continuous function in R+, M is a positive constant and 0 ≤ α1, α2 ≤ 1,
and then let us define f̃α1,α2 as follows:

f̃α1,α2(x, y) = sup
s,t>0

| f (s, t)− f (x, y)|
|s − x|α1 |t − y|α2

.
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Theorem 9. Let (pn1), (pn2), (qn1) and (qn2) be the sequences satisfying the condition (19). Then, we have

|Bpn1 pn2 ,qn1 qn2
n1,n2 ( f ; x, y)− f (x, y)| ≤ M

(
qn1 qn2

pn1 pn2

)

×
{

δn1(x)
α1
2 δn2(y)

α2
2

(
qn1 qn2

pn1 pn2

)1− α1+α2
2

+ δn1(x)
α1
2 d(y, E)α2

(
qn1 qn2

pn1 pn2

)− α1
2

+ δn2(y)
α2
2 d(x, E)α1

(
qn1 qn2

pn1 pn2

)− α2
2
+ 2d(x, E)α1 d(y, E)α2

}
,

where 0 < α1, α2 ≤ 1, d(x, E) = inf{|x − y| : y ∈ E}, δn1(x) and δn2(y) are defined as in (22) and (23),
respectively.

Proof. Let x, y ≥ 0 and (x0, y0) ∈ E2. Then, we can write

| f (s, t)− f (x, y)| ≤ | f (s, t)− f (x0, y0)|+ | f (x0, y0)− f (x, y)|.

Applying the positive linear operators Bpn1 pn2 ,qn1 qn2
n1,n2 ( f ; x) on both the sides of the above inequality

and using (25), we obtain

|Bpn1 pn2 ,qn1 qn2
n1,n2 ( f ; x, y)− f (x, y)|

≤ Bpn1 pn2 ,qn1 qn2
n1,n2 (| f (s, t)− f (x0, y0)|; x, y)

+ | f (x0, y0)− f (x, y)|Bpn1 pn2 ,qn1 qn2
n1,n2 (e0; x, y)

≤ MBpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ s
1 + s

− x0

1 + x0

∣∣∣∣α1
∣∣∣∣ t
1 + t

− y0

1 + y0

∣∣∣∣α2

; x, y
)

+ M
∣∣∣∣ x
1 + x

− x0

1 + x0

∣∣∣∣α1
∣∣∣∣ y
1 + y

− y0

1 + y0

∣∣∣∣α2

Bpn1 pn2 ,qn1 qn2
n1,n2 (e0; x, y). (26)

It is known that (u + v)α ≤ uα + vα and 0 ≤ α ≤ 1, so it can be written as∣∣∣∣ s
1 + s

− x0

1 + x0

∣∣∣∣α1

≤
∣∣∣∣ s
1 + s

− x
1 + x

∣∣∣∣α1

+

∣∣∣∣ x
1 + x

− x0

1 + x0

∣∣∣∣α1

∣∣∣∣ t
1 + t

− y0

1 + y0

∣∣∣∣α2

≤
∣∣∣∣ t
1 + t

− y
1 + y

∣∣∣∣α2

+

∣∣∣∣ y
1 + y

− y0

1 + y0

∣∣∣∣α2

.

By using the above inequalities in (26), we have

|Bpn1 pn2 ,qn1 qn2
n1,n2 ( f ; x, y)− f (x, y)|

≤ Bpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ s
1 + s

− x
1 + x

∣∣∣∣α1
∣∣∣∣ t
1 + t

− y
1 + y

∣∣∣∣α2

; x, y
)

+

∣∣∣∣ y
1 + y

− y0

1 + y0

∣∣∣∣α2

Bpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ s
1 + s

− x
1 + x

∣∣∣∣α1

; x, y
)

+

∣∣∣∣ x
1 + x

− x0

1 + x0

∣∣∣∣α1

Bpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ t
1 + t

− y
1 + y

∣∣∣∣α2

; x, y
)

+

∣∣∣∣ x
1 + x

− x0

1 + x0

∣∣∣∣α1
∣∣∣∣ y
1 + y

− y0

1 + y0

∣∣∣∣α2

Bpn1 pn2 ,qn1 qn2
n1,n2 (e0; x, y).
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Using Hölder’s inequality with p1 = 2
α1

, p2 = 2
α2

, q1 = 2
2−α1

, q2 = 2
2−α2

(see (5)), we obtain

Bpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ s
1 + s

− x
1 + x

∣∣∣∣α1
∣∣∣∣ t
1 + t

− y
1 + y

∣∣∣∣α2

; x, y
)

= Bpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ s
1 + s

− x
1 + x

∣∣∣∣α1

; x, y
)

Bpn1 pn2 ,qn1 qn2
n1,n2

(∣∣∣∣ t
1 + t

− y
1 + y

∣∣∣∣α2

; x, y
)

≤
(

Bpn1 pn2 ,qn1 qn2
n1,n2

(
s

1 + s
− x

1 + x

)2
; x, y

) α1
2

(Bpn1 pn2 ,qn1 qn2
n1,n2 (e2

0; x, y))
2−α1

2

×
(

Bpn1 pn2 ,qn1 qn2
n1,n2

(
t

1 + t
− y

1 + y

)2
; x, y

) α2
2

Bpn1 pn2 ,qn1 qn2
n1,n2 (e2

0; x, y)
2−α

2 .

If we use the above inequality in (26), we get our desired result. Thus, the proof is completed.

Corollary 2. If we take E = [0, ∞), then because of d(x, E) = 0 and d(y, E) = 0, we have

|Bpn1 pn2 ,qn1 qn2
n1,n2 ( f ; x, y)− f (x, y)| ≤ M

(
qn1 qn2

pn1 pn2

)2− α1+α2
2

δn1(x)
α1
2 δn2(y)

α2
2 ,

where δn1(x) and δn2(y) are same as defined as in (22) and (23), respectively.

7. Conclusions

In this paper, we have constructed (p, q)-BBH operators and calculated some auxiliary results for
these newly defined operators. We also established Korovkin type results and rate of convergence in a
statistical sense. Furthermore, we constructed the bivariate (p, q)-BBH operators and computed rate of
statistical convergence for the bivariate (p, q)-BBH operators. Our results are more general than the
results for BBH and q-BBH operators.
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1. Aral, A.; Doğru, O. Bleimann Butzer and Hahn operators based on q-integers. J. Inequal. Appl. 2007, 2007, 79410.
[CrossRef]

2. Bleimann, G.; Butzer, P.L.; Hahn, L. A Bernstein-type operator approximating continuous functions on the
semi-axis. Indag. Math. 1980, 42, 255–262. [CrossRef]

3. Gadjiev, A.D.; Çakar, Ö. On uniform approximation by Bleimann, Butzer and Hahn operators on all positive
semi-axis. Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 1999, 19, 21–26.

4. Mursaleen, M.; Ansari, K.J.; Khan, A. On (p, q)-analogue of Bernstein operators. Appl. Math. Comput. 2015,
266, 874–882; Erratum in 2015, 266, 874–882. [CrossRef]

5. Marin, M. An evolutionary equation in thermoelasticity of dipolar bodies. J. Math. Phys. 1999, 40, 1391–1399.
[CrossRef]

6. Marin, M.; Stan, G. Weak solutions in Elasticity of dipolar bodies with stretch. Carpath. J. Math. 2013,
29, 33–40.

7. Khalid Khan, D.K. Lobiyal, Bézier curves based on Lupaş (p, q)-analogue of Bernstein functions in CAGD.
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Abstract: Password-based key derivation functions (PBKDFs) are commonly used to transform user
passwords into keys for symmetric encryption, as well as for user authentication, password hashing,
and preventing attacks based on custom hardware. We propose two optimized alternatives that
enhance the performance of a previously published PBKDF. This design is based on (1) employing
a symmetric cipher, the Advanced Encryption Standard (AES), as a pseudo-random generator and
(2) taking advantage of the support for the hardware acceleration for AES that is available on many
common platforms in order to mitigate common attacks to password-based user authentication
systems. We also analyze their security characteristics, establishing that they are equivalent to the
security of the core primitive (AES), and we compare their performance with well-known PBKDF
algorithms, such as Scrypt and Argon2, with favorable results.
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1. Introduction

Key derivation functions are employed to obtain one or more keys from a master secret. This is
especially useful in the case of user passwords, which can be of arbitrary length and are unsuitable to
be used directly as fixed-size cipher keys, so, there must be a process for converting passwords into
secret keys. This process is performed by password-based key derivation functions (PBKDFs). PBKDFs
are also called password hashing functions, and they are commonly employed in user authentication
since they have certain advantages over other password processing methods: they are capable of
accepting a salt, preventing precalculated table attacks; they are one-way functions (much as ordinary
cryptographic hash functions), so the hashed password database cannot be reversed if it is stolen;
and they can usually be parameterized in terms of temporal and memory cost to prevent attacks
based on massively parallel hardware, like general-purpose graphical processing units (GPGPU)
or custom hardware. Password hashing is a field of active research (see [1,2]), with several recent
publications [3–10] that improve the current industry standard (PBKDF2, see [11]). Besides password
hashing and key derivation, PBKDFs have found applications in the field of cryptocurrencies and
blockchain algorithms, where they are used as proof-of-work functions for such designs (see [12]).

Symmetric encryption (see [13]) is a type of cryptography that employs the same (or easily
derivable from one another) keys for encryption and decryption, hence the establishment of a
symmetric process from cleartext to ciphertext and, back again, from ciphertext to cleartext. There
are two basic kinds of symmetric cryptosystems: block ciphers and stream ciphers; they differ in
that block ciphers have no internal state and usually process data in blocks, while stream ciphers
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do have an internal state and process data element by element (an element is usually a bit or a byte
of data). Nevertheless, most block ciphers can be run in operation modes that make them work as
stream ciphers; such is the case in our proposal, where we employ the current advanced encryption
standard (AES, [14]) in counter (CTR) mode to work as a stream cipher in the role of a pseudo-random
number generator (PRNG); the use of AES as a PRNG has been proposed by the United States National
Institute of Standards and Technology (NIST, see [15]). Besides having been independently tested
for almost two decades and considered secure by the community, AES has the advantage of being
accelerated in hardware on most common modern processors, like those found on laptop, desktop or
server machines we use nowadays.

The main contributions of this paper are two different optimizations of a previously proposed
PBKDF (see [3]) that favorably compare in performance to the original version and widely employed
PBKDFs, such as Scrypt [7] and Argon2 [5]. This is significant for user authentication applications
that are based on passwords, as well as in blockchain applications where a proof-of-work algorithm
is required. Taking advantage of the fact that hardware acceleration support is available for AES,
our proposed PBKDF design reduces the performance advantage of attackers employing GPGPU or
custom hardware since its main core primitive is also run on hardware.

The rest of the paper is structured as follows: a short review on related work is included in
Section 2, the proposed optimized algorithms are described in Section 3, the results obtained by our
studies are presented in Section 4, the significance of the results are discussed in Section 5, while the
testing methodology is detailed in Section 6, followed by some conclusions and future lines of work in
Section 7.

2. Related Work

There is abundant recent literature on the connection between symmetry and cryptography.
Chang et al. proposed a mobility network authentication scheme based on elliptic-curve cryptography
(see [16]) that ensures anonymity, security, and convenience. Hung et al. designed a lattice-based
revocable certificateless signature scheme (see [17]) that aims to resist cryptanalysis, even in the
post-quantum era. Sakalauskas et al. improved upon an asymmetric cipher based on the matrix
power function (see [18]) to avoid a successful discrete logarithm attack against the original version.
Ramadan et al. published a survey of public key infrastructure (PKI)-based security for mobile systems
(see [19]) covering aspects such as authentication, key agreement, and privacy.

Qiao et al. described a black-box traceable ciphertext-policy attribute-based encryption (CP-ABE,
see [20,21]) that is scalable and efficient and, therefore, better suited for cryptographic cloud storage.
Zhu et al. cryptanalyzed an image encryption algorithm based on a chaos s-box (see [22]), proposing an
improved version with better security and performance. Park et al. described the use cases, challenges,
and solutions involved in the application of blockchain-based security technologies to cloud computing
(see [23]).

Chang et al. proposed password-authenticated key exchange and protected password change
protocols that do not involve symmetric or asymmetric cryptosystems (see [24]), basing the security on
the computational Diffie–Hellman assumption in the random oracle model. Nam et al. presented a
provably secure three-party password-only authenticated key exchange protocol (see [25]) that can
run in only two rounds of communication.

Regarding PBKDF and password hashing functions, the finalists to the Password Hashing
Competition (Argon2 [5], Catena [6], Makwa [8], Lyra2 [9], and Yescrypt [10]) are highly relevant functions
related to our proposed optimized PBKDF. Also, there is previous work by the authors in this field,
including the original version of the proposal ([3]) and others (see [4,26]).

3. Description

In the following, we describe the parameters and elements, as well as the design, of the original
PBKDF function and the proposed optimized versions. There are three variants of our proposal:
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the original version (AESCTR-o, published in [3]); the intermediate optimization step (AESCTR-i); and
the final optimization (AESCTR-f ). We use a pseudocode notation loosely based on the Go language to
describe the initialization and output stages of the proposal.

3.1. Parameters

Our proposal and most PBKDF designs share a very similar set of parameters, mainly including
the user password (pass[]) and random salt (salt[]) byte strings to be hashed, the length of the output
hash to be generated (plen), and some kinds of cost parameters. Those PBKDFs that have been
designed to slow down attackers employing GPGPU or specialized hardware usually involve two cost
parameters: a time cost (ptime) and a memory cost (pmem) that, due to its nature, tends to influence the
time cost as well. These parameters are the same as in the original version (see [3] for more details).

Most of the variables of the algorithm are unchanged as well; M[] is the main memory buffer that
is parameterized by plen and pmem, while out[] constitutes the output hash of the function. Also, M64[]
and out64[] are employed in the final optimization (AESCTR-f ) to perform 64-bit native operations for
performance reasons.

The algorithm employs SHA3-256 as a secure cryptographic hash function (see [27]) during the
initial seeding phase, and AES-128 (see [14]) is used in CTR mode as a pseudo-random generator; both
of these could be swapped for different, equivalent primitives were it necessary in the future.

3.2. Initialization

The initialization stage is unchanged from the original version of the algorithm (see [3])
and is reproduced here in Figure 1. We have added comments to detail the seeding and buffer
initialization steps.

// Generate a 256-bit hash (seed) from the password and salt
fH := sha3.New256()
fH.Write(pass)
fH.Write(0)
fH.Write(salt)
seed := fH.Sum(nil)

// Build an AES-128-CTR instance from the seed value
blk := aes.NewCipher(seed[0:16])
fC := cipher.NewCTR(blk, seed[16:32])

// Allocate and fill output buffer
out := make([]byte, plen)
fC.XORKeyStream(out, out)

// Allocate and fill memory buffer
M := make([]byte, pmem*plen)
fC.XORKeyStream(M, M)

Figure 1. Initialization stage pseudocode (common to all variants).

3.3. Output

The intermediate optimization attempts to improve the performance of the original version
(see [3]) by avoiding AES encryption steps inside the loops and just encrypting the out[] buffer as the
last step. For this reason, there is a second inner loop that generates a new index so that a different row
from M[] can be processed into out[]. These modifications are shown in Figure 2 (pseudocode) and in
Figure 3 (flow diagram).
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for t := 0; t < ptime; t++ {
for m := 0; m < pmem; m++ {
i := (int(out[0:8])%pmem) * plen
for o := 0; o < len(out); o++ {
M[i+o] -= out[o]
}
i = (i*i) % pmem
for o := 0; o < len(out); o++ {
out[o] -= (M[i+o] ^ out[o])
}
}
}
fC.XORKeyStream(out, out)

Figure 2. Intermediate (AESCTR-i) output stage pseudocode.

Figure 3. Flow diagram for the intermediate (AESCTR-i) output stage.

The final optimization further improves the performance by avoiding writing back to M[]
and having a second inner loop. Also, memory access and operations are performed in 64-bit.
The differences between the final and intermediate optimizations are shown in Figure 4 (pseudocode)
and in Figure 5 (flow diagram).
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for t := 0; t < ptime; t++ {
for m := 0; m < pmem; m++ {
i := (int(out[0:8])%pmem) * plen/8
for o := 0; o < len(out); o++ {
out64[o] -= (M64[i+o] ^ out64[o])
}
}
}
fC.XORKeyStream(out, out)

Figure 4. Final (AESCTR-f ) output stage pseudocode.

Figure 5. Flow diagram for the final (AESCTR-f ) output stage.

4. Results

Regarding performance, we benchmarked in the following the optimized proposals, together with
the original version ([3]), when modulating the time (ptime) and space (pmem) complexity parameters.
The testing methodology is detailed in Section 6.

In Figure 6, we present the computational cost (execution time in logarithmic scale) of all three
variants of the proposal as the pmem parameter modulation ranges from 28 to 223 entries of 32 bytes
(a memory usage varying from 8 KB to 256 MB) and with ptime = 1. We can see that the intermediate
optimization is a significant improvement over the original function, but it is clearly overtaken by the
final optimization, which is about 5 times faster than the original version.
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Figure 6. Performance while modulating the spatial cost parameter (pmem).

Figure 7 shows the behavior of the proposed optimizations when the time parameter is modulated.
In this test, ptime values range from 1 to 215 passes and memory usage (pmem) is kept constant at
28 entries of plen bytes (8 KB of memory). In this case, the difference in performance of the final
optimization (AESCTR-f ) is more pronounced than in the case of the memory parameter.

Figure 7. Performance while modulating the temporal cost parameter (ptime).

Figure 8 represents the execution time (in logarithmic scale) when both parameters, pmem and
ptime, are simultaneously modulated in a double for loop. The outer loop is pmem, corresponding to the
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number of entries in the main memory buffer, M[], going from 28 to 215, and the inner loop corresponds
to ptime, ranging from 1 to 27; the maximum amount of memory usage is 128 MB and occurs when
pmem = 215 and ptime = 27. The sawtooth shapes are expected in a double-loop arrangement. In this
combined benchmark, the performance gain achieved with the final optimization is readily apparent.

Figure 8. Performance while simultaneously modulating both ptime and pmem cost parameters.

5. Discussion

In the following, we discuss the security characteristics of our proposal and compare all three
variants to Scrypt and Argon2 in terms of performance.

5.1. Comparison with Scrypt and Argon2

Scrypt (see [7]) is a PBKDF that was designed by Colin Percival in 2009. It has been employed for
many services and applications, acting as a de facto standard in recent years. It has also been employed
as a proof-of-work algorithm in some blockchain implementations.

Argon2 (see [5]) became the Password Hashing Competition (PHC) winner in 2015, overcoming
finalists such as Catena [6], Lyra2 [9], Yescrypt [10], and Makwa [8]. It provides very interesting
options, such as data-dependent or data-independent memory access, and is gaining traction in many
new secure authentication implementations.

As shown in Figure 9, for an equal amount of memory, Scrypt is slower than all three variants of
the proposed AES-CTR algorithm, while Argon2 is a very efficient algorithm, but the final optimization
(AESCTR-f ) is slightly faster than Argon2. Moreover, the speedup between our proposal and Argon2
increases with memory usage, as shown in Table 1.

It is interesting to note that while Argon2 has been implemented using Intel’s SSE4 instruction
set and our proposal takes advantage of the native AES instructions, Scrypt does not benefit directly
from the hardware acceleration available in modern processors. More details regarding the testing
methodology are included in Section 6.
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Figure 9. Comparison with Scrypt and Argon2.

Table 1. Speedup between the final optimization and Argon2.

pmem AESCTR-f (s) Argon2 (s) Speedup

8 0.03 0.03 1.04
9 0.06 0.06 1.07

10 0.12 0.13 1.11
11 0.24 0.28 1.16
12 0.49 0.58 1.19
13 0.98 1.21 1.24
14 2.02 2.51 1.25
15 4.15 5.27 1.27

5.2. Security

This design is based on two different cryptographic primitives: a pseudo-random generator that
provides the initial contents of the memory and output buffers, and a hash function that processes
the user password and salt and produces a seed for this pseudo-random generator. We employed a
symmetric cipher, AES-128 [14] in CTR mode, as the pseudo-random generator and SHA3-256 [27] as
the hash function that provides the seed (128-bit key and initialization vector) for AES.

Both of these cryptographic primitives are well-known, independently tested current standards.
Nevertheless, if they were to be deemed insecure in the future, they could be replaced by different,
size-compatible, secure alternatives.

The proposed optimized design should be on par with the original version and these primitives
at a minimum-security level of 128 bits against brute force attacks since the output of the PBKDF (in all
three variants) comes directly from the output of the AES-128 symmetric cipher.

6. Methods

We employed the Go programming language (version 1.11.1, see [28]) for the implementation
of all tested algorithms; Go is an excellent choice for cryptography testing since it is a very efficient,
compiled language and includes most security standards and algorithms in its standard library.
All benchmarks were run on the same computer, a desktop PC with an Intel i7 CPU (6950X, 3.5
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GHz and with AES Native Instructions support) and 32 GB of RAM, running Microsoft Windows 10
(1803 release). The length for passwords, salts, and output was chosen as 32 bytes (256 bits), and all
tests were run 100 times to avoid the interference from external processes as much as possible.

In the case of the comparison benchmarks, the official implementations available in the
golang.org/x/crypto packages were used for Scrypt and Argon2 testing. It should be noted that
this implementation of Argon2 supports hardware acceleration via SSE4 instructions and that the
recommended parameters (three passes) and a single thread were used. To ensure fair testing, an equal
amount of RAM usage was chosen for each algorithm in all comparison tests.

7. Conclusions

We optimized a previously published password-based key derivation function that employs
the Advanced Encryption Standard (AES) in counter mode as a core primitive, proposing two new
algorithms based on the original design: a more conservative optimization and a fully optimized one.
The design philosophy is based on taking advantage of the custom AES instructions available on most
modern processors that enable hardware support to defend against brute force password cracking
attacks mounted on specialized hardware or general-purpose graphical processing units.

We have also analyzed the performance of all three variants in comparison with Scrypt and
Argon2, which are the current industry standards in terms of password hashing functions. The final
optimization version of the algorithm (AESCTR-f ) is faster than Argon2 for an equal amount of memory
usage, showing that AES can be an excellent candidate for the design of password hashing functions.
Moreover, since the design is based primarily on AES in counter mode as a pseudo-random generator
and the final output is directly encrypted with AES, we can establish that our proposal is equivalent,
in terms of security, to this extensively analyzed encryption standard.

For future research, there are several possible interesting topics, such as server-side ROM,
client-independent update, server relief, parallelism, or specialized implementations, among others.

Server-side ROM is an extra security measure that involves employing a very big random file on the
server as part of the hashing process. In this way, an attacker would have to produce the same random
file, and the large amount of memory required would further deter the use of specialized hardware.
Our proposal can be adapted to accept such a file as part of the algorithm without compromising its
performance or security.

Client-independent update is the capability of changing PBKDF parameters without the need for the
user to reenter the password. This is a convenient feature in password authentication since the server
can increase the security of the PBKDF as necessary but without any friction for the end users. This
can be performed without modification to the proposed algorithm by multiple-step processing, but
other optimized methods might be possible.

Server relief implies delegating part of the PBKDF computation to the end user so that the server
is less impacted by computational requirements of password-authenticating a large number of users
simultaneously. It is, in essence, a way of increasing the parallelism of the server and reducing the
advantage that attackers might have by using general-purpose graphical processing units or other
specialized hardware. This usually involves some kind of protocol in order to share the computational
load between the server and the user node in a secure manner.

Multiple-thread parallelism can also be studied and incorporated by modifying the proposed final
optimization (AESCTR-f ). This can be useful in situations where server relief is not possible or when
further parallelism is desired. Since Argon2 allows for multiple-thread parallelism, a comparison
between the parallel performance scalability of the final optimization and Argon2 might be possible.

Specialized implementation on hardware platforms, such as general-purpose graphic processing
units or field programmable gate arrays, could be very useful for further performance testing and
optimization of the proposed PBKDF algorithm.
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1. Introduction

The purpose of this article is to emphasize some simple connections among mathematical objects
apparently of different types as the Bernoulli spirals, the Grandi (rhodonea) curves, and the first and
second kind Chebyshev polynomials. Namely, by considering polar coordinates and the complex form
of the Bernoulli spiral, a straightforward connection between the real and imaginary part of the Bernoulli
spiral with the Grandi curves follows. Even the Chebyshev polynomials come out immediately.

Since the rhodonea curves exist even for a fractional index, it is possible to define an extension of
the first and second kind Chebyshev polynomials to the case of rational degree. Actually, the resulting
functions are not polynomials, but irrational functions. However, several properties of these functions
can be derived from their trigonometric definition, by using standard identities of circular functions.
In particular, for the function of half-integer degree, Tn+1/2 and Un+1/2, the orthogonality property still
holds, in the interval (−1, 1), with respect to the same weight function of their polynomial counterparts.

The second section of the article is devoted to recalling the most simple examples of spirals,
including the Archimedes, Bernoulli, Fermat, and other spirals, which can be derived by using an
analogy with Cartesian coordinates. Namely, the above- mentioned spirals, considered in the plane
(ρ, θ), correspond to elementary curves in the plane (x, y), which are, respectively, straight lines,
exponential, and power functions. This is, possibly, the motivation for the frequent occurrence of
spirals or Grandi curves in natural forms (see, e.g., [1,2]).

2. Spirals

The Archimedes spiral [3] (Figure 1) has the polar equation:

ρ = a θ , (a > 0, θ ∈ R) . (1)

If θ > 0, the spiral turns counter-clockwise, if θ < 0, the spiral turns clockwise.
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Bernoulli’s (logarithmic) spiral [4] (Figure 1) has the polar equation:

ρ = a bθ , (a, b ∈ R+) ,

θ = logb

(ρ

a

)
.

(2)

Varying the parameters a and b, one gets different types of spirals.
The coefficient a changes the size, and the term b controls it to be “narrow” and in what direction

it wraps itself.
Since a and b are positive constants, some interesting cases are possible. The most studied

logarithmic spiral is called harmonic, as the distance between coils is in the harmonic progression
whose ratio is φ =

√
5−1
2 , that is, the “golden ratio” relevant to the unit segment.

The logarithmic spiral was discovered by René Descartes in 1638 and studied by Jakob Bernoulli
(1654–1705).

Pierre Varignon (1654–1722) called it an equiangular spiral because:

1. The angle between the tangent at a point and the polar radius passing through that point
is constant.

2. The angle of inclination with respect to the concentric circles with the center in the origin is
also constant.

It is an example of a fractal. As it is written on J. Bernoulli’s tomb: Eadem mutata resurgo, but
the spiral represented there is of the Archimedes type.

Figure 1. Archimedes’ vs. Bernoulli’s spiral.

Fermat’s spiral (or parabolic) (Figure 2) has the polar equation:

ρ = ±a θ1/2 . (3)

Fermat’s (parabolic) spiral suggests the possibility of introducing intermediate graphs between
Archimedes’ and Bernoulli’s spirals.

In fact, in the plane (θ, ρ), the graph of Archimedes’ spiral is a straight line, while the Bernoulli
spiral has an exponential graph, and the Fermat spiral a parabolic graph.

Then, putting:

ρ = a θm/n , (m, n positive integers , n 	= 0) , (4)

one gets a family of spirals at varying m and n.
Notice that, if m > n, the exponent being greater than one, the coils of the spiral are widening

(Figure 2), while if m < n, the exponent is less than one, and therefore, the coils of the spiral are
shrinking (as in Fermat’s case).
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Another possibility is to assume θm/n, where m/n < 0 (in this case, the coils are wrapped around
the origin (Figure 3) or to use a graph with horizontal asymptotes, in order to get an asymptotic spiral.

Figure 2. Spiral, ρ = θ3/2, and Fermat spiral, ρ = θ1/2.

Figure 3. Spiral, ρ = θ−1/2, and asymptotic spiral, ρ = arctan(θ).

In what follows, we consider a “canonical form” of the Bernoulli spirals assuming a = 1 , b = en ,
that is the simplified polar equation:

ρ = en θ , (n ∈ N) . (5)

3. The Complex Bernoulli Spiral

We now introduce the complex case, putting:

ρ = �ρ + i *ρ , (6)

and considering a Bernoulli spiral of the type:

ρ = ei n θ = cos nθ + i sin nθ . (7)

Therefore, we have:

ρ1 = �ρ = cos nθ , ρ2 = *ρ = sin nθ . (8)

3.1. Rhodonea Curves

The curves defined in polar coordinates by:

ρ1 = �ρ = cos nθ , (9)

are called rhodonea curves or Grandi roses (examples in Figure 4), by the name of Luigi Guido Grandi
(1671–1742), who communicated his discovery in a letter to Leibniz in 1713 [5].

Curves of the type:

ρ2 = *ρ = sin nθ , (10)
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are essentially equivalent to the preceding ones, up to a rotation of π
2n radians.

Figure 4. Rhodonea, ρ = cos(4θ), and rhodonea, ρ = cos(5θ).

3.2. Chebyshev Polynomials

The Chebyshev polynomials of the first and second kind were introduced by Pafnuty L. Chebyshev
(1821–1894). They can be derived as the real and imaginary part of the exponential function ei n θ =

(cos θ + i sin θ)n (see Equation (7)), putting x = cos θ, and using the Euler formula (see [6] for details).
The first kind Chebyshev polynomials are important in approximation theory and Gaussian

quadrature rules. In fact, by using their roots—called Chebyshev nodes—the resulting interpolation
polynomial minimizes the Runge phenomenon. Furthermore, the relevant approximation is the best
approximation to a continuous function under the maximum norm.

Linked with these polynomials are also the Chebyshev polynomials of the second kind,
which appear in computing the powers of 2 × 2 non-singular matrices [7]. Generalizations of such
polynomials have been also introduced, in particular for computing powers of higher order matrices
(see, e.g., [8,9]).

An excellent book is [10]. The importance of these polynomial sets in applications is shown in [11].
Recently, the Chebyshev polynomials of the first and second kind have been used in order to

represent the real and imaginary part of complex Appell polynomials [12,13].
The connection of the second kind Chebyshev polynomials with classical polynomials of number

theory has been recently underlined by Kim T., Kim D.S. et al. (see, e.g., [14–16]).

Definition of Chebyshev polynomials of the first kind:

T0(x) = 1 ,
T1(x) = x ,
Tn+1(x) = 2x Tn(x)− Tn−1(x) ,

Tn(x) = cos(n arccos(x)) ⇔ Tn(cos θ) = cos(n θ) .

(11)

Definition of Chebyshev polynomials of the second kind:

U0(x) = 1 ,
U1(x) = 2x ,
Un+1(x) = 2x Un(x)− Un−1(x) ,

√
1 − x2 Un−1(x) = sin (n arccos(x)) ⇔ Un−1(cos θ) =

sin[n θ]

sin θ
.

(12)

As a consequence of the above considerations, it is possible to note the connection of the rhodonea
curves with the first kind Chebyshev polynomials.

In fact, the rhodonea curve ρ = cos(n θ) (Figure 4) can be interpreted as Tn(cos θ) (Equation (11)).
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In a similar way, the second kind Chebyshev polynomials have as graphical images the roses of
the type Un(cos θ) corresponding to sin((n − 1)θ)/ sin(θ) (examples in Figure 5).

Note that, in both cases, the rhodonea curve has n petals if n is odd and 2n petals if n is even.

Figure 5. U4 rose, ρ = sin(3θ)/ sin(θ), and U5 rose, ρ = sin(4θ)/ sin(θ).

4. Pseudo-Chebyshev Polynomials

The rhodonea curves exist even for rational values of the index n (see, e.g., [17]). This allows us
to consider the sets of first and second kind pseudo-Chebyshev polynomials (graphical examples in
Figures 6 and 7). The prefix “pseudo” is used because actually, they are not polynomials, but irrational
functions, as it is seen in what follows.

Figure 6. Pseudo T3/2 = cos(1.5 arccos(x)), and rhodonea, ρ = cos(1.5 θ).

Figure 7. Pseudo T9/2 = cos(4.5 arccos(x)), and rhodonea, ρ = cos(4.5 θ).

We start assuming the degree in the form n + 1
2 , that is a semi-integer number. This seems to be

the most interesting case, since the resulting functions Tn+1/2 and Un+1/2 are proven to be orthogonal,
in the interval (−1, 1), with respect to the same, corresponding weights, of the first and second kind
Chebyshev polynomials.

We put, by definition:

Tk+ 1
2
(x) = cos

(
(k + 1

2 ) arccos(x)
)

(13)
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√
1 − x2 Uk− 1

2
(x) = sin

(
(k + 1

2 ) arccos(x)
)

. (14)

Remark 1. It is worth noting that the third and fourth kind Chebyshev polynomials Vn(x) and Wn(x) (see,
e.g., [18]) have a similar definition, but they do not coincide with the pseudo-Chebyshev, since actually they are
true polynomials, and satisfy orthogonality properties with respect to different weights (see Figures 8 and 9).

The third and fourth kind Chebyshev polynomials have been studied and applied by several scholars (see,
e.g., [18–20]), because they are useful in quadrature rules, when the singularities occur only at one of the end
points (+1 or − 1) (see [10]). Furthermore, recently, they have been applied in numerical analysis for solving
high odd-order boundary value problems with homogeneous or nonhomogeneous boundary conditions [19].

Figure 8. Pseudo Tn/2, n = 3, 5, 7, 9, and third kind Vk(x) k = 1, 2, 3, 4.

Figure 9. Pseudo Un/2, n = 1, 3, 5, 7, and fourth kind Wk(x) k = 0, 1, 2, 3.

4.1. The Case of Half-Integer Degree

In particular, we have:

T1/2(x) = cos
(

1
2 arccos(x)

)
=

√
1 + x

2
, (15)

√
1 − x2 U−1/2(x) = sin

(
1
2 arccos(x)

)
=

√
1 − x

2
. (16)

Therefore, we find:
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T3/2(x) = cos
( 3

2 arccos(x)
)
= cos

(
arccos(x) + 1

2 arccos(x)
)

= cos(arccos(x)) cos
(

1
2 arccos(x)

)
− sin(arccos(x)) sin

(
1
2 arccos(x)

)
= x

√
1 + x

2
−

√
1 − x2

√
1 − x

2
,

(17)

T5/2(x) = cos
( 5

2 arccos(x)
)

cos
(

2 arccos(x) + 1
2 arccos(x)

)
= cos(2 arccos(x)) cos

(
1
2 arccos(x)

)
− sin(2 arccos(x)) sin

(
1
2 arccos(x)

)
= T2(x)

√
1 + x

2
−

√
1 − x2 U1(x)

√
1 − x

2
.

(18)

4.2. Recurrence Relations

We have, in general:

Tn+1/2(x) = cos
(

n arccos(x) + 1
2 arccos(x)

)
= Tn(x)

√
1 + x

2
−

√
1 − x2 Un−1(x)

√
1 − x

2
,

that is:

Tn+1/2(x) = Tn(x) T1/2(x)−
(
1 − x2) Un−1(x)U−1/2(x) . (19)

In a similar way, for the second kind, we find:

Un+1/2(x) = Un−1(x) T1/2(x) + U−1/2(x) Tn(x) . (20)

Remark 2. Note that the number of rose petals of the curves ρ = cos( n
2 θ) , n = 1, 3, 5, . . . is given by the

sequence {2, 6, 10, 14, 18, 22, . . . }, which appears in the Encyclopedia of Integer Sequences [21] at A016825:
positive integers congruent to 2 mod 4 : a(n) = 4n + 2, for n ≥ 0.

4.3. More General Formulas

By using cosine addition formulas, putting:

m
n

=
p
q
+

r
s

, (21)

we find:

Tm/n(x) = Tp/q(x) Tr/s(x)−
(
1 − x2) U(p/q)−1(x)U(r/s)−1(x) , (22)

and by using the sine addition formulas:

Um/n(x) = U(p/q)−1(x) Tr/s(x) + U(r/s)−1(x) Tp/q(x) . (23)
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Particular Results

T1(x) = T1/3(x) T2/3(x)−
(
1 − x2) U−2/3(x)U−1/3(x) . (24)

T1(x) = cos
[
3 · 1

3 arccos(x)
]
= 4 T3

1/3(x)− 3 T1/3(x) . (25)

T2(x) = cos
[
3 · 2

3 arccos(x)
]
= 4 T3

2/3(x)− 3 T2/3(x) . (26)

T2/3(x) = cos
[
2 · 1

3 arccos(x)
]
= 1 − 2 sin2

[
1
3 arccos(x)

]
= 1 − 2 (1 − x2)U−2/3(x) .

(27)

U−1/3(x) =
sin

[
2 · 1

3 arccos(x)
]

√
1 − x2

=
2√

1 − x2
sin

[
1
3

arccos(x)
]

cos
[

1
3

arccos(x)
]
= 2 U−2/3(x) T1/3(x) .

(28)

U−2/3(x) =
sin

[
1
3 arccos(x)

]
√

1 − x2
=

√
1 − T2

1/3(x)
1 − x2 . (29)

Combining the above equations, we find:

T1(x) = T1/3(x) T2/3(x)− 2 T1/3(x)
(

1 − T2
1/3(x)

)
= T1/3(x)

(
2 T2

1/3(x) + T2/3(x)− 2
)

.

(30)

4.4. Orthogonality for Half-Integer Degree

Theorem 1. The Chebyshev functions Tm/2(x) satisfy the orthogonality property:

∫ 1

−1
Tm/2(x) Tn/2(x)

1√
1 − x2

dx = 0 , (m 	= n) , (31)

where m,n are positive odd numbers such that m + n = 2k, k = 2, 3, 4, . . . ,

∫ 1

−1
T2

m/2(x)
1√

1 − x2
dx =

π

2
. (32)

Proof. As a consequence of Werner formulas, we have, under the above conditions,

∫ 1

−1
cos(m/2 arccos(x)) cos(n/2 arccos(x))

1√
1 − x2

dx = (putting x = cos(2t) )

= 2
∫ π/2

0
cos(mt) cos(nt) dt = 0 ,

(33)
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and:

∫ 1

−1
cos2(m/2 arccos(x))

1√
1 − x2

dx = 2
∫ π/2

0
cos2(mt) dt =

π

2
. (34)

Theorem 2. The Chebyshev functions Um/2(x) satisfy the orthogonality property:

∫ 1

−1
Um/2(x)Un/2(x)

√
1 − x2 dx = 0 , (m 	= n) , (35)

where m, n are positive odd numbers such that m + n = 2k, k = 2, 3, 4, . . . ,

∫ 1

−1
U2

m/2(x)
√

1 − x2 dx =
π

2
. (36)

Proof. We have, under the above conditions,∫ 1

−1
sin(m/2 arccos(x)) sin(n/2 arccos(x))

√
1 − x2 dx = (putting x = cos(2t) )

= 2
∫ π/2

0
sin(mt) sin(nt) dt = 0 ,

(37)

and:

∫ 1

−1
sin2(m/2 arccos(x))

√
1 − x2 dx = 2

∫ π/2

0
sin2(mt) dt =

π

2
.

(38)

5. Conclusions

The complex form of the Bernoulli spiral, by using Euler formulas, allows us to emphasize
connections with Grandi (rhodonea) curves. The rhodonea with the fractional index can be viewed as
an extension of first and second kind Chebyshev polynomials to irrational functions. The properties of
these “pseudo-Chebyshev functions” are borrowed from classical trigonometric identities. In particular,
in the case of half-integer degree, the corresponding functions satisfy the same orthogonality property
of the corresponding Chebyshev polynomials of integer degree.
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Abstract: We develop the existence criteria for solutions of Liouville–Caputo-type generalized
fractional differential equations and inclusions equipped with nonlocal generalized fractional integral
and multipoint boundary conditions. Modern techniques of functional analysis are employed to
derive the main results. Examples illustrating the main results are also presented. It is imperative to
mention that our results correspond to the ones for a symmetric second-order nonlocal multipoint
integral boundary value problem under suitable conditions (see the last section).

Keywords: differential equation; differential inclusion; Liouville–Caputo-type fractional derivative;
fractional integral; existence; fixed point

1. Introduction

Fractional order differential and integral operators extensively appear in the mathematical
modeling of various scientific and engineering phenomena. The main advantage for using these
operators is their nonlocal nature, which can describe the past history of processes and material
involved in the phenomena. Thus, fractional-order models are more realistic and informative than
their corresponding integer-order counterparts. Examples include bio-engineering [1], Chaos and
fractional dynamics [2], ecology [3], financial economics [4], etc. Widespread applications of methods
of fractional calculus in numerous real world phenomena motivated many researchers to develop this
important branch of mathematical analysis—for instance, see the texts [5–8].

Fractional differential equations equipped with a variety of boundary conditions have recently
been studied by several researchers. In particular, overwhelming interest has been shown in the study of
nonlocal nonlinear fractional-order boundary value problems (FBVPs). The concept of nonlocal conditions
dates back to the work of Bitsadze and Samarski [9] and these conditions facilitate describing the physical
phenomena taking place inside the boundary of the given domain. In computational fluid dynamics
(CFD) studies of blood flow problems, it is hard to justify the assumption of a circular cross-section of
a blood vessel due to its changing geometry throughout the vessel. This issue has been addressed by
the introduction of integral boundary conditions. In addition, integral boundary conditions are used in
regularization of ill-posed parabolic backward problems. Moreover, integral boundary conditions play an
important role in mathematical models for bacterial self-regularization [10].

On the other hand, multivalued (inclusions) problems are found to be of special significance in
studying dynamical systems and stochastic processes. Examples include granular systems [11,12],
control problems [13,14], dynamics of wheeled vehicles [15], etc. For more details, see the text [16],

Symmetry 2018, 10, 667; doi:10.3390/sym10120667 www.mdpi.com/journal/symmetry368
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which addresses the pressing issues in stochastic processes, queueing networks, optimization and their
application in finance, control, climate control, etc. In previous work [17], synchronization processes
involving fractional differential inclusions are studied.

The area of investigation for nonlocal nonlinear fractional boundary value problems includes
existence and uniqueness of solutions, stability and oscillatory properties, analytic and numerical
methods. The literature on the topic is now much enriched and covers fractional order differential
equations and inclusions involving Riemann–Liouville, Liouville–Caputo (Caputo), Hadamard type
derivatives, etc. For some recent works on the topic, we refer the reader to a series of papers [18–36]
and the references cited therein.

In this paper, we introduce and study a new class of boundary value problems of
Liouville–Caputo-type generalized fractional differential equations and inclusions (instead of taking
the usual Liouville–Caputo fractional order derivative) supplemented with nonlocal generalized
fractional integral and multipoint boundary conditions. Precisely, we consider the problems:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ
c Dα

0+y(t) = f (t, y(t)), t ∈ J := [0, T],

y(T) =
m

∑
i=1

σi
ρ Iβ

0+y(ηi) + κ, δy(0) =
k

∑
j=1

μjy(ξ j),

0 < η1 < · · · < ηi < · · · < ηm < ξ1 < · · · < ξ j < · · · < ξk < T,

(1)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ
c Dα

0+y(t) ∈ F(t, y(t)), t ∈ J := [0, T],

y(T) =
m

∑
i=1

σi
ρ Iβ

0+y(ηi) + κ, δy(0) =
k

∑
j=1

μjy(ξ j),

0 < η1 < · · · < ηi < · · · < ηm < ξ1 < · · · < ξ j < · · · < ξk < T,

(2)

where ρ
c Dα

0+ is the Liouville–Caputo-type generalized fractional derivative of order 1 < α ≤ 2, ρ Iβ
0+

is the generalized (Katugampola type) fractional integral of order β > 0, ρ > 0, f : J ×R → R is a
continuous function, σi, μj, κ ∈ R, i = 1, 2, . . . , m, j = 1, 2, . . . , k, δ = t1−ρ d

dt , and F : J ×R → P(R) is a
multivalued function (P(R) is the family of all nonempty subsets of R).

The rest of the paper is arranged as follows: Section 2 contains some preliminary concepts related
to our work and a vital lemma associated with the linear variant of the given problem, which is used to
convert the given problems into fixed point problems. In Section 3, the existence and uniqueness results
for problem (1) are obtained by using a Banach contraction mapping principle, Krasnoselskii’s fixed
point theorem and Leray–Schauder nonlinear alternative. Existence results for the inclusions problem
(2) are studied in Section 4 via Leray–Schauder nonlinear alternative, and Covitz and Nadler fixed
point theorem for multi-valued maps. Examples illustrating the obtained results are also included.

2. Preliminaries

Denote by Xp
c (a, b) the space of all complex-valued Lebesgue measurable functions ϕ on (a, b)

equipped with the norm:

‖ϕ‖Xp
c
=
( ∫ b

a
|xc ϕ(x)|p dx

x

)1/p
< ∞ c ∈ R, 1 ≤ p ≤ ∞.

Let L1(a, b) represent the space of all Lebesgue measurable functions ψ on (a, b) endowed with
the norm:

‖ψ‖L1 =
∫ b

a
|ψ(x)|dx < ∞.

We further recall that ACn(J,R) = {x : J → R : x, x′, . . . , x(n−1) ∈ C(J,R) and x(n−1) is absolutely
continuous }. For 0 ≤ ε < 1, we define Cε,ρ(J,R) = { f : J → R : (tρ − aρ)ε f (t) ∈ C(J,R)}
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endowed with the norm ‖ f ‖Cε,ρ = ‖(tρ − aρ)ε f (t)‖C. Moreover, we define the class of functions f

that have absolutely continuous δn−1-derivative, denoted by ACn
δ (J,R), as follows: ACn

δ (J,R) =
{

f :

J → R : δn−1 f ∈ AC(J,R), δ = t1−ρ d
dt

}
, which is equipped with the norm ‖ f ‖Cn

δ
= ∑n−1

k=0 ‖δk f ‖C.

More generally, the space of functions endowed with the norm ‖ f ‖Cn
δ,ε

= ∑n−1
k=0 ‖δk f ‖C + ‖δn f ‖Cε,ρ is

defined by

Cn
δ,ε(J,R) =

{
f : J → R : δn−1 f ∈ C(J,R), δn f ∈ Cε,ρ(J,R), δ = t1−ρ d

dt

}
.

Notice that Cn
δ,0 = Cn

δ .

Definition 1 ([37]). For −∞ < a < t < b < ∞, the left-sided and right-sided generalized fractional integrals
of f ∈ Xp

c (a, b) of order α > 0 and ρ > 0 are respectively defined by

(ρ Iα
a+ f )(t) =

ρ1−α

Γ(α)

∫ t

a

sρ−1

(tρ − sρ)1−α
f (s)ds, (3)

(ρ Iα
b− f )(t) =

ρ1−α

Γ(α)

∫ b

t

sρ−1

(sρ − tρ)1−α
f (s)ds. (4)

Definition 2 ([38]). For 0 ≤ a < x < b < ∞, the generalized fractional derivatives, associated with the
generalized fractional integrals (3) and (4), are respectively defined by

(ρDα
a+ f )(t) =

(
t1−ρ d

dt

)n
(ρ In−α

a+ f )(t)

=
ρα−n+1

Γ(n − α)

(
t1−ρ d

dt

)n ∫ t

a

sρ−1

(tρ − sρ)α−n+1 f (s)ds, (5)

(ρDα
b− f )(t) =

(
− t1−ρ d

dt

)n
(ρ In−α

b− f )(t)

=
ρα−n+1

Γ(n − α)

(
− t1−ρ d

dt

)n ∫ b

t

sρ−1

(sρ − tρ)α−n+1 f (s)ds, (6)

if the integrals exist.

Definition 3 ([39]). The left-sided and right-sided Liouville–Caputo-type generalized fractional derivatives of
f ∈ ACn

δ [a, b] of order α ≥ 0 are respectively defined via the above generalized fractional derivatives as

ρ
c Dα

a+ f (x) = ρDα
a+

[
f (t)−

n−1

∑
k=0

δk f (a)
k!

( tρ − aρ

ρ

)k]
(x), δ = x1−ρ d

dx
, (7)

ρ
c Dα

b− f (x) = ρDα
b−

[
f (t)−

n−1

∑
k=0

(−1)kδk f (b)
k!

( bρ − tρ

ρ

)k]
(x), δ = x1−ρ d

dx
, (8)

where n = [α] + 1.

Lemma 1 ([39]). Let α ≥ 0, n = [α] + 1 and f ∈ ACn
δ [a, b], where 0 < a < b < ∞. Then,

1. if α /∈ N,
ρ
c Dα

a+ f (t) =
1

Γ(n − α)

∫ t

a

( tρ − sρ

ρ

)n−α−1 (δn f )(s)ds
s1−ρ

= ρ In−α
a+ (δn f )(t), (9)

ρ
c Dα

b− f (t) =
1

Γ(n − α)

∫ b

t

( sρ − tρ

ρ

)n−α−1 (−1)n(δn f )(s)ds
s1−ρ

= ρ In−α
b− (δn f )(t). (10)
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2. If α ∈ N,
ρ
c Dα

a+ f = δn f , ρ
c Dα

b− f = (−1)nδn f . (11)

Lemma 2 ([39]). Let f ∈ ACn
δ [a, b] or Cn

δ [a, b] and α ∈ R. Then,

ρ Iα
a+

ρ
c Dα

a+ f (x) = f (x)−
n−1

∑
k=0

(δk f )(a)
k!

( xρ − aρ

ρ

)k
,

ρ Iα
b−

ρ
c Dα

b− f (x) = f (x)−
n−1

∑
k=0

(−1)k(δk f )(a)
k!

( bρ − xρ

ρ

)k
.

In particular, for 0 < α ≤ 1, we have

ρ Iα
a+

ρ
c Dα

a+ f (x) = f (x)− f (a), ρ Iα
b−

ρ
c Dα

b− f (x) = f (x)− f (b).

For computational convenience, we introduce the notations:

A1 = 1 −
k

∑
j=1

μj
ξ

ρ
j

ρ
, A2 =

k

∑
j=1

μj, (12)

B1 =
Tρ

ρ
−

m

∑
i=1

σi
η

ρ(β+1)
i

ρβ+1Γ(β + 2)
, B2 = 1 −

m

∑
i=1

σi
η

ρβ
i

ρβΓ(β + 1)
, (13)

Ω = A1B2 + B1 A2. (14)

The following lemma, related to the linear variant of problem (1), plays a key role in converting
the given problem into a fixed point problem.

Lemma 3. Let h ∈ C(0, T) ∩ L(0, T), y ∈ AC2
δ(J) and Ω 	= 0. Then, the solution of the boundary value

problem (BVP): ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ
c Dα

0+y(t) = h(t), t ∈ J := [0, T],

y(T) =
m

∑
i=1

σi
ρ Iβ

0+y(ηi) + κ, δy(0) =
k

∑
j=1

μjy(ξ j),

0 < η1 < · · · < ηi < · · · < ηm < ξ1 < · · · < ξ j < · · · < ξk < T,

(15)

is given by

y(t) = ρ Iα
0+h(t) + 1

Ω

{
− B1

k
∑

j=1
μj

ρ Iα
0+h(ξ j) + A1

[ m
∑

i=1
σi

ρ Iα+β
0+ h(ηi)− ρ Iα

0+h(T) + κ
]}

+ tρ

ρΩ

{
B2

k
∑

j=1
μj

ρ Iα
0+h(ξ j) + A2

[ m
∑

i=1
σi

ρ Iα+β
0+ h(ηi)− ρ Iα

0+h(T) + κ
]}

.
(16)

Proof. Applying ρ Iα
0+ on the fractional differential equation in (15) and using Lemma 2, the solution of

fractional differential equation in (15) for t ∈ J is

y(t) = ρ Iα
0+h(t) + c1 + c2

tρ

ρ
=

ρ1−α

Γ(α)

∫ t

0
sρ−1(tρ − sρ)α−1h(s)ds + c1 + c2

tρ

ρ
, (17)

for some c1, c2 ∈ R. Taking δ − derivative of (17), we get

δy(t) = ρ Iα−1
0+ h(t) + c2 =

ρ2−α

Γ(α − 1)

∫ t

0
sρ−1(tρ − sρ)α−2h(s)ds + c2. (18)
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Using the boundary condition δy(0) = ∑k
j=1 μjy(ξ j) in (18), we get

c2 =
k

∑
j=1

μj
ρ Iα

0+h(ξ j) + c1

k

∑
j=1

μj + c2

k

∑
j=1

μj
ξ

ρ
j

ρ
,

which, on account of (12), takes the form:

A1c2 − A2c1 =
k

∑
j=1

μj
ρ Iα

0+h(ξ j). (19)

Applying the generalized integral operator ρ Iβ
0+ on (17), we get

ρ Iβ
0+y(t) = ρ Iα+β

0+ h(t) + c1
tρβ

ρβΓ(β + 1)
+ c2

tρ(β+1)

ρβ+1Γ(β + 2)
, (20)

which, together with the boundary condition y(T) = ∑m
i=1 σi

ρ Iβ
0+y(ηi) + κ, yields

ρ Iα
0+h(T) + c1 + c2

Tρ

ρ
=

m

∑
i=1

σi
ρ Iα+β

0+ h(ηi) +
m

∑
i=1

σic1
η

ρβ
i

ρβΓ(β + 1)

+
m

∑
i=1

σic2
η

ρ(β+1)
i

ρβ+1Γ(β + 2)
+ κ. (21)

Using the notations (13) in (21), we obtain

B1c2 + B2c1 =
m

∑
i=1

σi
ρ Iα+β

0+ h(ηi)− ρ Iα
0+h(T) + κ. (22)

Solving the system of Equations (19) and (22) for c1 and c2, we find that

c1 =
1
Ω

{
− B1

k

∑
j=1

μj
ρ Iα

0+h(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ h(ηi)− ρ Iα
0+h(T) + κ

]}
. (23)

and

c2 =
1
Ω

{
B2

k

∑
j=1

μj
ρ Iα

0+h(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ h(ηi)− ρ Iαh(T) + κ
]}

. (24)

Substituting the values of c1 and c2 in (17), we get Equation (16). The converse follows by direct
computation. The proof is completed.

3. Main Results for the Problem (1)

By Lemma 3, we define an operator G : C → C (C = C(J,R)) associated with problem (1) as

Gy(t) = ρ Iα
0+ f (t, y(t)) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iα

0+ f (ξ j, y(ξ j)) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ f (ηi, y(ηi))

−ρ Iα
0+ f (T, y(T)) + κ

]}
+

tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iα

0+ f (ξ j, y(ξ j))

+A2

[ m

∑
i=1

σi
ρ Iα+β

0+ f (ηi, y(ηi))− ρ Iα
0+ f (T, y(t)) + κ

]}
. (25)
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In the following, for brevity, we use the notations:

Λ =
Tρα

ραΓ(α + 1)
+

1
|Ω|

{
|B1|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A1|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]}

+
Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A2|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]}
. (26)

In the first result, we establish the existence of solutions for problem (1) via Leray–Schauder
nonlinear alternative [40].

Theorem 1. Suppose that the following conditions hold:

(H1) For a function φ ∈ L1([0, T],R+), and a nondecreasing function ψ : R+ → R
+ such that | f (t, y)| ≤

φ(t)ψ(‖y‖), ∀(t, y) ∈ [0, T]×R;
(H2) there exists a positive constant M such that

M

ψ(M)Λ1 +
|κ|(ρ|A1|+ Tρ|A2|)

ρ|Ω|

> 1,

where

Λ1 = ρ Iα
0+φ(T) +

1
|Ω|

{
|B1|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j) + |A1|

[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi) +

ρ Iα
0+φ(T)

]}

+
Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j) + |A2|

[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi) +

ρ Iα
0+φ(T)

]}
. (27)

Then, there exists at least one solution for problem (1) on [0, T].

Proof. Firstly, we show that the operator G : C → C defined by (25) is continuous and completely
continuous.

Step 1: G is continuous.

Let {yn} be a sequence such that yn → y in C. Then,

|G(yn)(t)− G(y)(t)| ≤ ρ Iα
0+ | f (t, yn(t))− f (t, y(t))|+ 1

|Ω|

{
|B1|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, yn(ξ j))− f (ξ j, y(ξ j))|

+|A1|
[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, yn(ηi))− f (ηi, y(ηi))|+ ρ Iα

0+ | f (T, yn(T))− f (T, y(T))|
]}

+
tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, yn(ξ j))− f (ξ j, y(ξ j))|

+|A2|
[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, yn(ηi))− f (ηi, y(η))|+ ρ Iα

0+ | f (T, yn(T))− f (T, y(T))|
]}

≤ Λ‖ f (·, yn)− f (·, y)‖.

In view of continuity of f , it follows from the above inequality that

‖G(yn)− G(y)‖ ≤ Λ‖ f (·, yn)− f (·, y)‖ → 0, as n → ∞.

Step 2: G maps bounded sets into bounded sets in C.
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For a positive number r, it will be shown that there exists a positive constant � such that ‖G(y)‖ ≤ �
for any y ∈ Br = {y ∈ C : ‖y‖ ≤ r}. By (H1), for each t ∈ J, we have

|G(y)(t)| ≤ ρ Iα
0+ | f (t, y(t))|+ 1

|Ω|
{
|B1|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, y(ξ j))|+ |A1|

[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, y(ηi))|

+ρ Iα
0+ | f (T, y(T))|+ |κ|

]}
+

tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, y(ξ j))|

+|A2|
[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, y(ηi))|+ ρ Iα

0+ | f (T, y(T))|+ |κ|
]}

≤ ρ Iα
0+φ(T)ψ(‖y‖) + 1

|Ω|

{
|B1|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j)ψ(‖y‖) + |A1|

[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi)ψ(‖y‖)

+ρ Iα
0+φ(T)ψ(‖y‖) + |κ|

]}
+

Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j)ψ(‖y‖)

+|A2|
[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi)ψ(‖y‖) + ρ Iα

0+φ(T)ψ(‖y‖) + |κ|
]}

≤ ψ(‖y‖)
(

ρ Iα
0+φ(T) +

1
|Ω|

{
|B1|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j) + |A1|

[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi)

+ρ Iα
0+φ(T)

]}
+

Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j) + |A2|

[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi) +

ρ Iα
0+φ(T)

]})
+

|κ|(ρ|A1|+ Tρ|A2|)
ρ|Ω| .

≤ ψ(‖r‖)
(

ρ Iα
0+φ(T) +

1
|Ω|

{
|B1|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j) + |A1|

[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi)

+ρ Iα
0+φ(T)

]}
+

Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j) + |A2|

[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi) +

ρ Iα
0+φ(T)

]})
+

|κ|(ρ|A1|+ Tρ|A2|)
ρ|Ω| := �.

Step 3: G maps bounded sets into equicontinuous sets of C.

Let Br be a bounded set of C as in Step 2, Then, for t1, t2 ∈ (0, T] with t1 < t2, and y ∈ Br, we have

|G(y)(t2)− G(y)(t1)|

≤
∣∣∣ρ Iα

0+ f (t2, y(t2))− ρ Iα
0+ f (t1, y(t1))

∣∣∣+ |tρ
2 − tρ

1 |
ρ|Ω|

{
|B2|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, y(ξ j))|

+|A2|
[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, y(ηi))|+ ρ Iα

0+ | f (T, y(T))|+ |κ|
]}

≤ ρ1−αψ(r)
Γ(α)

∣∣∣ ∫ t1

0

[ sρ−1

(tρ
2 − sρ)1−α

− sρ−1

(tρ
1 − sρ)1−α

]
φ(s)ds +

∫ t2

t1

sρ−1

(tρ
2 − sρ)1−α

φ(s)ds

∣∣∣∣∣
+

|tρ
2 − tρ

1 |
ρ|Ω|

{
ψ(r)

(
|B2|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j) + |A2|

[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi) +

ρ Iα
0+φ(T)

])
+ |A2||κ|

}
→ 0 as t2 → t1,

independently of y ∈ Br. In view of steps 1–3, it follows by the Arzelá–Ascoli theorem that the
operator G : C −→ C is completely continuous.

Step 4: We show that there exists an open set V ⊆ C with y 	= λG(y) for λ ∈ (0, 1) and y ∈ ∂V.
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Let y ∈ C be a solution of y = λGy for λ ∈ [0, 1]. Then, for t ∈ [0, T], we have

|y(t)| = |λ(Gy)(t)|

≤ ρ Iα
0+ | f (t, y(t))|+ 1

|Ω|
{
|B1|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, y(ξ j))|+ |A1|

[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, y(ηi))|

+ρ Iα
0+ | f (T, y(T))|+ |κ|

]}
+

tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, y(ξ j))|

+|A2|
[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, y(ηi))|+ ρ Iα

0+ | f (T, y(T))|+ |κ|
]}

≤ ψ(‖y‖)
(

ρ Iα
0+ |φ(T) + 1

|Ω|
{
|B1|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j) + |A1|

[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi)

+ρ Iα
0+φ(T)

]}
+

Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+φ(ξ j) + |A2|

[ m

∑
i=1

|σi| ρ Iα+β
0+ φ(ηi) +

ρ Iα
0+φ(T)

]})
+

|κ|(ρ|A1|+ Tρ|A2|)
ρ|Ω| ,

which, on taking the norm for t ∈ J, implies that

‖y‖

ψ(‖y‖)Λ1 +
|κ|(ρ|A1|+ Tρ|A2|)

ρ|Ω|

≤ 1.

By the assumption (H2), we can find a positive number M such that ‖y‖ 	= M. Introduce
V = {y ∈ C : ‖y‖ < M} and observe that the operator G : V → C is continuous and completely
continuous. By the definition of V, there does not exist any y ∈ ∂V satisfying y = λG(y) for some
λ ∈ (0, 1). Hence, we deduce by the nonlinear alternative of Leray–Schauder type [40] that G has a
fixed point y ∈ V that is indeed a solution of the problem (1). This completes the proof.

In the next result, we prove the existence of solutions for problem (1) by applying Krasnoselskii’s
fixed point theorem [41].

Theorem 2. Let f : [0, T]×R → R be a continuous function such that the following assumptions hold:

(H3) | f (t, x)− f (t, y)| ≤ L‖x − y‖, ∀t ∈ [0, T], L > 0, x, y ∈ R;
(H4) | f (t, y)| ≤ Φ(t), ∀(t, y) ∈ [0, T]×R, and Φ ∈ C([0, T],R+).

Then, problem (1) has at least one solution on [0, T], provided that

L

(
Tρ

ρ|Ω|

{
|B2|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A2|

[
m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]})
< 1. (28)

Proof. Let us fix r̄ ≥ ‖Φ‖Λ + |κ|(ρ|A1|+Tρ |A2|)
ρ|Ω| , where ‖Φ‖ = supt∈J |Φ(t)| and consider Br̄ = {y ∈ C :

‖y‖ ≤ r̄}. Let us split the operator G : C → C defined by (25) on Br̄ as G = A+ B, where A and B are
given by

A(t) = ρ Iα
0+ f (t, y(t)) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iα

0+ f (ξ j, y(ξ j)) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ f (ηi, y(ηi))− ρ Iα
0+ f (T, y(T)) + κ

]}
,

and

B(t) = tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iα

0+ f (ξ j, y(ξ j)) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ f (ηi, y(ηj))− ρ Iα
0+ f (T, y(t)) + κ

]}
.
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For x, y ∈ Br̄, we find that

‖Ax + By‖ ≤ sup
t∈J

{
ρ Iα

0+ | f (t, x(t))|+ 1
Ω

{
|B1|

k

∑
j=1

|μj|ρ Iα
0+ f (ξ j, x(ξ j)) + A1

[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, x(ηi))|

+ρ Iα
0+ | f (T, x(T))|+ |κ|

]}
+

tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, y(ξ j))|

+|A2|
[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, y(ηj))|+ ρ Iα

0+ | f (T, y(T))|+ |κ|
]}

≤ ‖Φ‖
{

Tρα

ραΓ(α + 1)
+

1
|Ω|

{
|B1|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)

+|A1|
[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]}
+

Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)

+|A2|
[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]}}
+

|κ|(ρ|A1|+ Tρ|A2|)
ρ|Ω|

≤ ‖Φ‖Λ +
|κ|(ρ|A1|+ Tρ|A2|)

ρ|Ω| < r̄.

Thus, Ax + By ∈ Br̄. Now, for x, y ∈ Br̄ and for each t ∈ J, we obtain

‖Bx − By‖ ≤ sup
t∈J

{ tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, x(ξ j))− f (ξ j, y(ξ j))|

+|A2|
[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, x(ηi))− f (ηi, y(ηi))|+ ρ Iα

0+ | f (T, x(T))− f (T, y(T))|
]}}

≤ L
( Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A2|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]})
‖x − y‖,

which, together with condition (28), implies that B is a contraction. Continuity of f implies that the
operator A is continuous. In addition, A is uniformly bounded on Br̄ as

‖Ay‖ ≤ ‖Φ‖
( Tρα

ραΓ(α + 1)
+

1
|Ω|

{
|B1|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A1|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)

+
Tρα

ραΓ(α + 1)

]})
+

|A1||κ|
|Ω| .

In order to show the compactness of the operator A, let sup(t,y)∈J×Br̄
| f (t, y)| = f̄ < ∞.

Consequently, for t1, t2 ∈ J, t1 < t2, we have

‖(Ay)(t2)− (Ay)(t1)‖ ≤ ‖ ρ1−α

Γ(α)

[ ∫ t1

0
sρ−1[(tρ

2 − sρ)α−1 − (tρ
1 − sρ)α−1] f (s, y(s))ds

+
∫ t2

t1

sρ−1(tρ
2 − sρ)α−1 f (s, y(s))ds

]
‖

≤ f̄
ραΓ(α + 1)

{
2(tρ

2 − tρ
1)

α + |tρα
2 − tρα

1 |
}

.

As the right-hand side of the above inequality tends to zero independently of y ∈ Br̄ when
t2 → t1, therefore A is equicontinuous. Thus, A is relatively compact on Br̄. Hence, the conclusion of
Arzelá-Ascoli theorem applies and that A is compact on Br̄. Since all the conditions of Krasnoselskii’s
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fixed point theorem hold true, it follows by Krasnoselskii’s fixed point theorem that problem (1) has at
least one solution on J.

Our final result in this section is concerned with the uniqueness of solutions for problem (1) and
is based on a Banach fixed point theorem.

Theorem 3. Assume that f : [0, T]×R → R is continuous and the condition (H3) holds. Then, problem (1)
has a unique solution on J if

LΛ < 1, (29)

where Λ is defined by (26).

Proof. In view of the condition (29), consider a set Br̃ = {y ∈ C : ‖y‖ ≤ r̃}, where

r̃ >
f0Λ + |κ|(ρ|A1|+Tρ |A2|)

ρ|Ω|
1 − LΛ

, sup
t∈[0,T]

| f (t, 0)| = f0

and show that GBr̃ ⊂ Br̃ (G is defined by (25)). For y ∈ Br̃, using (H3), we get

|G(y)(t)|

≤ ρ Iα
0+ [| f (t, y(t))− f (t, 0)|+ | f (t, 0)|] + 1

|Ω|
{
|B1|

k

∑
j=1

|μj|ρ Iα
0+ [| f (ξ j, y(ξ j))− f (ξ j, 0)|+ | f (ξ j, 0)|]

+A1

[ m

∑
i=1

|σi| ρ Iα+β
0+ [| f (ηi, y(ηi))− f (ηi, 0)|+ | f (ηi, 0)|] + ρ Iα

0+ [| f (T, y(T))− f (T, 0)|+ | f (T, 0)|
]

+|κ|
}
+

tρ

ρ|Ω|
{
|B2|

k

∑
j=1

μj
ρ Iα

0+ [| f (ξ j, y(ξ j))− f (ξ j, 0)|+ | f (ξ j, 0)|]

+|A2|
[ m

∑
i=1

σi
ρ Iα+β

0+ [| f (ηi, y(ηi))− f (ηi, 0)|+ | f (ηi, 0)|] + ρ Iα
0+ [| f (T, y(T))− f (T, 0)|+ | f (T, 0)|]

+|κ|
]}

≤ (L‖y‖+ f0)

[
Tρα

ραΓ(α + 1)
+

1
|Ω|

{
|B1|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A1|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)

+
Tρα

ραΓ(α + 1)

]}
+

Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A2|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)

+
Tρα

ραΓ(α + 1)

]}]
+

|κ|(ρ|A1|+ Tρ|A2|)
ρ|Ω|

≤ (Lr̃ + f0)Λ +
|κ|(ρ|A1|+ Tρ|A2|)

ρ|Ω| ≤ r̃,

which, on taking the norm for t ∈ J, yields ‖G(y)‖ ≤ r̃. This shows that G maps Br̃ into itself. Now,
we establish that the operator G is a contraction. For that, let y, z ∈ C. Then, we get

|G(y)(t)− G(z)(t)| ≤ ρ Iα
0+ | f (t, y(t))− f (t, z(t))|+ 1

|Ω|
{
|B1|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, y(ξ j))− f (ξ j, z(ξ j))|

+A1

[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, y(ηi))− f (ηi, z(ηi))|+ ρ Iα

0+ | f (T, y(T))− f (T, z(T))|
]}

+
tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+ | f (ξ j, y(ξ j))− f (ξ j, z(ξ j))|

+|A2|
[ m

∑
i=1

|σi| ρ Iα+β
0+ | f (ηi, y(ηi))− f (ηi, z(ηi))|+ ρ Iα

0+ | f (T, y(T))− f (T, z(T))|
]}
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≤ LΛ‖y − z‖.

Consequently, we obtain
‖G(y)− G(z)‖ ≤ LΛ‖y − z‖,

which implies that G is a contraction by the condition (29). Hence, G has a unique fixed point by a
Banach fixed point theorem. Equivalently, we deduce that problem (1) has a unique solution on J. The
proof is completed.

Example 1. Consider the following boundary value problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/3

cD7/5
0+ y(t) = f (t, y(t)), t ∈ [0, 2],

y(2) = 1/2 1/3 I3/5y(1/4) + 2/3 1/3 I3/5y(3/4) + 2/9,

δy(0) = 2/5 y(1) + 4/5 y(3/2),

(30)

where ρ = 1/3, α = 7/5, σ1 = 1/2, σ2 = 2/3, β = 3/5, η1 = 1/4, η2 = 3/4, μ1 = 2/5, μ2 = 4/5, κ =

2/9, ξ1 = 1, ξ2 = 3/2, T = 2 and f (t, y(t)) will be fixed later.

Using the given data, we find that |A1| = 2.947314182, |A2| = 1.2, |B1| = 0.491608875, |B2| =
1.181571585, |Ω| = 4.072393340, and Λ = 27.12293267 (Ai, Bi (i = 1, 2), Ω and Λ are respectively given
by Equations (12), (13), (14) and (26)).

For illustrating Theorem 1, we take

f (t, y) =
(1 + t)

60

( |y|
|y|+ 1

+ y +
1
8

)
. (31)

Clearly, f (t, x) is continuous and satisfies the condition (H1) with φ(t) = (1+t)
60 , ψ(‖y‖) = ||y||+ 9

8 .
By the condition (H2), we find that M > 2.390158. Thus, all conditions of Theorem 1 are satisfied and,
consequently, there exists at least one solution for problem (30) with f (t, y(t)) given by (31) on [0, 2].

In order to illustrate Theorem 2, we choose

f (t, y) =
tan−1 y + e−t

4
√

81 + sin t
. (32)

It is easy to check that f (t, x) is continuous and satisfies the conditions (H3) and (H4) with
L = 1/36 and Φ(t) = π+2e−t

8
√

81+sin t
. In addition,

L
( Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A2|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]})
≈ 0.420512 < 1.

Thus, all of the conditions of Theorem 2 hold true. Thus, by the conclusion of Theorem 2,
problem (30) has at least one solution on [0, 2].

With LΛ ≈ 0.753415 < 1, one can note that the assumptions of Theorem 3 are also satisfied.
Hence, the conclusion of Theorem 3 applies and the problem (30) with f (t, y) given (32) has a unique
solution on [0, 2].

4. Existence Results for the Problem (2)

This section is devoted to the existence of solutions for problem (2).
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Definition 4. A function y ∈ C([0, T],R) possessing Liouville–Caputo-type generalized deravative of order α

is said to be a solution of the boundary value problem (2) if y(T) = ∑m
i=1 σi

ρ Iβ
0+y(ηi) +κ, δy(0) = ∑k

j=1 μjy(ξ j)

and there exists function v ∈ L1([0, 1],R) such that v(t) ∈ F(t, y(t)) a.e. on [0, T] and

y(t) = ρ Iα
0+v(t) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iα

0+v(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}
+

tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iα

0+v(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}
. (33)

4.1. The Carathéodory Case

Here, we present an existence result for problem (2) when F has convex values and is of the
Carathéodory type. The main tool of our study is a nonlinear alternative of Leray–Schauder type [40].

Theorem 4. Assume that:

(C1) F : [0, T] × R → Pcp,c(R) is L1-Carathéodory, where Pcp,c(R) = {Y ∈ P(R) :
Y is compact and convex};

(C2) there exists a continuous nondecreasing function Ψ : [0, ∞) → (0, ∞) and a function Φ ∈ L1([0, T],R+)

such that

‖F(t, y)‖P := sup{|x| : x ∈ F(t, y)} ≤ Φ(t)Ψ(‖y‖) for each (t, y) ∈ [0, T]×R;

(C3) there exists a constant W > 0 such that

‖W‖

Ψ(‖W‖)Λ2 +
|κ|(ρ|A1|+ Tρ|A2|)

ρ|Ω|

> 1,

where

Λ2 = ρ Iα
0+Φ(T) +

1
|Ω|

{
|B1|

k

∑
j=1

|μj|ρ Iα
0+Φ(ξ j) + |A1|

[ m

∑
i=1

|σi| ρ Iα+β
0+ Φ(ηi) +

ρ Iα
0+Φ(T)

]}

+
Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+Φ(ξ j) + |A2|

[ m

∑
i=1

|σi| ρ Iα+β
0+ Φ(ηi) +

ρ Iα
0+Φ(T)

]}
. (34)

Then, problem (2) has at least one solution on [0, T].

Proof. In order to convert problem (2) into a fixed point problem, we introduce an operator N : C −→
P(C) by

N (y) = {h ∈ C : h(t) = F (y)(t)}, (35)

where

F (y)(t) = ρ Iα
0+v(t) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iα

0+v(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}
+ tρ

ρΩ

{
B2 ∑k

j=1 μj
ρ Iα

0+v(ξ j) + A2

[
∑m

i=1 σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}
,

for v ∈ SF,y. Obviously, the fixed points of the operator N correspond to solutions of the problem (2).
It will be shown in several steps that the operator N satisfies the assumptions of the

Leray–Schauder nonlinear alternative [40].

Step 1. N (y) is convex for each y ∈ C.

This step is obvious since SF,y is convex (F has convex values).
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Step 2. N maps bounded sets (balls) into bounded sets in C.

For a positive number R, let BR = {y ∈ C : ‖y‖ ≤ R} be a bounded ball in C. Then, for each
h ∈ N (y), y ∈ BR, there exists v ∈ SF,y such that

h(t) = ρ Iα
0+v(t) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iα

0+v(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}
+ tρ

ρΩ

{
B2 ∑k

j=1 μj
ρ Iα

0+v(ξ j) + A2

[
∑m

i=1 σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}
.

Then, for t ∈ [0, T], we have

|h(t)| ≤ ρ Iα
0+ |v(t)|+ 1

|Ω|
{
|B1|

k

∑
j=1

μj
ρ Iα

0+ |v(ξ j)|+ |A1|
[ m

∑
i=1

σi
ρ Iα+β

0+ |v(ηi)|+ ρ Iα
0+ |v(T)|+ |κ|

]}

+
tρ

ρ|Ω|
{
|B2|

k

∑
j=1

μj
ρ Iα|v(ξ j)|+ |A2|

[ m

∑
i=1

σi
ρ Iα+β

0+ |v(ηi)|+ ρ Iα
0+ |v(T)|+ |κ|

]}

≤ Ψ(‖y‖)
(

ρ Iα
0+Φ(T) +

1
|Ω|

{
|B1|

k

∑
j=1

μj
ρ Iα

0+Φ(ξ j) + |A1|
[ m

∑
i=1

σi
ρ Iα+β

0+ |Φ(ηi)|+ ρ Iα
0+Φ(T)

]}

+
Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

μj
ρ IαΦ(ξ j) + |A2|

[ m

∑
i=1

σi
ρ Iα+β

0+ Φ(ηi) +
ρ Iα

0+Φ(T)
]})

+
|κ|(ρ|A1|+ Tρ|A2|)

ρ|Ω| .

Thus,

‖h‖ ≤ Ψ(R)
(

ρ Iα
0+Φ(T) +

1
|Ω|

{
|B1|

k

∑
j=1

|μj|ρ Iα
0+Φ(ξ j) + |A1|

[ m

∑
i=1

|σi| ρ Iα+β
0+ Φ(ηi) +

ρ Iα
0+Φ(T)

]}

+
Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+Φ(ξ j)|+ |A2|

[ m

∑
i=1

|σi| ρ Iα+β
0+ Φ(ηi) +

ρ Iα
0+Φ(T)

]})
+

|κ|(ρ|A1|+ Tρ|A2|)
ρ|Ω| := �̃.

Step 3. N maps bounded sets into equicontinuous sets of C.

Let t1, t2 ∈ (0, T], t1 < t2, and let y ∈ BR. Then,

|h(t2)− h(t1)|

≤
∣∣∣ρ Iα

0+v(t2)− ρ Iα
0+v(t1)

∣∣∣+ |tρ
2 − tρ

1 |
ρ|Ω|

{
|B2|

k

∑
j=1

|μj|ρ Iα
0+ |v(ξ j|

+|A2|
[ m

∑
i=1

|σi| ρ Iα+β
0+ |v(ηi)|+ ρ Iα

0+ |v(T)|+ |κ|
]}

≤ ρ1−αΨ(R)
Γ(α)

∣∣∣ ∫ t1

0

[ sρ−1

(tρ
2 − sρ)1−α

− sρ−1

(tρ
1 − sρ)1−α

]
Φ(s)ds +

∫ t2

t1

sρ−1

(tρ
2 − sρ)1−α

Φ(s)ds

∣∣∣∣∣
+

|tρ
2 − tρ

1 |
ρ|Ω|

{
Ψ(R)

(
|B2|

k

∑
j=1

|μj|ρ Iα
0+Φ(ξ j) + |A2|

[ m

∑
i=1

|σi| ρ Iα+β
0+ Φ(ηi) +

ρ Iα
0+Φ(T)

])
+ |A2||κ|

}
→ 0 as t2 − t1 → 0,

independently of y ∈ BR. In view of the foregoing steps, the Arzelá–Ascoli theorem applies and that
the operator N : C → P(C) is completely continuous.

In our next step, we show that N is u.s.c. We just need to establish that N has a closed graph as it
is already shown to be completely continuous [42] (Proposition 1.2).
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Step 4. N has a closed graph.

Let yn → y∗, hn ∈ N (yn) and hn → h∗. Then, we have to show that h∗ ∈ N (y∗). Associated with
hn ∈ N (yn), we have that vn ∈ SF,yn such that for each t ∈ [0, T],

hn(t) = ρ Iαvn(t) +
1
Ω

{
− B1

k

∑
j=1

μj
ρ Iαvn(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ vn(ηi)− ρ Iαvn(T) + κ
]}

+
tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iα

0+vn(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ vn(ηi)− ρ Iα
0+vn(T) + κ

]}
.

Thus, it is sufficient to establish that there exists v∗ ∈ SF,y∗ such that for each t ∈ [0, T],

h∗(t) = ρ Iα
0+v∗(t) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iαv∗(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ v∗(ηi)− ρ Iαv∗(T) + κ
]}

+
tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iα

0+v∗(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ v∗(ηi)− ρ Iα
0+v∗(T) + κ

]}
.

Next, we introduce the linear operator Θ : L1([0, T],R) → C as

v (→ Θv(t) = ρ Iα
0+v(t) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iαv(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}

+
tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iαv(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}
.

Observe that ‖hn(t)− h∗(t)‖ → 0 as n → ∞. Therefore, by a closed graph result obtained in [43],
Θ ◦ SF is a closed graph operator. Moreover, we have that hn(t) ∈ Θ(SF,yn). As yn → y∗, we have that

h∗(t) = ρ Iα
0+v∗(t) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iαv∗(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ v∗(ηi)− ρ Iα
0+v∗(T) + κ

]}

+
tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iαv∗(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ v∗(ηi)− ρ Iα
0+v∗(T) + κ

]}
for some v∗ ∈ SF,y∗ .

Step 5. There exists an open set U ⊆ C([0, T],R) with y /∈ λN (y) for any λ ∈ (0, 1) and all
y ∈ ∂U .

Let λ ∈ (0, 1) and y ∈ λN (y). Then, we can find v ∈ L1([0, T],R) and v ∈ SF,y such that, for
t ∈ [0, T], we have

y(t) = λρ Iα
0+v(t) +

λ

Ω

{
− B1

k

∑
j=1

μj
ρ Iα

0+v(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}

+λ
tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iα

0+v(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}
.

As in Step 2, one can find that

|y(t)| ≤ ρ Iα
0+ |v(t)|+ 1

|Ω|
{
|B1|

k

∑
j=1

|μj|ρ Iα
0+ |v(ξ j)|+ |A1|

[ m

∑
i=1

σi
ρ Iα+β

0+ |v(ηi)|+ ρ Iα
0+ |v(T)|+ |κ|

]}

+
tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ Iα
0+ |v(ξ j)|+ |A2|

[ m

∑
i=1

|σi| ρ Iα+β
0+ |v(ηi)|+ ρ Iα

0+ |v(T)|+ |κ|
]}
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≤ Ψ(y)
(

ρ IαΦ(T) +
1

|Ω|
{
|B1|

k

∑
j=1

|μj|ρ IαΦ(ξ j) + |A1|
[ m

∑
i=1

|σi| ρ Iα+β
0+ |Φ(ηi)|+ ρ Iα|Φ(T)|

]}

+
Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|ρ IαΦ(ξ j) + |A2|
[ m

∑
i=1

|σi| ρ Iα+β
0+ Φ(ηi) +

ρ IαΦ(T)
]})

+
|κ|(ρ|A1|+ Tρ|A2|)

ρ|Ω| ,

which implies that
‖y‖

Ψ(‖y‖)Λ2 +
|κ|(ρ|A1|+ Tρ|A2|)

ρ|Ω|

≤ 1.

By the assumption (C3), there exists W such that ‖y‖ 	= W. Let us set

U = {y ∈ C(J,R) : ‖y‖ < W}.

Observe that the operator N : U → P(C(J,R)) is a compact multi-valued map, u.s.c. with convex
closed values. From the choice of U , there does not exist y ∈ ∂U satisfying y ∈ λN (y) for some
λ ∈ (0, 1). In consequence, we deduce by the nonlinear alternative of Leray–Schauder type [40] that
the operator N has a fixed point y ∈ U that is a solution of problem (2). This completes the proof.

4.2. The Lipschitz Case

Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖). Define Hd : P(X) ×
P(X) → R∪ {∞} as Hd(P, Q) = max{supp∈P d(p, Q), supq∈Q d(P, q)}, where d(P, q) = infp∈P d(p; q)
and d(p, Q) = infq∈Q d(p; q). Then, (Pcl,b(X), Hd) is a metric space [16]. (Here, Pcl,b(X) = {Y ∈
P(X) : Y is closed and bounded}).

In the following result, we apply a fixed point theorem (If N : X → Pcl(X) is a contraction, then
FixN 	= ∅, where Pcl(X) = {Y ∈ P(X) : Y is closed}) due to Covitz and Nadler [44].

Theorem 5. Let the following conditions hold:

(C4) F : [0, T]×R → Pcp(R) is such that F(·, y) : [0, T] → Pcp(R) is measurable for each y ∈ R, where
Pcp(R) = {Y ∈ P(R) : Y is compact};

(C5) Hd(F(t, y), F(t, ȳ)) ≤ θ(t)|y − ȳ| for almost all t ∈ [0, T] and y, ȳ ∈ R with θ ∈ C([0, T],R+) and
d(0, F(t, 0)) ≤ θ(t) for almost all t ∈ [0, T], where

Then, problem (2) has at least one solution on [0, T] if ‖θ‖Λ < 1, i.e.,

K := ‖θ‖
[ Tρα

ραΓ(α + 1)
+

1
|Ω|

{
|B1|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)

+|A1|
[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]}
(36)

+
Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A2|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]}]
< 1.

Proof. By the assumption (C4), it is clear that the set SF,y is nonempty for each y ∈ C and thus there
exists a measurable selection for F (see Theorem III.6 [45]). Firstly, it will be shown that N (y) ∈ Pcl(C)
for each y ∈ C, where the operator N is defined by (35). Let {un}n≥0 ∈ F (y) be such that un →
u (n → ∞) in C. Then, u ∈ C and we can find vn ∈ SF,yn such that, for each t ∈ [0, T],

un(t) = ρ Iα
0+vn(t) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iαvn(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

η0 vn(ηi)− ρ Iαvn(T) + κ
]}
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+
tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iα

0+vn(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ vn(ηi)− ρ Iα
0+vn(T) + κ

]}
.

Since F has compact values, we pass onto a subsequence (if necessary) such that vn converges to
v in L1([0, T],R), which implies that v ∈ SF,y and for each t ∈ [0, T], we have

un(t) → u(t) = ρ Iα
0+v(t) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iα

0+vn(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}

+
tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iα

0+v(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ v(ηi)− ρ Iα
0+v(T) + κ

]}
.

Thus, u ∈ N (y).
Next, it will be shown that there exists K < 1 (defined by (36)) such that

Hd(N (y), N (ȳ)) ≤ K‖y − ȳ‖ for each y, ȳ ∈ C.

Let y, ȳ ∈ C and h1 ∈ F (y). Then, there exists v1(t) ∈ F(t, y(t)) for each t ∈ [0, T] and that

h1(t) = ρ Iα
0+v1(t) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iα

0+v1(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ v1(ηi)− ρ Iα
0+v1(T) + κ

]}

+
tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iα

0+v1(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ v1(ηi)− ρ Iα
0+v1(T) + κ

]}
.

By (C5), Hd(F(t, y), F(t, ȳ)) ≤ θ(t)|y(t)− ȳ(t)| and that there exists w ∈ F(t, ȳ(t)) satisfying the
inequality: |v1(t)− w| ≤ θ(t)|y(t)− ȳ(t)|, t ∈ [0, T].

Next, we introduce S : [0, T] → P(R) as

S(t) = {w ∈ R : |v1(t)− w| ≤ θ(t)|y(t)− ȳ(t)|}.

By Proposition III.4 [45], the multivalued operator S(t) ∩ F(t, ȳ(t)) is measurable. Thus, there
exists a function v2(t), which is a measurable selection for S and that v2(t) ∈ F(t, ȳ(t)). Thus, for each
t ∈ [0, T], we have |v1(t)− v2(t)| ≤ θ(t)|y(t)− ȳ(t)|.

Next, we define

h2(t) = ρ Iα
0+v2(t) +

1
Ω

{
− B1

k

∑
j=1

μj
ρ Iα

0+v2(ξ j) + A1

[ m

∑
i=1

σi
ρ Iα+β

0+ vn(ηi)− ρ Iα
0+v2(T) + κ

]}

+
tρ

ρΩ

{
B2

k

∑
j=1

μj
ρ Iα

0+v2(ξ j) + A2

[ m

∑
i=1

σi
ρ Iα+β

0+ v2(ηi)− ρ Iα
0+v2(T) + κ

]}
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for each t ∈ [0, T]. Then,

|h1(t)− h2(t)|

≤ ρ Iα
0+ |v1(t)− v2(t)|+

1
|Ω|

{
|B1|

k

∑
j=1

|μj|ρ Iα
0+ |v1(ξ j)− v2(ξ j)|+ |A1|

[ m

∑
i=1

|σi| ρ Iα+β
0+ |v1(ηi)− v2(ηi)|

+ρ Iα
0+ |v1(T)− v2(T)|

]}
+

tρ

ρ|Ω|
{
|B2|

k

∑
j=1

μj
ρ Iα

0+ |v2(ξ j)− v1(ξ j)|+ |A2|
[ m

∑
i=1

σi
ρ Iα+β

0+ |v2(ηi)− v1(ηi)|

+ρ Iα
0+ |v2(T)− v1(T)|

]}
≤ ‖θ‖

[ Tρα

ραΓ(α + 1)
+

1
|Ω|

{
|B1|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A1|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]}
+

Tρ

ρ|Ω|
{
|B2|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A2|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]}]
‖y − ȳ‖.

Hence,

‖h1 − h2‖ ≤ ‖θ‖
[ Tρα

ραΓ(α + 1)
+

1
|Ω|

{
|B1|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A1|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)

+
Tρα

ραΓ(α + 1)

]}
+

Tρ

|ρΩ|
{
|B2|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)

+|A2|
[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]}]
‖y − ȳ‖.

Analogously, interchanging the roles of y and y, we find that

Hd(N (y), N (ȳ)) ≤ ‖θ‖
[ Tρα

ραΓ(α + 1)
+

1
|Ω|

{
|B1|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)
+ |A1|

[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)

+
Tρα

ραΓ(α + 1)

]}
+

Tρ

|ρΩ|
{
|B2|

k

∑
j=1

|μj|
ξ

ρα
j

ραΓ(α + 1)

+|A2|
[ m

∑
i=1

|σi|
η

ρ(α+β)
i

ρα+βΓ(α + β + 1)
+

Tρα

ραΓ(α + 1)

]}]
‖y − ȳ‖.

This shows that N is a contraction. Therefore, the operator N has a fixed point y by Covitz and
Nadler [44], which corresponds to a solution of problem (2). This completes the proof.

Example 2. Consider the following inclusions problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/3

cD7/5
0+ y(t) ∈ F(t, y(t)), t ∈ [0, 2],

y(2) = 1/2 1/3 I3/5y(1/4) + 2/3 1/3 I3/5y(3/4) + 2/9,

δy(0) = 2/5 y(1) + 4/5 y(3/2),

(37)

where F(t, y(t)) will be defined later.

The values of |A1|, |A2|, |B1|, |B2|, |Ω| and Λ are the same as those in Example 1. For illustrating
Theorem 4, we take

F(t, y(t)) =
[ e−t
√

4000 + t

(
sin y +

1
2

)
,
(1 + t)

60

(
tan−1 y + y +

1
4

)]
. (38)
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It is easy to check that F(t, y(t)) is L1−Carathéodory. In view of (C2), we find that Φ(t) =
(1 + t)

60
, Ψ(‖y‖) = ||y|| + 2π + 1

4
and the condition (C3) implies that W > 3.289470. Thus, all

hypotheses of Theorem 4 hold true and the conclusion of Theorem 4 applies to problem (37) with
F(t, y(t)) given by (38) on [0, 2].

Now, we illustrate Theorem 5 by considering

F(t, y(t)) =
[ (t + 1)

4
√

900 + t

(
tan−1 y + sin t

)
,

e−t cos t
250

( |y|
|y|+ 1

+
1
8

)]
. (39)

Clearly,

Hd(F(t, y), F(t, ȳ)) ≤ (t + 1)
120

‖y − ȳ‖.

Letting θ(t) =
(t + 1)

120
, we observe that d(0, F(t, 0)) ≤ θ(t) for almost all t ∈ [0, 2] and that

K ≈ 0.6780733168 < 1 (K is given by (36)). As the assumptions of Theorem 5 hold true, there exists at
least one solution for problem (37) with F(t, y(t)) given by (39) on [0, 2].

5. Conclusions

We have developed the existence theory for fractional differential equations and inclusions
involving the Liouville–Caputo-type generalized derivative, supplemented with nonlocal generalized
fractional integral and multipoint boundary conditions. Our results are based on the modern
techniques of the functional analysis. In case of a single valued problem (1), we have obtained three
results: the first two results deal with the existence of solutions while the third one is concerned with
the uniqueness of solutions for the given problem. The first existence result relies on a Leray–Schauder
nonlinear alternative, which allows the nonlinearity f (t, y) to behave like | f (t, y)| ≤ φ(t)ψ(‖y‖)
(see (H1)) and the second results, depending on Krasnoselskii’s fixed point theorem, handles the
nonlinearity f (t, y) of the form described by the conditions (H3) and (H4). The third result provides a
criterion ensuring a unique solution of the problem at hand by requiring the nonlinear function f (t, y)
to satisfy the classical Lipschitz condition and is based on a Banach fixed point theorem. The tools
of the fixed point theory chosen for our case are easy to apply and extend the scope of the obtained
results in the scenario of simplicity of the assumptions. Again, for the inclusion problem (2), the
idea is to assume a simple set of conditions to establish the existence of solutions for problem (2)
involving both convex and nonconvex valued maps. As a matter of fact, the fixed point theorems
chosen to solve the multivalued problem (2) are standard and popular in view of their applicability.
Concerning the choice of the method to solve a given problem, one needs to loook at the set of
assumptions satisfied by the single and multivalued maps involved in the problem, which decides
the selection of the tool to be employed. As an application of the present work, the generalization
of the Feynman and Wiener path integrals developed by Laskin [46], in the context of fractional
quantum mechanics and fractional statistical mechanics, can be enhanced further. We emphasize that
we obtain new results associated with symmetric solutions of a second-order ordinary differential
equation equipped with nonlocal fractional integral and multipoint boundary conditions if we take
0 < η1 < · · · < ηi < · · · < ηm < ξ1 < · · · < ξ j < · · · < ξk < T/2 and f (t, x) to be symmetric on the
interval [0, T] for all x ∈ R when α → 2− (ρ = 1).
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24. O’Regan, D.; Staněk, S. Fractional boundary value problems with singularities in space variables. Nonlinear Dyn.

2013, 71, 641–652. [CrossRef]
25. Zhai, C.; Xu, L. Properties of positive solutions to a class of four-point boundary value problem of Caputo

fractional differential equations with a parameter. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2820–2827.
[CrossRef]

386



Symmetry 2018, 10, 667

26. Graef, J.R.; Kong, L.; Wang, M. Existence and uniqueness of solutions for a fractional boundary value
problem on a graph. Fract. Calc. Appl. Anal. 2014, 17, 499–510. [CrossRef]

27. Wang, G.; Liu, S.; Zhang, L. Eigenvalue problem for nonlinear fractional differential equations with integral
boundary conditions. Abstr. Appl. Anal. 2014, 2014. [CrossRef]

28. Henderson, J.; Kosmatov, N. Eigenvalue comparison for fractional boundary value problems with the Caputo
derivative. Fract. Calc. Appl. Anal. 2014, 17, 872–880. [CrossRef]

29. Zhang, L.; Ahmad, B.; Wang, G. Successive iterations for positive extremal solutions of nonlinear fractional
differential equations on a half line. Bull. Aust. Math. Soc. 2015, 91, 116–128. [CrossRef]

30. Henderson, J.; Luca, R. Nonexistence of positive solutions for a system of coupled fractional boundary value
problems. Bound. Val. Probl. 2015, 2015, 138. [CrossRef]

31. Ntouyas, S.K.; Etemad, S. On the existence of solutions for fractional differential inclusions with sum and
integral boundary conditions. Appl. Math. Comput. 2015, 266, 235–243. [CrossRef]

32. Mei, Z.D.; Peng, J.G.; Gao, J.H. Existence and uniqueness of solutions for nonlinear general fractional
differential equations in Banach spaces. Indagat. Math. 2015, 26, 669–678. [CrossRef]

33. Ahmad, B.; Ntouyas, S.K. Existence results for fractional differential inclusions with Erdelyi-Kober fractional
integral conditions. Ann. Univ. Ovidius Constanta-Seria Mat. 2017, 25, 5–24. [CrossRef]

34. Srivastava, H.M. Remarks on some families of fractional-order differential equations. Integral Transforms
Spec. Funct. 2017, 28, 560–564. [CrossRef]

35. Wang, G.; Pei, K.; Agarwal, R.P.; Zhang, L.; Ahmad, B. Nonlocal Hadamard fractional boundary value
problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math.
2018, 343, 230–239. [CrossRef]

36. Ahmad, B.; Luca, R. Existence of solutions for sequential fractional integro-differential equations and
inclusions with nonlocal boundary conditions. Appl. Math. Comput. 2018, 339, 516–534. [CrossRef]

37. Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2015,
218, 860–865. [CrossRef]

38. Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014,
6, 1–15.

39. Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their Caputo modification.
J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [CrossRef]

40. Granas, A.; Dugundji, J. Fixed Point Theory; Springer-Verlag: New York, NY, USA, 2003.
41. Krasnoselskii, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955,

10, 123–127.
42. Deimling, K. Multivalued Differential Equations; Walter De Gruyter: New York, NY, USA, 1992.
43. Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential

equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786.
44. Covitz, H.; Nadler, S.B. Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 1970,

8, 5–11. [CrossRef]
45. Castaing, C.; Valadier, M. Convex Analysis and Measurable Multifunctions; Springer-Verlag: Berlin/Heidelberg,

Germany, 1977.
46. Laskin, N. Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 2000, 268, 298–305.

[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

387



symmetryS S

Article

Convolution and Partial Sums of Certain Multivalent
Analytic Functions Involving Srivastava–Tomovski
Generalization of the Mittag–Leffler Function

Yi-Hui Xu 1 and Jin-Lin Liu 2,*

1 Department of Mathematics, Suqian College, Suqian 223800, China; yuanziqixu@126.com
2 Department of Mathematics, Yangzhou University, Yangzhou 225002, China
* Correspondence: jlliu@yzu.edu.cn

Received: 7 October 2018; Accepted: 23 October 2018; Published: 5 November 2018
��������	
�������

Abstract: We derive several properties such as convolution and partial sums of multivalent
analytic functions associated with an operator involving Srivastava–Tomovski generalization of
the Mittag–Leffler function.
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1. Introduction

The Mittag–Leffler function Eα(z) [1] and its generalization Eα,β(z) [2] are defined by the
following series:

Eα(z) =
∞

∑
n=0

zn

Γ(αn + 1)
(z, α ∈ C; Re(α) > 0) (1)

and

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
(z, α, β ∈ C; Re(α) > 0), (2)

respectively. It is known that these functions are extensions of exponential, hyperbolic, and
trigonometric functions, since

E1(z) = E1,1(z) = ez,

E2(z2) = E2,1(z2) = cosh z

and
E2(−z2) = E2,1(−z2) = cos z.

The functions Eα(z) and Eα,β(z) arise naturally in the resolvent of fractional integro-differential
and fractional differential equations which are involved in random walks, super-diffusive transport
problems, the kinetic equation, Lévy flights, and in the study of complex systems. In particular,
the Mittag–Leffler function is an explicit formula for the solution the Riemann–Liouville fractional
integrals that was developed by Hille and Tamarkin.

In [3], Srivastava and Tomovski defined a generalized Mittag–Leffler function Eγ,k
α,β(z) as follows:

Eγ,k
α,β(z) =

∞

∑
n=0

(γ)nkzn

Γ(αn + β)n!
, (3)

(α, β, γ, k, z ∈ C; Re(α) > max{0, Re(k)− 1}; Re(k) > 0),
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where (x)n is the Pochhammer symbol

(x)n =
Γ(x + n)

Γ(x)
= x(x + 1) · · · (x + n − 1) (n ∈ N; x ∈ C)

and (x)0 = 1. They proved that the function Eγ,k
α,β(z) given by (3) is an entire function in the complex

plane. Recently, Attiya [4] proved that, if Re(α) ≥ 0 with Re(k) = 1 and β 	= 0, the power series in (3)
converges absolutely and analytically in U = {z : |z| < 1} for all γ ∈ C. We call the function Eγ,k

α,β(z)
the Srivastava–Tomovski generalization of the Mittag–Leffler function.

Let A(p) be the class of functions of the form

f (z) = zp +
∞

∑
n=2

an+p−1zn+p−1 (p ∈ N) (4)

which are analytic in U. For p = 1, we write A := A(1). The Hadamard product (or convolution) of
two functions

f j(z) = zp +
∞

∑
n=2

an+p−1,jzn+p−1 ∈ A(p) (j = 1, 2)

is given by

( f1 ∗ f2)(z) = zp +
∞

∑
n=2

an+p−1,1an+p−1,2zn+p−1 = ( f2 ∗ f1)(z).

Let P denote the class of functions ϕ with ϕ(0) = 1. Suppose that f and g are analytic in U. If
there exists a Schwarz function w such that f (z) = g(w(z)) for z ∈ U, then we say that the function
f is subordinate to g and write f (z) ≺ g(z) for z ∈ U. Furthermore, if g is univalent in U, then the
following equivalence holds true:

f (z) ≺ g(z) (z ∈ U) ⇔ f (0) = g(0) and f (U) ⊂ g(U).

Throughout this paper, we assume that

α, β, γ, k ∈ C; Re(α) > max{0, Re(k)− 1} and Re(k) > 0.

We define the function Qγ,k
α,β(z) ∈ A(p) associated with the Srivastava–Tomovski generalization

of the Mittag–Leffler function by

Qγ,k
α,β(z) =

Γ(α + β)

(γ)k
zp−1

(
Eγ,k

α,β(z)−
1

Γ(β)

)
(z ∈ U). (5)

For f ∈ A(p), we introduce a new operator Hγ,k
α,β : A(p) → A(p) by

Hγ,k
α,β f (z) = Qγ,k

α,β(z) ∗ f (z)

= zp +
∞

∑
n=2

Γ(γ + nk)Γ(α + β)

Γ(γ + k)Γ(αn + β)n!
an+p−1zn+p−1. (6)

Note that H1,1
0,β f (z) = f (z). From (6), we easily have the following identity:

z
(

Hγ,k
α,β f (z)

)′
=
(γ

k
+ 1

)
Hγ+1,k

α,β f (z)−
(γ

k
+ 1 − p

)
Hγ,k

α,β f (z). (7)

It is noteworthy to mention that the Fox–Wright hypergeometric function qΨs is more general
than many of the extensions of the Mittag–Leffler function.

Now, we introduce a new subclass of A(p) by using the operator Hγ,k
α,β .
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Definition 1. A function f ∈ A(p) is said to be in Ωγ,k
α,β(λ; ϕ) if it satisfies the first-order

differential subordination:

(1 − λ)z−p Hγ,k
α,β f (z) +

λ

p
z−p+1

(
Hγ,k

α,β f (z)
)′

≺ ϕ(z), (8)

where λ ∈ C and ϕ ∈ P .

Lemma 1. ([5]). Let g(z) = 1 + ∑∞
n=m bnzn (m ∈ N) be analytic in U. If Re(g(z)) > 0 (z ∈ U), then

Re (g(z)) ≥ 1 − |z|m
1 + |z|m (z ∈ U).

The study of the Mittag–Leffler function is an interesting topic in Geometric Function Theory. Many
properties of the Mittag–Leffler function and the generalized Mittag–Leffler function can be found, e.g., in [6–22].
In this paper we shall make a further contribution to the subject by showing some interesting properties such as
convolution and partial sums for functions in the class Ωγ,k

α,β(λ; ϕ).

2. Properties of the Class Ω
γ,k
α,β(λ;ϕ)

Theorem 1. Let λ ≥ 0 and

fj(z) = zp +
∞

∑
n=2

an+p−1,jzn+p−1 ∈ Ωγ,k
α,β(λ; ϕj) (j = 1, 2), (9)

where

ϕj(z) =
1 + Ajz
1 + Bjz

and − 1 ≤ Bj < Aj ≤ 1. (10)

If f ∈ A(p) is defined by

Hγ,k
α,β f (z) =

(
Hγ,k

α,β f1(z)
)

∗
(

Hγ,k
α,β f2(z)

)
, (11)

then f ∈ Ωγ,k
α,β(λ; ϕ), where

ϕ(z) = ρ + (1 − ρ)
1 + z
1 − z

(12)

and ρ is given by

ρ =

⎧⎪⎨⎪⎩ 1 − 4(A1−B1)(A2−B2)
(1−B1)(1−B2)

(
1 − p

λ

∫ 1
0

t
p
λ

−1

1+t dt
)

(λ > 0),

1 − 2(A1−B1)(A2−B2)
(1−B1)(1−B2)

(λ = 0).
(13)

The bound ρ is sharp when B1 = B2 = −1.

Proof. We consider the case when λ > 0. Since f j ∈ Ωγ,k
α,β(λ; ϕj), it follows that

pj(z) = (1 − λ)z−p Hγ,k
α,β f j(z) +

λ

p
z−p+1

(
Hγ,k

α,β f j(z)
)′

≺
1 + Ajz
1 + Bjz

(j = 1, 2) (14)
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and

Hγ,k
α,β f j(z) =

p
λ

z− p(1−λ)
λ

∫ z

0
t

p
λ −1 pj(t)dt

=
p
λ

zp
∫ 1

0
t

p
λ −1 pj(tz)dt (j = 1, 2). (15)

Now, if f ∈ A(p) is defined by (11), we find from (14) that

Hγ,k
α,β f (z) =

(
Hγ,k

α,β f1(z)
)

∗
(

Hγ,k
α,β f2(z)

)
=

(
p
λ

zp
∫ 1

0
t

p
λ −1 p1(tz)dt

)
∗
(

p
λ

zp
∫ 1

0
t

p
λ −1 p2(tz)dt

)
=

p
λ

zp
∫ 1

0
t

p
λ −1 p0(tz)dt, (16)

where

p0(z) =
p
λ

∫ 1

0
t

p
λ −1(p1 ∗ p2)(tz)dt. (17)

Further, by using (14) and the Herglotz theorem, we see that

Re
{(

p1(z)− ρ1

1 − ρ1

)
∗
(

1
2
+

p2(z)− ρ2

2(1 − ρ2)

)}
> 0 (z ∈ U),

which leads to
Re{(p1 ∗ p2)(z)} > ρ0 = 1 − 2(1 − ρ1)(1 − ρ2) (z ∈ U),

where

0 ≤ ρj =
1 − Aj

1 − Bj
< 1 (j = 1, 2).

Moreover, according to Lemma, we have

Re{(p1 ∗ p2)(z)} ≥ ρ0 + (1 − ρ0)
1 − |z|
1 + |z| (z ∈ U). (18)

Thus, it follows from (16) to (18) that

Re
{
(1 − λ)z−pHγ,k

α,β f (z) +
λ

p
z−p+1

(
Hγ,k

α,β f (z)
)′}

= Re{p0(z)}

=
p
λ

∫ 1

0
t

p
λ −1Re{(p1 ∗ p2)(tz)}dt

≥ p
λ

∫ 1

0
t

p
λ −1

(
ρ0 + (1 − ρ0)

1 − |z|t
1 + |z|t

)
dt

> ρ0 +
p(1 − ρ0)

λ

∫ 1

0
t

p
λ −1 1 − t

1 + t
dt

= 1 − 4(1 − ρ1)(1 − ρ2)

(
1 − p

λ

∫ 1

0

t
p
λ −1

1 + t
dt

)
= ρ,

which proves that f ∈ Ωγ,k
α,β(λ; ϕ) for the function ϕ given by (12).

In order to show that the bound ρ is sharp, we take the functions f j ∈ A(p) (j = 1, 2) defined by

Hγ,k
α,β f j(z) =

p
λ

z− p(1−λ)
λ

∫ z

0
t

p
λ −1

(
1 + Ajt

1 − t

)
dt (j = 1, 2), (19)
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for which we have

pj(z) = (1 − λ)z−p Hγ,k
α,β f j(z) +

λ

p
z−p+1

(
Hγ,k

α,β f j(z)
)′

=
1 + Ajz

1 − z
(j = 1, 2)

and

(p1 ∗ p2)(z) =
1 + A1z

1 − z
∗ 1 + A2z

1 − z

= 1 − (1 + A1)(1 + A2) +
(1 + A1)(1 + A2)

1 − z
.

Hence, for the function f given by (11), we have

(1 − λ)z−p Hγ,k
α,β f (z) +

λ

p
z−p+1

(
Hγ,k

α,β f (z)
)′

=
p
λ

∫ 1

0
t

p
λ −1

(
1 − (1 + A1)(1 + A2) +

(1 + A1)(1 + A2

1 − tz

)
dt

→ ρ (as z → −1),

which shows that the number ρ is the best possible when B1 = B2 = −1.
For the case when λ = 0, the proof of Theorem 1 is simple, and we choose to omit the details

involved. Now the proof of Theorem 1 is completed.

Theorem 2. Let α, β, γ, k, and λ be positive real numbers. Let f (z) = zp + ∑∞
n=2 an+p−1zn+p−1 ∈ A(p),

s1(z) = zp, and sm(z) = zp + ∑m
n=2 an+p−1zn+p−1 (m ≥ 2). Suppose that

∞

∑
n=2

cn|an+p−1| ≤ 1, (20)

where

cn =
1 − B
A − B

· Γ(γ + nk)Γ(α + β)

Γ(β + nα)Γ(γ + k)n!

(
1 +

λ

p
(n − 1)

)
(21)

and −1 ≤ B < A ≤ 1.
(i) If −1 ≤ B ≤ 0, then f ∈ Ωγ,k

α,β

(
λ; 1+Az

1+Bz

)
.

(ii) If {cn}∞
1 is nondecreasing, then

Re
{

f (z)
sm(z)

}
> 1 − 1

cm+1
(22)

and

Re
{

sm(z)
f (z)

}
>

cm+1

1 + cm+1
(23)

for z ∈ U. The estimates in (22) and (23) are sharp for each m ∈ N.

Proof. From the assumptions of Theorem 2, we have cn > 0 (n ∈ N). Let

J(z) = (1 − λ)z−p Hγ,k
α,β f (z) +

λ

p
z−p+1

(
Hγ,k

α,β f (z)
)′

= 1 +
∞

∑
n=2

Γ(γ + nk)Γ(α + β)

Γ(β + nα)Γ(γ + k)n!

(
1 +

λ

p
(n − 1)

)
an+p−1zn−1. (24)
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(i) For −1 ≤ B ≤ 0 and z ∈ U, it follows from (20), (21), and (24), that∣∣∣∣ J(z)− 1
A − BJ(z)

∣∣∣∣
=

∣∣∣∣∣∣
∑∞

n=2
Γ(γ+nk)Γ(α+β)

Γ(β+nα)Γ(γ+k)n!

(
1 + λ

p (n − 1)
)

an+p−1zn−1

A − B − B ∑∞
n=2

Γ(γ+nk)Γ(α+β)
Γ(β+nα)Γ(γ+k)n!

(
1 + λ

p (n − 1)
)

an+p−1zn−1

∣∣∣∣∣∣
≤ ∑∞

n=2 cn|an+p−1|
1 − B + B ∑∞

n=2 cn|an+p−1|
≤ 1,

which implies that

(1 − λ)z−p Hγ,k
α,β f (z) +

λ

p
z−p+1

(
Hγ,k

α,β f (z)
)′

≺ 1 + Az
1 + Bz

.

Hence, f ∈ Ωγ,k
α,β

(
λ; 1+Az

1+Bz

)
.

(ii) Under the hypothesis in part (ii) of Theorem 2, we can see from (21) that cn+1 > cn > 1
(n ∈ N). Therefore, we have

m

∑
n=2

|an+p−1|+ cm+1

∞

∑
n=m+1

|an+p−1| ≤
∞

∑
n=2

cn|an+p−1| ≤ 1. (25)

Upon setting

p1(z) = cm+1

{
f (z)

sm(z)
−
(

1 − 1
cm+1

)}
= 1 +

cm+1 ∑∞
n=m+1 an+p−1zn−1

1 + ∑∞
n=2 an+p−1zn−1 ,

and applying (25), we find that∣∣∣∣ p1(z)− 1
p1(z) + 1

∣∣∣∣ ≤ cm+1 ∑∞
n=m+1 |an+p−1|

2 − 2 ∑m
n=2 |an+p−1| − cm+1 ∑∞

n=m+1 |an+p−1|
≤ 1 (z ∈ U),

which readily yields (22).
If we take

f (z) = zp − zm+p

cm+1
, (26)

then
f (z)

sm(z)
= 1 − zm

cm+1
→ 1 − 1

cm+1
and z → 1−,

which shows that the bound in (22) is the best possible for each m ∈ N.
Similarly, if we put

p2(z) = (1 + cm+1)

(
sm(z)
f (z)

− cm+1

1 + cm+1

)
,

then we can deduce that∣∣∣∣ p2(z)− 1
p2(z) + 1

∣∣∣∣ ≤ (1 + cm+1)∑∞
n=m+1 |an+p−1|

2 − 2 ∑m
n=2 |an+p−1| − (cm+1 − 1)∑∞

n=m+1 |an+p−1|
≤ 1 (z ∈ U),

which yields (23).
The bound in (23) is sharp for each m ∈ N, with the extremal function f given by (26). The proof

of Theorem 2 is thus completed.
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Abstract: The generalized Kuramoto–Sivashinsky equation is investigated using the modified
Kudryashov method for the new exact solutions. The modified Kudryashov method converts
the given nonlinear partial differential equation to algebraic equations, as a result of various steps,
which upon solving the so-obtained equation systems yields the analytical solution. By this way,
various exact solutions including complex structures are found, and their behavior is drawn in the
2D plane by Maple to compare the uniqueness and wave traveling of the solutions.

Keywords: generalized Kuramoto–Sivashinsky equation; modified Kudryashov method; exact
solutions; Maple graphs

1. Introduction

In engineering and science, the problems arising from the wave propagation of communication
between two (or) more systems such as electromagnetic waves in wireless sensor networks, water
flow in dams during an earthquake, stability of the output in electricity current, viscous flows in
fluid dynamics, magneto hydro dynamics, turbulence in microtides and other physical phenomena
are described by the non-linear evolution equations (NLEE). In modeling such aforesaid media
continuously described by the generalized Kuramoto–Sivashinsky equation (GKSE) [1] given by the
nonlinear partial differential equation for u = u(x, t) and non-zero constants α, β and γ:

ut + uux + αuxx + βuxxx + γuxxxx = 0. (1)

The GKSE and its solutions play huge roles in flowing in viscous fluids, feedback in the output of
self-loop controllers, trajectory systems and gas dynamics. The process of solving NLEE analytically
and numerically uses symbolic computation procedures such as exact solution techniques and cardinal
function methods such as wavelet transforms, respectively. When α = γ = 1 and β = 0, Equation (1)
leads to the Kuramoto–Sivashinsky equation (KSE). N. A. Kudryashov solved Equation (1) by the
method of Weiss–Tabor–Carnevale and obtained exact solutions in [1]. E. J. Parkes et al. applied
the tanh method for Equation (1) by taking α = β = 1 and solving using the Mathematica
package; they also solved Equation (1) by taking α = −1 and β = 1 in [2]. B. Abdel-Hamid
in [3] assumed the initial solution as the PDE for u and solved exactly for α = 1 and β = 0 in
Equation (1). D. Baldwin et al. [4] applied the tanh and sech methods to Equation (1) with α = γ = 1
and solved using the Mathematica package. C. Li et al. [5] solved Equation (1) of the form
ut + βuαux + γuτuxx + δuxxxx = 0 using the Bernoulli equation as the auxiliary differential equation.
By the simplest equation method, again, N. A. Kudryashov solved Equation (1) by considering
ux = umux and obtained the solution for general m with some restrictions in [6]. A. H. Khater et al.
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in [7] used Chebyshev polynomials and applied the collocation points to solve approximations of
Equation (1). M. G. Porshokouhi et al. in [8] solved Equation (1) for different values of constants and
approximately solved by the variational iteration method. In [9], C.M. Khalique reduced Equation (1)
by Lie symmetry and solved exactly by the simplest equation method with Riccati and Bernoulli
equations separately. D. Feng in [10] by taking β = 0 and uux = γuux in Equation (1) solved
using the Riccati equation as the auxiliary differential equation. M. Lakestani et al. used the B-spline
approximation function and solved Equation (1) numerically in [11], where they used tanh exact
solutions for error estimations. J. Yang et al. in [12] used the sine-cosine method and dynamic
bifurcation method to solve the more generalized GKSE and its related equations to Equation (1).
In [13], J. Rashidinia et al. solved Equation (1) by Chebyshev wavelets. O. Acan et al. applied the
reduced differential transform method to solve Equation (1) by taking β = 0 in [14].

For solving the nonlinear partial differential equations, there have been many schemes applied
such as the Kudryashov method by M. Foroutan et al. in [15] and K. K. Ali et al. in [16]; the modified
Kudryashov method by K. Hosseini et al. in [17,18], D. Kumar et al. in [19], A. K. Joardar et al. in [20]
and A.R. Seadawy et al. in [21]; the generalized Kudryashov method by F. Mahmud et al. in [22],
S. T. Demiray et al. in [23] and S. Bibi et al. in [24]; the sine-cosine method by K. R. Raslan et al. in [25];
the sine-Gordon method by H. Bulut et al. in [26]; the sinh-Gordon equation expansion method
by H. M. Baskonus et al. in [27], Y. Xian-Lin et al. in [28] and A. Esen et al. in [29]; the extended
trial equation method by K. A. Gepreel in [30], Y. Pandir et al. in [31] and Y. Gurefe et al. in [32];
the Exp-function method by L.K. Ravi et al. in [33], A. R. Seadawy et al. in [34] and M. Nur Alam
et al. in [35]; the Jacobi elliptic function method by S. Liu et al. in [36]; the F-expansion method by

A. Ebaid et al. in [37]; and the extended
(

G
′

G

)
method by E. M. E. Zayed and S. Al-Joudi et al. in [38].

The GKSE Equation (1) does not have the solution for general α and β; however, for the different
values of α and β, the solution exists for (1), which can be found in [1–14]. In this work, we apply
the modified Kudryashov method (MKM) to solve the GKSE in which we compute the constants α

and β by the MKM. Then, for the each solution, a two-dimensional graph is drawn to show the wave
traveling.

2. Analysis of the Modified Kudryashov Method

The modified Kudryashov method involves the following steps in solving the nonlinear partial
differential equations (NLPDE) [17–21]:

Step 1. Consider the given NLPDE of the following form u = u(x, t).

P (u, ut, ux, utt, uxx, uxt, · · · ) = 0. (2)

Step 2. Apply the wave transformation u(x, t) = u(η) in Equation (2), where:

η = μ(x − λt). (3)

Here, μ is the wave variable and λ is the velocity; both are non-zero constants. Hence, Equation (2)
transforms to the following ODE:

O
(

u, u
′
, u

′′
, uu

′
, · · ·

)
= 0, (4)

where the prime represents the derivative with respect to η.
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Step 3. Let the initial solution guess of Equation (4) be,

u(η) = A0 +
N

∑
i=1

Ai [Q(η)]i , (5)

where N is a non-zero and positive constant calculated by the principle of homogeneous balancing of
Equation (4), Ai; i = 0, 1, 2, · · · are unknowns to be calculated and Q(η) is the solution of the following
auxiliary ODE:

dQ(η)

dη
= Q(η) [Q(η)− 1] ln(a); a 	= 1, (6)

given by,

Q(η) =
1

1 + Daη , (7)

where D is the integral constant and we assume D = 1.

Step 4. Substituting Equations (5) and (6) in Equation (4) leads to the polynomial in Q(η)i; i =

0, 1, 2, · · · . As Q(η)i 	= 0, so collecting its coefficients and then equating to zero give the systems of
overdetermined algebraic equations, which upon solving give the unknowns of Equations (3) and (5).

Step 5. Finally, substituting the values of Step 4 in Equation (5) and then in Equation (3) gives the
solution u(x, t) of Equation (2).

3. MKM Application to Solve the Generalized Kuramoto–Sivashinsky Equation

Applying the wave transformation with Equation (3) to Equation (1) leads to the ODE, and then,
integrating once the ODE by taking integration constant to zero transforms to the following ODE:

−λu +
u2

2
+ αμu(1) + βμ2u(2) + γμ3u(3) = 0, (8)

where u = u(η) and the superscripts (.) represent the derivatives w. r. t. η. By the homogeneous
balancing of Equation (8), N = 3, and hence, the initial guess solution of Equation (8) from Equation (5)
is given by,

u(η) = A0 + A1Q(η) + A2 (Q(η))2 + A3 (Q(η))3 . (9)

Substituting Equations (6) and (9) in Equation (8) results in the sixth order polynomial of
Q(η). Collecting the coefficients of (Q(η))i ; i = 0, 1, · · · , 6 and equating each coefficient to zero
gives the systems of algebraic equations, which upon solving by Maple give the unknowns in
Equations (9), (3) and (α, β) in Equation (8). The resulting values are substituted in Equation (9)
along with Equations (3) and (7), which give the exact solution of Equation (1) for the specific values of
constants α and β. Substituting the α and β values in Equation (1) and the unknowns Ai; i = 0, 1, 2, 3 in
Equation (9) where Q(η) is given by Equation (7) yields the following exact solutions. Let δ1 = γμ ln(a),
δ2 = γμ2 ln(a)2 and δ3 = γμ3 ln(a)3 in the following cases.

Case 1. For α = δ2 and β = 4δ1 in Equation (1), the unknown coefficients are given by,

A0 = A1 = 0, A2 = 120δ3, A3 = −120δ3, λ = 6δ3.
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Therefore, the exact solution of Equation (1) is given by (Figure 1),

u1(x, t) :=
120δ3aμx−6δ3μt(
1 + aμx−6δ3μt

)3 . (10)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = −12δ3, A1 = 0, A2 = 120δ3, A3 = −120δ3, λ = −6δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 1),

u2(x, t) := −
12δ3

(
1 + a3μxe3(6δ3μ ln(a)t) + 3a2μxe2(6δ3μ ln(a)t) − 7aμxe6δ3μ ln(a)t

)
(
1 + aμxe6δ3μ ln(a)t

)3 . (11)

(a) u1(x, t) (b) u2(x, t)

Figure 1. Solutions in Case 1, Equations (10) and (11), respectively from left to right for a = 5, μ = 1
and t = 1 in x ∈ [−15, 15] for different values of γ.

Case 2. For α = δ2 and β = −4δ1 in Equation (1), the unknown coefficients are given by,

A0 = 0, A1 = −120δ3, A2 = 240δ3, A3 = −120δ3, λ = −6δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 2),

u3(x, t) := −120δ3a2(μx+6δ3μt)(
1 + aμx+6δ3μt

)3 . (12)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = 12δ3, A1 = −120δ3, A2 = 240δ3, A3 = −120δ3, λ = 6δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 2),

u4(x, t) :=
12δ3

(
a3(μx−6δ3μt) − 7a2(μx−6δ3μt) + 3aμx−6δ3μt + 1

)
(
1 + aμx−6δ3μt

)3 . (13)
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(a) u3(x, t) (b) u4(x, t)

Figure 2. Solutions in Case 2, Equations (12) and (13), respectively from left to right for a = 5, μ = 1
and t = 1 in x ∈ [−15, 15] for different values of γ.

Case 3. For α = −19δ2 and β = 0 in Equation (1), the unknown coefficients are given by,

A0 = −60δ3, A1 = 0, A2 = 180δ3, A3 = −120δ3, λ = −30δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 3),

u5(x, t) := −
60δ3e2(30δ3μ ln(a)t)

(
a3μxe30δ3μ ln(a)t + 3a2μx

)
(
1 + aμxe30δ3μ ln(a)t

)3 . (14)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = A1 = 0, A2 = 180δ3, A3 = −120δ3, λ = 30δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 3),

u6(x, t) :=
60δ3

(
1 + 3aμx−30δ3μt)(

1 + aμx−30δ3μt
)3 . (15)

Case 4. For α = 47δ2 and β = 12δ1 in Equation (1), the unknown coefficients are given by,

A0 = A1 = A2 = 0, A3 = −120δ3, λ = −60δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 4),

u7(x, t) := − 120δ3(
1 + aμx+60δ3μt

)3 . (16)

Further, for the same α and β, the second set of unknown coefficients are given by,

A0 = 120δ3, A1 = A2 = 0, A3 = −120δ3, λ = 60δ3.
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Therefore, the exact solution of Equation (1) is given by (Figure 4),

u8(x, t) :=
120δ3

(
3aμxe2(60δ3μ ln(a)t) + 3a2μxe60δ3μ ln(a)t + a3μx

)
(
aμx + e60δ3μ ln(a)t

)3 . (17)

(a) u5(x, t) (b) u6(x, t)

Figure 3. Solutions in Case 3, Equations (14) and (15), respectively from left to right for a = 5, μ = 1
and t = 1 in x ∈ [−40, 40] for u5(x, t) and in x ∈ [−50, 50] for u6(x, t) for different values of γ.

(a) u7(x, t) (b) u8(x, t)

Figure 4. Solutions in Case 4, Equations (16) and (17), respectively from left to right for a = 5, μ = 1
and t = 1 in x ∈ [−15, 15] for different values of γ.

Case 5. For α = 47δ2 and β = −12δ1 in Equation (1), the unknown coefficients are given by,

A0 = 0, A1 = −360δ3, A2 = 360δ3, A3 = −120δ3, λ = −60δ3.
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Therefore, the exact solution of Equation (1) is given by (Figure 5),

u9(x, t) := −
120δ3

(
3a2μxe2(60δ3μ ln(a)t) + 3aμxe60δ3μ ln(a)t + 1

)
(
1 + aμxe60δ3μ ln(a)t

)3 . (18)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = 120δ3, A1 = −360δ3, A2 = 360δ3, A3 = −120δ3, λ = 60δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 5),

u10(x, t) :=
120δ3a3(μx−60δ3μt)(

1 + aμx−60δ3μt
)3 . (19)

(a) u9(x, t) (b) u10(x, t)

Figure 5. Solutions in Case 5, Equations (18) and (19), respectively from left to right for a = 5, μ = 1
and t = 1 in x ∈ [−15, 15] for different values of γ.

Case 6. For α = 73δ2 and β = 16δ1 in Equation (1), the unknown coefficients are given by,

A0 = 180δ3, A1 = 0, A2 = −60δ3, A3 = −120δ3, λ = 90δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 6),

u11(x, t) :=
60δ3

(
8aμxe2(90δ3μ ln(a)t) + 9a2μxe90δ3μ ln(a)t + 3a3μx

)
(
e90δ3μ ln(a)t + aμx

)3 . (20)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = A1 = 0, A2 = −60δ3, A3 = −120δ3, λ = −90δ3.
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Therefore, the exact solution of Equation (1) is given by (Figure 6),

u12(x, t) := −60δ3
(
3 + aμx+90δ3μt)(

1 + aμx+90δ3μt
)3 . (21)

(a) u11(x, t) (b) u12(x, t)

Figure 6. Solutions in Case 6, Equations (20) and (21), respectively from left to right for a = 5, μ = 1
and t = 1 in x ∈ [−15, 15] for u11(x, t) and x ∈ [−20, 20] for u12(x, t) for different values of γ.

Case 7. For α = 73δ2 and β = −16δ1 in Equation (1), the unknown coefficients are given by,

A0 = 180δ3, A1 = −480δ3, A2 = 420δ3, A3 = −120δ3, λ = 90δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 7),

u13(x, t) :=
60δ3

(
a2μxe90δ3μ ln(a)t + 3a3μx

)
(
e90δ3μ ln(a)t + aμx

)3 . (22)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = 0, A1 = −480δ3, A2 = 420δ3, A3 = −120δ3, λ = −90δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 7),

u14(x, t) := −
60δ3

(
8a2μxe2(90δ3μ ln(a)t) + 9aμxe90δ3μ ln(a)t + 3

)
(
1 + aμxe90δ3μ ln(a)t

)3 . (23)
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(a) u13(x, t) (b) u14(x, t)

Figure 7. Solutions in Case 7, Equations (22) and (23), respectively from left to right for a = 5, μ = 1
and t = 1 in x ∈ [−20, 20] for different values of γ.

Case 8. For α = 19
11 δ2 and β = 0 in Equation (1), the unknown coefficients are given by,

A0 =
60
11

δ3, A1 = −720
11

δ3, A2 = 180δ3, A3 = −120δ3, λ =
30
11

δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 8),

u15(x, t) :=
60δ3a(μx− 30

11 δ3μt)
(

a2(μx− 30
11 δ3μt) − 9a(μx− 30

11 δ3μt) + 12
)

11
(

1 + a(μx− 30
11 δ3μt)

)3 . (24)

Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = 0, A1 = −720
11

δ3, A2 = 180δ3, A3 = −120δ3, λ = −30
11

δ3.

Therefore, the exact solution of Equation (1) is given by (Figure 8),

u16(x, t) := −
60δ3

(
1 − 9a(μx+ 30

11 δ3μt) + 12a2(μx+ 30
11 δ3μt)

)
11

(
1 + a(μx+ 30

11 δ3μt)
)3 . (25)

Case 9. For α = −δ2 and β = 4iδ1 in Equation (1), the unknown coefficients are given by,

A0 = 0, A1 = −60μ3 ln(a)3 (γ − iγ) , A2 = 60(3 − i)δ3, A3 = −120δ3, λ = 4iδ3.

Therefore, the exact complex solution of Equation (1) is given by,

u17(x, t) :=
60δ3aμx−4iδ3μt (i + 1 + (i − 1) aμx−4iδ3μt)(

1 + aμx−4iδ3μt
)3 . (26)

The 2D graph of real and imaginary parts of u17(x, t) are drawn in Figure 9.
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Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = −8iδ3, A1 = −60μ3 ln(a)3 (γ − iγ) , A2 = 60(3 − i)δ3, A3 = −120δ3, λ = −4iδ3.

Therefore, the exact complex solution of Equation (1) is given by,

u18(x, t) := − 8δ3(
1 + aμx+4iδ3μt

)3

[
i(1 + a3(μx+4iδ3μt)) +

(
15 − 9i

2

)
a2(μx+4iδ3μt) −

(
15 + 9i

2

)
aμx+4iδ3μt

]
. (27)

where i =
√

−1. The 2D graphs of the real and imaginary parts of u18(x, t) are drawn in Figure 10.

(a) u15(x, t) (b) u16(x, t)

Figure 8. Solutions in Case 8, Equations (24) and (25), respectively from left to right for a = 5, μ = 1
and t = 1 in x ∈ [−20, 20] for different values of γ.

(a) Real part of u17(x, t) (b) Imaginary part of u17(x, t)

Figure 9. Real and imaginary part of the solution in Case 9, Equation (26), respectively from left to
right for a = 5, μ = 1 and t = 1 in x ∈ [−3, 3] for different values of γ.
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(a) Real part of u18(x, t) (b) Imaginary part of u18(x, t)

Figure 10. Real and imaginary part of the solution in Case 9, Equation (27), respectively from left to
right for a = 5, μ = 1 and t = 1 in x ∈ [−3, 3] for different values of γ.

Case 10. For α = −δ2 and β = −4iδ1 in Equation (1), the unknown coefficients are given by,

A0 = 0, A1 = −60μ3 ln(a)3(γ + iγ), A2 = 60(3 + i)δ3, A3 = −120δ3, λ = −4iδ3.

Therefore, the exact complex solution of Equation (1) is given by,

u19(x, t) := −60δ3aμx+4iδ3μt (i − 1 + (i + 1)aμx+4iδ3μt)(
1 + aμx+4iδ3μt

)3 . (28)

The 2D graphs of real and imaginary parts of u19(x, t) are drawn in Figure 11.

(a) Real part of u19(x, t) (b) Imaginary part of u19(x, t)

Figure 11. Real and imaginary part of the solution in Case 10, Equation (28), respectively from left to
right for a = 5, μ = 1 and t = 1 in x ∈ [−3, 3] for different values of γ.
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Further, for the same α and β value, the second set of unknown coefficients are given by,

A0 = 8iδ3, A1 = −60μ3 ln(a)3(γ + iγ), A2 = 60(3 + i)δ3, A3 = −120δ3, λ = 4iδ3.

Therefore, the exact complex solution of Equation (1) is given by,

u20(x, t) :=
8δ3(

1 + aμx−4iδ3μt
)3

[
i(1 + a3(μx−4iδ3μt))−

(
15 + 9i

2

)
a2(μx−4iδ3μt) +

(
15 − 9i

2

)
aμx−4iδ3μt

]
. (29)

where i =
√

−1. The 2D graphs of the real and imaginary parts of u20(x, t) are drawn in Figure 12.

(a) Real part of u20(x, t) (b) Imaginary part of u20(x, t)

Figure 12. Real and imaginary part of the solution in Case 10, Equation (29), respectively from left to
right for a = 7, μ = 1 and t = 1 in x ∈ [−3, 3] for different values of γ.

4. Conclusions

In this work, the generalized Kuramoto–Sivashinsky equation is solved, and the exact solutions
have been found. The aforesaid GKSE has solutions for the different values of α and β, which we
obtained by the application of the modified Kudryashov method, and we found 10 classes of (α, β)

pairs and their corresponding two distinct exact solutions for each pair of Equation (1) in Cases 1–10.
The two-dimensional simulations of the solutions in Figures 1–12 show their behavioral pattern
and wave train traveling for different values of γ. However, the wave structures vary when the
values of a, μ, t and the domain changes in the 2D plane. The solutions found in this work will
be useful in studying electromagnetic waves, fluid flows and the areas where GKSE plays a vital
role. All the solutions are validated in the Maple computer algebra system by substituting them
in the original equation. Our new solutions are compared with the previous solutions of GKSE in
Appendices A and B.
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Appendix A. GKSE in the Previous Studies

N.A. Kudryashov in [6] solved for the exact solution of Equation (1). Based on the homogeneous
balancing, he has taken the following initial solution.

u(η) = A0 + A1g(η) + A2g(η)2 + A3g(η)3.

where g(η) is the solution of dg(η)
dη = b − g(η)2, and obtained the following values.

1.

A0 = − β3

576γ2 , A1 =
5β2

4γ
, A2 = −15β, A3 = 120γ, α =

47β2

144γ
, b =

β2

576γ2 , C0 = − 5β3

144γ2 .

2.

A0 =
30β3

128γ2 , A1 = − 30β2

16γ
, A2 = −30β, A3 = 120γ, α =

β2

16γ
, b =

β2

64γ2 , C0 =
3β3

32γ2 .

In the same work, he solved Equation (1) with the auxiliary equations
(

dg(z)
dz

)2
+ 4g(z)3 −

ag(z)2 − 2bg(z) + d = 0 and d2g(z)
dz2 + 6g(z)2 − ag(z)− b = 0 and obtained other values for unknowns.

C.M. Khalique in [9] solved Equation (1) by taking the Bernoulli equation dh(η)
dη = ah(η) + bh(η)2

and Riccati equation dh(η)
dη = ah(η)2 + bh(η)+ c as the auxiliary ODE and obtained the following values

respectively by using each ODE. For both the auxiliary equation the constant values are a = 1, b = 3
and c = 1:

1.

A0 = ν − 6a3γ, A1 = −120a2bγ, A2 = 240ab2γ, A3 = −120b3γ, α = a2γ, β = 4aγ.

2.

A0 = −990γ + 60γk + ν, A1 = 60γ + 180γk, A2 = 60γk, A3 = −120γ, α = 365γ, β = −36γ − 4γk.

While comparing the above values, our solutions of Equation (1) in this work are new to the
surveyed literature.

Appendix B. Studying GKSE by GKM and SGEEM

1. For solving Equation (1) by the generalized Kudryashov method [22–24], the homogeneous
balancing of Equation (8) gives N = M + 3, which has infinite solutions. For the value M = 1,
this gives N = 4. Therefore,

u(η) =
A0 + A1Q(η) + A2 (Q(η))2 + A3 (Q(η))3 + A4 (Q(η))4

B0 + B1Q(η)
.

where Q(η) is the solution of dQ(η)
dη = Q(η)(Q(η)− 1), Applying these equations to Equation (8)

leads to the polynomial in Q(η) and its powers. Collecting the coefficients of (Q(η))i; i =

0, 1, 2, · · · and attempting to solve the overdetermined equations results in the continuous
execution of Maple. Hence, we conclude that Equation (1) cannot be solved by the generalized
Kudryashov method.

2. Next, for solving Equation (1) by the sine-Gordon equation expansion method [26],
the homogeneous balancing is the same as the MKM given by N = 3. Thus,

u(η) = A0 + A1 tanh(η) + B1sech(η) + A2 tanh2(η) + B2 tanh(η)sech(η) + A3 tanh3(η) + B3 tanh2(η)sech(η).
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Substituting the above equation u(η) in Equation (8) and following the steps in [26] lead to the
polynomials in sin(w), cos(w), their products and powers. Collecting the coefficients, equating
them to zero and solving in Maple result in the continuous execution. Thus, we conclude that
Equation (1) cannot be solved by the sine-Gordon equation expansion method either.
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Abstract: This article concerns the entity of solutions of a quadratic integral equation of the Fredholm
type with an altered argument, x(t) = p(t) + x(t)

∫ 1
0 k(t, τ)(Tx)(τ)dτ, where p, k are given functions,

T is the given operator satisfying conditions specified later and x is an unknown function. Through
the classical Schauder fixed point theorem and a new conclusion about the relative compactness in
Hölder spaces, we obtain the existence of solutions under certain assumptions. Our work is more
general than the previous works in the Conclusion section. At the end, we introduce several tangible
examples where our entity result can be adopted.

Keywords: Fredholm integral equation; Schauder fixed point theorem; Hölder condition

1. Introduction

The work of differential equations, with an altered argument being latest, has continued for
decades. For more data and consequences related to these equations, see [1–3]. These topics have linear
modifications of their arguments and have been worked on by the authors in the papers [1–15]. Integral
equations of course stem from several applications in specification numerous real-world problems
(see [16,17] and the references therein). Quadratic integral equations arise naturally in applications
to real-world problems. For example, problems in the kinetic theory of gases and in the theory of
radiative transfer lead to the quadratic integral equation:

x(t) = 1 + tx(t)
∫ 1

0

Φ(τ)

t + τ
x(τ)dτ,

(see [18–21]). The integral equations of a similar form have been examined by several authors [22–28].
Furthermore, some studies using similar techniques have been dedicated to a micropolar porous body
and vibrations in thermoelasticity [29,30].

Very recently, J. Banaś and R. Nalepa et al. [4] studied the following equation:

x(t) = p(t) + x(t)
∫ b

a
k(t, τ)x(τ)dτ. (1)

Further, J. Caballero, M. Darwish and K. Sadarangani et al. [5] studied the following equation:

x(t) = p(t) + x(t)
∫ 1

0
k(t, τ)x(r(τ))dτ. (2)

Symmetry 2018, 10, 522; doi:10.3390/sym10100522 www.mdpi.com/journal/symmetry411
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Furthermore, J. Cabelloro Mena, R. Nalepa and K. Sadarangani et al. [6] studied the
following equation:

x(t) = p(t) + x(t)
∫ 1

0
k(t, τ)

{
max

η∈[0,r(τ)]
|x(η)|

}
dτ. (3)

The purpose of this paper is to examine the existence of solutions of the following integral
equation of the Fredholm type with a changed argument,

x(t) = p(t) + x(t)
∫ 1

0
k(t, τ)(Tx)(τ)dτ, t ∈ I = [0, 1]. (4)

Equation (4) is more general than many equations considered up to now and includes (1), (2)
and (3) as special cases. Notice that Equation (1) in [4] for a = 0 and b = 1 is a particular case of (4) with
(Tx)(τ) = x(τ). Furthermore, it should be noted that Equation (4) is more general than Equation (2)
considered in [5]. If we take (Tx)(τ) = x (r(τ)), then the equation:

x(t) = p(t) + x(t)
∫ 1

0
k(t, τ)x(r(τ))dτ

is obtained from Equation (4). Further, notice that Equation (3) in [6] is a particular case of (4),
for (Tx)(τ) = maxη∈[0,r(τ)] |x(η)|, where the function r : [0, 1] → [0, 1] is continuous and nondecreasing.

Compared to the previous works [4–6], we have further generalized the new assumptions in
finding the solutions of (1), (2) and (3).

Our solutions substitute for the spaces of functions satisfactory the Hölder condition, and this is
a source of the originality of the article. To do this, we will use a recent consequence about the classical
Schauder fixed point theorem and the relative compactness in Hölder spaces.

2. Preliminaries and Notations

In this section, we present definitions, notations and theorems that are used along this paper.
The following known definitions are available in [4,5,31,32].

Let [a, b] be a closed interval in R; by C[a, b], we indicate the space of continuous functions defined
on [a, b] equipped with the supremum norm, i.e.,

‖x‖∞ = sup {|x(t)| : t ∈ [a, b]}

for x ∈ C[a, b]. For a fixed α with 0 < α ≤ 1, by Hα[a, b], we will indicate the spaces of the real functions
x defined on [a, b] and satisfying the Hölder condition, that is those functions x for which there exists
a constant Hα

x such that:
|x(t)− x(s)| ≤ Hα

x |t − s|α (5)

for all t, s ∈ [a, b]. It is well proven that Hα[a, b] is a linear subspace of C[a, b]. Furthermore,
for x ∈ Hα[a, b], by Hα

x , we will indicate the least possible stable value for which Inequality (5) is
satisfied. Rather, we put:

Hα
x = sup

{ |x(t)− x(s)|
|t − s|α : t, s ∈ [a, b] and t 	= s

}
. (6)

The space Hα[a, b] with 0 < α ≤ 1 may be equipped with the norm:

‖x‖α = |x(a)|+ Hα
x

for x ∈ Hα[a, b]. Here, Hα
x is defined by (6). In [4], the authors demonstrated that (Hα[a, b], ‖ · ‖α) with

0 < α ≤ 1 is a Banach space.
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Lemma 1. For 0 < α ≤ 1 and x ∈ Hα[a, b], we have:

‖x‖∞ ≤ max (1, (b − a)α) ‖x‖α.

In particular, the inequality ‖x‖∞ ≤ ‖x‖α is satisfied for a = 0 and b = 1 [4].

Lemma 2. For 0 < α < β ≤ 1, we have:

Hβ[a, b] ⊂ Hα[a, b] ⊂ C[a, b].

Furthermore, for x ∈ Hβ[a, b], we have:

‖x‖α ≤ max
(

1, (b − a)β−α
)
‖x‖β.

Particularly, the inequality ‖x‖∞ ≤ ‖x‖α ≤ ‖x‖β is satisfied for a = 0 and b = 1, [4].

Lemma 3. Let us assume that 0 < α < β ≤ 1 and E is a bounded subset in Hβ[a, b], then E is a relatively
compact subset in Hα[a, b] [5].

Lemma 4. Assume that 0 < α < β ≤ 1, and by Bβ
r , we indicate the ball centered at θ and radius r in the space

Hβ[a, b], i.e., Bβ
r = {x ∈ Hβ[a, b] : ‖x‖β ≤ r}. Bβ

r is a closed subset of Hα[a, b] [5].

Corollary 1. Assume that 0 < α < β ≤ 1 and Bβ
r is a relatively compact subset in Hα[a, b] and a closed subset

of Hα[a, b], then Bβ
r is a compact subset in the space Hα[a, b], [5].

Now let us give the following theorem, which is the base tool used in our study.

Theorem 1 (Schauder’s fixed point theorem). Let E be a nonempty, compact subset of a Banach space
(X, ‖ · ‖), convex, and let T : E → E be a continuity mapping. Then, T has at least one fixed point in E [7].

3. Main Result

Now, we are ready to give the main result of the paper. In this section, we introduce the following
sufficient conditions for the main theorem in our study, and we will prove the solvability of Equation (4)
in Hölder spaces.

Hereafter, we suppose unless stated otherwise that α and β are arbitrarily fixed numbers such
that 0 < α < β ≤ 1.

Theorem 2. Assume that the following Conditions (i)–(iv) are satisfied:

(i) p ∈ Hβ[0, 1].
(ii) k : [0, 1]× [0, 1] → R is a continuous function such that there exists a constant kβ > 0 such that:

|k(t, τ)− k(s, τ)| ≤ kβ|t − s|β,

for any t, s, τ ∈ [0, 1].
(iii) The operator T : Hβ[0, 1] → C[0, 1] is continuous on Hβ[0, 1] with respect to the norm ‖ · ‖α, and there

exists a function f : R+ → R+, which is non-decreasing such that the inequality holds:

‖Tx‖∞ ≤ f
(
‖x‖β

)
,

for any x ∈ Hβ[0, 1].
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(iv) There exists a positive solution r0 of the inequality:

‖p‖β + (2K + kβ)r f (r) ≤ r,

where the constant K is defined by:

sup
{∫ 1

0
|k(t, τ)|dτ : t ∈ [0, 1]

}
≤ K.

Then, Equation (4) has at least one solution x = x(t) belonging to space Hα[0, 1].

Proof. Now, let us consider x ∈ Hβ[0, 1] and the operator F defined on the space Hβ[0, 1] by
the formula:

(Fx)(t) = p(t) + x(t)
∫ 1

0
k(t, τ)(Tx)(τ)dτ,

for t ∈ [0, 1]. Then, for arbitrarily fixed t, s ∈ [0, 1], (t 	= s), in view of our assumptions, we get:

(Fx)(t)− (Fx)(s)

= p(t) + x(t)
∫ 1

0
k(t, τ)(Tx)(τ)dτ − p(s)− x(s)

∫ 1

0
k(s, τ)(Tx)(τ)dτ

= p(t)− p(s) + x(t)
∫ 1

0
k(t, τ)(Tx)(τ)dτ − x(s)

∫ 1

0
k(s, τ)(Tx)(τ)dτ

+x(s)
∫ 1

0
k(t, τ)(Tx)(τ)dτ − x(s)

∫ 1

0
k(t, τ)(Tx)(τ)dτ

= p(t)− p(s) + (x(t)− x(s))
∫ 1

0
k(t, τ)(Tx)(τ)dτ

+x(s)
∫ 1

0
(k(t, τ)− k(s, τ))(Tx)(τ)dτ

and:
|(Fx)(t)− (Fx)(s)|

|t − s|β

≤ |p(t)− p(s)|
|t − s|β + |x(t)−x(s)|

|t−s|β
∫ 1

0 |k(t, τ)||(Tx)(τ)|dτ

+
|x(s)|
|t − s|β

∫ 1
0 |k(t, τ)− k(s, τ)||(Tx)(τ)|dτ

≤ Hβ
p + ‖x‖β‖Tx‖∞

∫ 1
0 |k(t, τ)|dτ

+|x(s)|
∫ 1

0
|k(t, τ)− k(s, τ)|

|t − s|β |(Tx)(τ)|dτ

≤ Hβ
p + ‖x‖β‖Tx‖∞K + ‖x‖∞‖Tx‖∞

∫ 1
0 kβ

|t − s|β
|t − s|β dτ

≤ Hβ
p + ‖x‖β‖Tx‖∞K + ‖x‖β‖Tx‖∞kβ

≤ Hβ
p + ‖x‖β f

(
‖x‖β

)
K + ‖x‖β f

(
‖x‖β

)
kβ

= Hβ
p + (K + kβ)‖x‖β f

(
‖x‖β

)
.

(7)

This demonstrates that the operator F maps Hβ[0, 1] into itself.
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Besides, for any x ∈ Hβ[0, 1], we get:

|(Fx)(0)| ≤ |p(0)|+ |x(0)|
∫ 1

0 |k(0, τ)||(Tx)(τ)|dτ

≤ |p(0)|+ ‖x‖∞‖Tx‖∞K
≤ |p(0)|+ ‖x‖β‖Tx‖∞K

≤ |p(0)|+ ‖x‖β f
(
‖x‖β

)
K.

(8)

By the inequalities (7) and (8), we derive that:

‖Fx‖β ≤ ‖p‖β + (2K + kβ)‖x‖β f
(
‖x‖β

)
. (9)

Since positive number r0 is the solution of the inequality given in Hypothesis (iv), from (9) and
function f : R+ → R+, which is non-decreasing, we conclude that the inequality:

‖Fx‖β ≤ ‖p‖β + (2K + kβ)r0 f (r0) ≤ r0 (10)

holds. As a result, it follows that F transform the ball:

Bβ
r0 = {x ∈ Hβ[0, 1] : ‖x‖β ≤ r0}

into itself. That is, F : Bβ
r0 → Bβ

r0 . Thus, we have that the set Bβ
r0 is relatively compact in Hα[0, 1] for any

0 < α < β ≤ 1. Furthermore, Bβ
r0 is a compact subset in Hα[0, 1].

In the sequel, we will demonstrate that the operator F is continuous on Bβ
r0 with respect to the

norm ‖ · ‖α, where 0 < α < β ≤ 1.
Let y ∈ Bβ

r0 be an arbitrary point in Bβ
r0 . Then, we get:

(Fx)(t)− (Fy)(t)− ((Fx)(s)− (Fy)(s))
= p(t) + x(t)

∫ 1
0 k(t, τ)(Tx)(τ)dτ

−p(t)− y(t)
∫ 1

0 k(t, τ)(Ty)(τ)dτ

−p(s)− x(s)
∫ 1

0 k(s, τ)(Tx)(τ)dτ

+p(s) + y(s)
∫ 1

0 k(s, τ)(Ty)(τ)dτ

(11)

for any x ∈ Bβ
r0 and t, s ∈ [0, 1]. Equality (11) can be rewritten as:

(Fx)(t)− (Fy)(t)− ((Fx)(s)− (Fy)(s))
= x(t)

∫ 1
0 k(t, τ)(Tx)(τ)dτ − y(t)

∫ 1
0 k(t, τ)(Tx)(τ)dτ

+y(t)
∫ 1

0 k(t, τ)(Tx)(τ)dτ − y(t)
∫ 1

0 k(t, τ)(Ty)(τ)dτ

−x(s)
∫ 1

0 k(s, τ)(Tx)(τ)dτ + y(s)
∫ 1

0 k(s, τ)(Tx)(τ)dτ

−y(s)
∫ 1

0 k(s, τ)(Tx)(τ)dτ + y(s)
∫ 1

0 k(s, τ)(Ty)(τ)dτ.

(12)

By (12), we have:

(Fx)(t)− (Fy)(t)− ((Fx)(s)− (Fy)(s))
= (x(t)− y(t))

∫ 1
0 k(t, τ)(Tx)(τ)dτ

+y(t)
∫ 1

0 k(t, τ)((Tx)(τ)− (Ty)(τ))dτ

−(x(s)− y(s))
∫ 1

0 k(s, τ)(Tx)(τ)dτ

−y(s)
∫ 1

0 k(s, τ)((Tx)(τ)− (Ty)(τ))dτ.

(13)
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(13) yields the following equality:

((Fx)(t)− (Fy)(t))− ((Fx)(s)− (Fy)(s))
= [(x(t)− y(t))− (x(s)− y(s))]

∫ 1
0 k(t, τ)(Tx)(τ)dτ

+(x(s)− y(s))
∫ 1

0 (k(t, τ)− k(s, τ))(Tx)(τ)dτ

+(y(t)− y(s))
∫ 1

0 k(t, τ)((Tx)(τ)− (Ty)(τ))dτ

+y(s)
∫ 1

0 (k(t, τ)− k(s, τ))((Tx)(τ)− (Ty)(τ))dτ.

(14)

Hence, taking into account (14), we can write:

|(Fx)(t)−(Fy)(t)−((Fx)(s)−(Fy)(s))|
|t−s|α

≤ |(x(t)−y(t))−(x(s)−y(s))|
|t−s|α

∫ 1
0 |k(t, τ)||(Tx)(τ)|dτ

+
|x(s)− y(s)|

|t − s|α
∫ 1

0 |k(t, τ)− k(s, τ)||(Tx)(τ)|dτ

+
|y(t)− y(s)|

|t − s|α
∫ 1

0 |k(t, τ)||(Tx)(τ)− (Ty)(τ)|dτ

+
|y(s)|
|t − s|α

∫ 1
0 |k(t, τ)− k(s, τ)||(Tx)(τ)− (Ty)(τ)|dτ

≤ ‖x − y‖α‖Tx‖∞K + ‖x − y‖∞‖Tx‖∞
∫ 1

0 kβ|t − s|β−αdτ

+‖y‖α‖Tx − Ty‖∞K + ‖y‖∞‖Tx − Ty‖∞
∫ 1

0 kβ|t − s|β−αdτ

≤ K‖x − y‖α‖Tx‖∞ + kβ‖x − y‖α‖Tx‖∞
+K‖y‖α‖Tx − Ty‖∞ + kβ‖y‖α‖Tx − Ty‖∞

≤ K f
(
‖x‖β

)
‖x − y‖α + kβ f

(
‖x‖β

)
‖x − y‖α

+K‖y‖α‖Tx − Ty‖∞ + kβ‖y‖α‖Tx − Ty‖∞

= (K + kβ) f
(
‖x‖β

)
‖x − y‖α + (K + kβ)‖y‖α‖Tx − Ty‖∞

(15)

for all t, s ∈ [0, 1] with t 	= s. Besides, for x, y ∈ Bβ
r0 , we obtain the following inequality:

|(Fx)(0)− (Fy)(0)|
=

∣∣∣p(0) + x(0)
∫ 1

0 k(0, τ)(Tx)(τ)dτ

−p(0)− y(0)
∫ 1

0 k(0, τ)(Ty)(τ)dτ
∣∣∣

=
∣∣∣x(0) ∫ 1

0 k(0, τ)(Tx)(τ)dτ − y(0)
∫ 1

0 k(0, τ)(Tx)(τ)dτ

+y(0)
∫ 1

0 k(0, τ)(Tx)(τ)dτ − y(0)
∫ 1

0 k(0, τ)(Ty)(τ)dτ
∣∣∣

=
∣∣∣(x(0)− y(0))

∫ 1
0 k(0, τ)(Tx)(τ)dτ

+y(0)
∫ 1

0 k(0, τ)((Tx)(τ)− (Ty)(τ))dτ
∣∣∣

≤ ‖x − y‖∞K‖Tx‖∞ + ‖y‖∞K‖Tx − Ty‖∞
≤ K‖x − y‖α‖Tx‖∞ + K‖y‖α‖Tx − Ty‖∞

≤ K f
(
‖x‖β

)
‖x − y‖α + K‖y‖α‖Tx − Ty‖∞.

(16)

From (15) and (16), we have that:

‖Fx − Fy‖α

= |(Fx − Fy)(0)|+ Hα
Fx−Fy

= |(Fx)(0)− (Fy)(0)|
+ sup

{ |(Fx)(t)−(Fy)(t)−((Fx)(s)−(Fy)(s))|
|t−s|α : t, s ∈ [0, 1] and t 	= s

}
≤ (2K + kβ) f

(
‖x‖β

)
‖x − y‖α + (2K + kβ)‖y‖α‖Tx − Ty‖∞.

(17)
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Moreover, since ‖y‖α ≤ ‖y‖β ≤ r0 and f
(
‖x‖β

)
≤ f (r0), we derive from (17) that the following

inequality holds:

‖Fx − Fy‖α ≤ (2K + kβ) f (r0)‖x − y‖α + (2K + kβ)r0‖Tx − Ty‖∞. (18)

Since the operator T : Hβ[0, 1] → C[0, 1] is continuous on Hβ[0, 1] with respect to the norm ‖ · ‖α,

it is also continuous at the point y ∈ Bβ
r0 . Let us take an arbitrary ε > 0. Since the operator T is

continuous at the point y ∈ Bβ
r0 , there exists δ > 0 such that the inequality:

‖Tx − Ty‖∞ <
ε

2(2K + kβ)r0

is satisfied for all x ∈ Bβ
r0 , where ‖x − y‖α < δ and:

0 < δ <
ε

2(2K + kβ) f (r0)
.

Then, taking into account (18), we derive the following inequality:

‖Fx − Fy‖α ≤ (2K + kβ) f (r0)‖x − y‖α + (2K + kβ)r0‖Tx − Ty‖∞

<
ε

2
+

ε

2
= ε.

As a result, we infer that the operator F is continuous at the point y ∈ Bβ
r0 . Because y was chosen

arbitrarily, we deduce that F is continuous on Bβ
r0 with respect to the norm ‖ · ‖α. As Bβ

r0 is compact in
Hα[0, 1], from the classical Schauder fixed point theorem, we get the desired result.

4. Examples

In this part, we conclude the article by presenting two examples that illustrate the generality and
efficiency of our results.

Example 1. Let us consider the following quadratic integral equation:

x(t) = 6
√

q cos t + q̂ + x(t)
∫ 1

0

5
√

mt2 + τ sin x2(τ)dτ, t ∈ I = [0, 1]. (19)

Here, q, q̂ and m are the suitable nonnegative constants to be determined such that Conditions (i)–(iv) of
Theorem 2 hold.

Set p(t) = 6
√

q cos t + q̂ and k(t, τ) = 5
√

mt2 + τ for all t, τ ∈ [0, 1].
It is easily seen that:

|p(t)− p(s)| =
∣∣∣ 6
√

q cos t + q̂ − 6
√

q cos s + q̂
∣∣∣

≤
∣∣∣ 6
√

q cos t + q̂ − q cos s − q̂
∣∣∣

≤ 6
√

q| cos t − cos s|

≤ 6

√
2q

∣∣∣∣sin
(

t + s
2

)∣∣∣∣ ∣∣∣∣sin
(

t − s
2

)∣∣∣∣
≤ 6

√
q 6
√

|t − s|

= 6
√

q|t − s| 1
6
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for all t, s ∈ [0, 1]. This says that p ∈ H 1
6
[0, 1] and, moreover, H

1
6
p = 6

√
q. Therefore, we can take the constants

α and β as 0 < α < 1
6 and β = 1

6 . Therefore, Assumption (i) of Theorem 2 holds. Note that:

‖p‖ 1
6

= |p(0)|+ sup

{
|p(t)− p(s)|

|t − s| 1
6

: t, s ∈ [0, 1] and t 	= s

}

= |p(0)|+ H
1
6
p = 6

√
q + q̂ + 6

√
q.

Further, we have:

|k(t, τ)− k(s, τ)| =
∣∣∣ 5
√

mt2 + τ − 5
√

ms2 + τ
∣∣∣

≤
∣∣∣∣ 5
√

m(t2 − s2)

∣∣∣∣
= 5

√
m 5
√

|(t2 − s2)|

= 5
√

m 5
√

|t − s| 5
√

|t + s|

≤ 5
√

2m|t − s| 1
6 |t − s| 1

30

≤ 5
√

2m|t − s| 1
6

for all t, s, τ ∈ [0, 1]. Assumption (ii) of Theorem 2 holds with kβ = k 1
6
= 5

√
2m.

Since (Tx)(τ) = sin x2(τ) and:∣∣∣sin x2(τ)
∣∣∣ ≤ ∣∣∣x2(τ)

∣∣∣ = |x(τ)||x(τ)| ≤ ‖x‖2
∞ ≤ ‖x‖2

β

for all x ∈ Hβ[0, 1] and τ ∈ [0, 1], the inequality:

‖Tx‖∞ = sup
τ∈[0,1]

∣∣∣sin x2(τ)
∣∣∣ ≤ ‖x‖2

β

holds. Therefore, we can choose the function f : R+ → R+ as f (x) = x2. This function is non-decreasing and
satisfies the inequality in Assumption (iii).

We will show that the operator T : Hβ[0, 1] → C[0, 1] is continuous on Hβ[0, 1] with respect to the norm
‖ · ‖α. Let us take x, y ∈ Hβ[0, 1] and τ ∈ [0, 1].

It is clear that:∣∣∣sin x2(τ)− sin y2(τ)
∣∣∣ ≤

∣∣∣x2(τ)− y2(τ)
∣∣∣

= |x(τ)− y(τ)| |x(τ) + y(τ)|
= |x(τ)− y(τ)| |x(τ)− y(τ) + 2y(τ)|
≤ |x(τ)− y(τ)| (|x(τ)− y(τ)|+ 2 |y(τ)|)
≤ ‖x − y‖∞(‖x − y‖∞ + 2‖y‖∞)

≤ ‖x − y‖α (‖x − y‖α + 2‖y‖α)

and:

‖Tx − Ty‖∞ ≤ sup
τ∈[0,1]

∣∣∣sin x2(τ)− sin y2(τ)
∣∣∣ ≤ ‖x − y‖α(‖x − y‖α + 2‖y‖α).
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Now, we will show that T is continuous at the point y ∈ Hβ[0, 1] with respect to the norm ‖ · ‖α. Let us
take an arbitrary ε > 0. Then, there exists the positive number δ such that ‖x − y‖α < δ and the inequality:

‖Tx − Ty‖∞ < δ (δ + 2‖y‖α) < ε

is satisfied for all x ∈ Hβ[0, 1], where 0 < δ <
√

‖y‖2
α + ε − ‖y‖α. Therefore, we can choose the positive

number δ as δ = 1
2

√
‖y‖2

α + ε − ‖y‖α. As a result, we infer that the operator T is continuous at the point

y ∈ Bβ
r0 . Since y was chosen arbitrarily, we deduce that T is continuous on Hβ[0, 1] with respect to the

norm ‖ · ‖α.
Further, we can calculate that:

sup
{∫ 1

0
|k(t, τ)|dτ : t ∈ [0, 1]

}
= sup

{∫ 1

0

∣∣∣ 5
√

mt2 + τ
∣∣∣ dτ : t ∈ [0, 1]

}
= sup

{
5
6

(
5
√
(mt2 + 1)6 − 5

√
(mt2)6

)
: t ∈ [0, 1]

}
≤ sup

{
5
6

5
√
(mt2 + 1)6 : t ∈ [0, 1]

}
=

5
6

5
√
(m + 1)6

≤ 5
√
(m + 1)6

= K.

In this case, the inequality appearing in assumption (vi) of Theorem 2 takes the following form:

‖p‖ 1
6
+ (2K + kβ)r f (r) ≤ r

which is equivalent to:

6
√

q + 6
√

q + q̂ +
(

2 5
√
(m + 1)6 +

5
√

2m
)

rr2 ≤ r. (20)

There exists a positive number r0 satisfying (20) provided that the constants q, q̂ and m are chosen
as suitable.

For example, if one chose q = 1
1018 , q̂ = 0 and m = 1

216 , then the inequality:

2
103 +

⎛⎝2 5

√(
1

216 + 1
)6

+ 0.125

⎞⎠ r3 ≤ r

holds for r = r0 = 1
10 . Therefore, using Theorem 2, we infer that there is at least one solution x of Equation (19)

in the space Hα[0, 1] with 0 < α < 1
6 .

Example 2. Let us consider the following quadratic integral equation:

x(t) =
1

106 arctan 3
√

t + ln q + x(t)
∫ 1

0

3
√

m sin t + τ
√

|x(τ)|dτ, t ∈ I = [0, 1], (21)

where q and m are the suitable positive constants to be selected for which Conditions (i)–(iv) of Theorem 2 hold.
Set p(t) = 1

106 arctan 3
√

t + ln q and k(t, τ) = 3
√

m sin t + τ for all t, τ ∈ [0, 1].
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It is obvious that the inequality:

|p(t)− p(s)| =

∣∣∣∣ 1
106 arctan 3

√
t + ln q − 1

106 arctan 3
√

s + ln q
∣∣∣∣

≤
∣∣∣∣ 1
106 arctan

(
3
√

t + ln q − 3
√

s + ln q
)∣∣∣∣

=
1

106

∣∣∣ 3
√

t + ln q − 3
√

s + ln q
∣∣∣

≤ 1
106

∣∣∣ 3
√

t + ln q − s − ln q
∣∣∣

≤ 1
106

3
√

|t − s|

=
1

106 |t − s| 1
3

holds for all t, s ∈ [0, 1]. Therefore, p ∈ H 1
3
[0, 1] and H

1
3
p = 1

106 . Hence, the constants α and β can be taken as

0 < α < 1
3 and β = 1

3 .
Therefore, Assumption (i) of Theorem 2 is satisfied. Note that:

‖p‖ 1
3

= |p(0)|+ sup

{
|p(t)− p(s)|

|t − s| 1
3

: t, s ∈ [0, 1] and t 	= s

}

= |p(0)|+ H
1
3
p =

1
106

∣∣∣arctan 3
√

ln q
∣∣∣+ 1

106 .

Further, we have:

|k(t, τ)− k(s, τ)| =
∣∣∣ 3
√

m sin t + τ − 3
√

m sin s + τ
∣∣∣

≤
∣∣∣∣ 3
√

m(sin t − sin s)
∣∣∣∣

≤ 3

√
2m

∣∣∣∣cos
(

t + s
2

)∣∣∣∣ ∣∣∣∣sin
(

t − s
2

)∣∣∣∣
≤ 3

√
m|t − s| 1

3

for all t, s, τ ∈ [0, 1]. Assumption (ii) of Theorem 2 is satisfied with kβ = k 1
3
= 3

√
m.

Since (Tx)(τ) =
√

|x(τ)| and:√
|x(τ)| ≤

√
‖x‖∞ ≤

√
‖x‖β

for all x ∈ Hβ[0, 1] and τ ∈ [0, 1], the inequality:

‖Tx‖∞ = sup
τ∈[0,1]

∣∣∣∣√|x(τ)|
∣∣∣∣ ≤ √

‖x‖β

holds. Therefore, we can choose the function f : R+ → R+ as f (x) =
√

x. This function is non-decreasing and
satisfies the inequality in Assumption (iii).

We will show that the operator T : Hβ[0, 1] → C[0, 1] is continuous on Hβ[0, 1] with respect to the norm
‖ · ‖α. Let us take x, y ∈ Hβ[0, 1] and τ ∈ [0, 1]. It is certain that:∣∣∣∣√|x(τ)| −

√
|y(τ)|

∣∣∣∣ ≤ √
|x(τ)− y(τ)| ≤

√
‖x − y‖∞ ≤

√
‖x − y‖α
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and:

‖Tx − Ty‖∞ ≤ sup
τ∈[0,1]

∣∣∣∣√|x(τ)| −
√

|y(τ)|
∣∣∣∣ ≤ √

‖x − y‖α.

Now, we will show that T is continuous at the point y ∈ Hβ[0, 1] with respect to the norm ‖ · ‖α. Let us
take an arbitrary ε > 0. Then, there exists the positive number δ such that ‖x − y‖α < δ and the inequality:

‖Tx − Ty‖∞ ≤
√

‖x − y‖α < ε

is satisfied for all x ∈ Hβ[0, 1]. Here, we can choose the positive number δ as δ = ε2.

As a result, we infer that the operator T is continuous at the point y ∈ Bβ
r0 . Since y was chosen arbitrarily,

we deduce that T is continuous on Hβ[0, 1] with respect to the norm ‖ · ‖α.
Further, we can calculate that:

sup
{∫ 1

0
|k(t, τ)|dτ : t ∈ [0, 1]

}
= sup

{∫ 1

0

∣∣∣ 3
√

m sin t + τ
∣∣∣ dτ : t ∈ [0, 1]

}
= sup

{
1
3

(
3
√
(m sin t + 1)4 − 3

√
(m sin t)4

)
: t ∈ [0, 1]

}
≤ sup

{
1
3

3
√
(m sin t + 1)4 : t ∈ [0, 1]

}
≤ 1

3
3
√
(m + 1)4

≤ 3
√
(m + 1)4

= K.

In this case, the inequality appearing in Assumption (vi) of Theorem 2 takes the following form:

‖p‖ 1
3
+ (2K + kβ)r f (r) ≤ r

which is equivalent to:

1
106

(∣∣∣arctan 3
√

ln q
∣∣∣+ 1

)
+

(
2 3
√
(m + 1)4 + 3

√
m
)

r
√

r ≤ r. (22)

There exists a positive number r0 satisfying (22) for chosen suitable constants q and m.
For example, if one chooses q = 1 and m = 1

512 , then the inequality:

1
106 +

⎛⎝2 3

√(
1 +

1
512

)4
+ 0.0016

⎞⎠ r
3
2 ≤ r

holds for r = r0 = 1
104 . Therefore, using Theorem 2, we infer that there is at least one solution x of Equation (21)

in the space Hα[0, 1] with 0 < α < 1
3 .

5. Conclusions

In this paper, we have investigated the existence of solutions of the integral Equation (4). It should
be noted that Equation (4) is more general than many equations considered up to now. For example,
it includes the equations examined in previous studies [4–6]. That is, if we take the operator T as
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(Tx)(τ) = x(τ), we obtain the integral Equation (1) in [4] with a = 0 and b = 1. On the other
hand, if we take (Tx)(τ) = x (r(τ)), we have the integral Equation (2) in [5]. Further, if we take
(Tx)(τ) = maxη∈[0,r(τ)] |x(η)|, we have the integral Equation (3) in [6].
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Abstract: In this paper, we investigate the existence of an absolute continuous solution to a class
of first-order nonlinear differential equation with integral boundary conditions (BCs) or with
infinite-point BCs. The Liouville-Caputo fractional derivative is involved in the nonlinear function.
We first consider the existence of a solution for the first-order nonlinear differential equation with
m-point nonlocal BCs. The existence of solutions of our problems is investigated by applying the
properties of the Riemann sum for continuous functions. Several examples are given in order to
illustrate our results.

Keywords: nonlinear boundary value problems; fractional-order differential equations;
Riemann-Stieltjes functional integral; Liouville-Caputo fractional derivative; infinite-point boundary
conditions; advanced and deviated arguments; existence of at least one solution

MSC: primary 26A33, 34B18, 34K37; secondary 34A08, 34B10

1. Introduction

Our objective in this article is to investigate the existence of absolute continuous solutions of
the nonlocal first-order boundary value problem (BVP) with the nonlinear function involving the
Liouville-Caputo fractional derivative:

dx
dt

= f
(
t, Dαx(t)

)
a.e. (0 < t < 1; 0 < α � 1), (1)

together with either the Riemann-Stieltjes functional integral boundary condition (with the advanced
or deviated argument φ) given by

∫ 1

0
x
(
φ(s)

)
dg(s) = x0

(
g : [0, 1] → [0, 1]; g(s) � 0

)
(2)

Symmetry 2018, 10, 508; doi:10.3390/sym10100508 www.mdpi.com/journal/symmetry424
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or the infinite-point boundary conditions given by

∞

∑
k=1

ak x
(
φ(τk)

)
= x0

(
ak > 0; τk ∈ (0, 1); φ(τk) � τk

)
, (3)

where g : [0, 1] → [0, 1] is an increasing function, α ∈ (0, 1] and Dα denotes the Liouville-Caputo
fractional derivative of order α. The integral in (2) is the Riemann-Stieltjes type with respect to g(s).
In the case when g(s) = s, the Riemann-Stieltjes integral in the boundary condition given by (2)
reduces to the relatively more familiar Riemann integral.

In the case when α = 1, the BVP (1) becomes the implicit differential problem given by

dx
dt

= f
(
t,

dx
dt
)

a.e. (0 < t < 1)

under the Riemann-Stieltjes functional integral BC (2) or infinite-point BCs (3).
Our results in this article are based upon Kolmogorov’s Compactness Criterion (see [1]) and upon

Schauder’s Fixed Point Theorem (see [2]).
Nonlinear BVPs with nonlocal multi-point BCs have received a lot of attention in recent years.

In fact, various conditions are obtained for the existence of solutions by (for example) Alvan et al. [3],
Benchohra et al. [4], Boucherif [5], El-Sayed and Bin-Taher [6], Gao and Han [7], Hamani et al. [8] and
Nieto et al. [9] (see also the references to the related earlier works which are cited in each of these
investigations).

BVPs with integral BCs arise naturally in semiconductor problems [10], thermal conduction
problems [11], hydrodynamic problems [12], population dynamics model [13], and so on (see also [14]).
Recently, these BVPs were extensively studied by (among others) Akcan and Çetin [15], Boucherif [16],
Benchohra et al. [17], Chalishajar and Kumar [18], Dou et al. [19], Li and Zhang [20], Liu et al. [21],
Song et al. [22], Tokmagambetov and Torebek [23], Wang et al. [24] and Yang and Qin [25] (see also
the references to the related earlier works which are cited in each of these investigations).

The study of BVPs involving infinite-point BCs has become attractive recently. In the year 2011,
Gao and Han [7] firstly studied the solutions to thefractional-order differential equation problem
with infinite-point BCs. Ever since then, many significant and interesting cases of BVPs of fractional
order were considered with infinite-point BCs by (for example) Ge et al. [26], Guo et al. [27],
Hu and Zhang [28], Li et al. [29], Liu et al. [30], Zhang and Zhong [31] and Zhang [32] (see also to
the references cited therein). In the year 2016, Xu and Yang [33] proposed a generalization of the PID
controller and studied two kinds of fractional-order differential equations arising in control theory
together with the infinite point boundary conditions. Their results can describe the corresponding
control system accurately and also provide a platform for the understanding of our environment.
However, investigations on the infinite-point BVPs for differential equations of fractional or integer
order have gradually aroused people’s attentions and interests, but such investigations are still not
too many.

Motivated by the above-mentioned developments and results, we consider the BVP given by (1)
and (2) or by (1) and (3). In each case, we determine sufficient conditions on f guaranteeing that
the problem (1) under the Riemann-Stieltjes functional integral BC (2) or the problem (1) under
infinite-point BC (3) has a solution. We first find the solutions of the problem (1) with the m-point BCs
given by

m

∑
k=1

ak x
(
φ(τk)

)
= x0

(
ak 	= 0; 0 < τk < 1

)
, (4)

and then, by using the properties of the Riemann sum for continuous functions, we investigate the
solutions of the BVP given by (1) and (2) as well as the BVP given by Equations (1) and (3). The solutions
of our problems in the Carathéodory sense are given under some weak conditions on f , which are
sufficiently general and easy to check.
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Our work has the following salient features. Firstly, a unified investigation involving both
the Riemann-Stieltjes integral as well as infinite points is presented here in the BCs of the BVP (1).
Secondly, to the best of our knowledge, most (if not all) of the earlier works dealt with the
Riemann-Stieltjes integral BCs or infinite-point BCs as separate cases. Here, if we have a way of
getting the continuous solution of the m-point BVP, we can (in a simple way) get a solution to the BVP
with the Riemann-Stieltjes integral or infinite points in the BCs.

2. Preliminaries

Let C(I) be the space of continuous functions defined on I with the norm given by

||x|| = sup
t∈I

|x(t)|,

and AC[0, 1] be the space of all absolutely continuous functions on [0, 1].
In addition, let L1(I) denote the class of the Lebesgue-integrable functions on the interval I = [0, 1]

with the norm given by

||y||L1 =
∫ 1

0
y(ξ)dξ.

Definition 1. The Riemann-Liouville fractional integral of the function f ∈ L1[0, T] of order β > 0 is defined
by (see [34,35])

Iβ f (t) =
1

Γ(β)

∫ t

0
(t − s)β−1 f (s) ds.

Definition 2. The Caputo (or, more precisely, the Liouville-Caputo) fractional derivative of f (t) of order
α (0 < α � 1) is defined as follows (see [34,35])

Dα f (t) = I1−α d
dt
{

f (t)
}
=

1
Γ(1 − α)

∫ t

0
(t − s)−α d

ds
{

f (s)
}

ds.

3. Existence of Solutions to (1) with the m-Point BCs (4)

Definition 3. A function x is called a solution of problem (1) with the m-point BCs (4) if x ∈ AC[0, 1] and
satisfies (1) and (4).

We make several assumptions as detailed below:

(i) The function f : [0, 1] × R → R is a Carathéodory function, that is, it possesses the
following properties:

(a) For each t ∈ [0, 1], f (t, ·) is continuous;

(b) For each u ∈ R, f (·, u) is measurable.

(ii) The function φ : [0, 1] → [0, 1] is continuous and advanced, φ(t) � t, or continuous and
deviated, φ(t) � t.

(iii) There exists an integrable function a ∈ L1[0, 1] and a constant b > 0 such that

| f (t, u)| � a(t) + b |u| for each t ∈ [0, 1] and u ∈ R

Lemma 1. The boundary value problem given by (1) and (4) is equivalent to the following integral equation:

x(t) = A

(
x0 −

m

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ

)
+
∫ t

0
y(ξ) dξ, (5)
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where y(t) is the solution of fractional-order integral equation given by

y(t) = f
(
t, I1−αy(t)

) (
t ∈ [0, 1]

)
(6)

and

A =

(
m

∑
k=1

ak

)−1

.

Proof. We begin by considering the problem (1) with the m-point BCs in (4). If we put y(t) = x′(t)
in (1), then Definition 2 implies that

y(t) = f
(
t, I1−αy(t)

)
.

We also have
x(t) = x(0) + I1y(t). (7)

We now use the nonlocal condition (4) in order to compute the constant x(0). Indeed, upon setting
t = φ(τk) ∈ (0, 1) in Equation (7), we get

x(φ(τk)) =
∫ φ(τk)

0
y(ξ) dξ + x(0),

so that we have
m

∑
k=1

ak x(φ(τk)) =
m

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ + x(0)

m

∑
k=1

ak.

From Equation (4), we find that

x0 =
m

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ + x(0)

m

∑
k=1

ak,

which yields

x(0) = A

(
x0 −

m

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ

)
.

Substituting this last evaluation in Equation (7), we obtain formula (5).
Finally, in order to complete the proof of the above Lemma, we show that Equation (5) satisfies

problem (1) together with the m-point BCs in (4). In fact, from (5), we obtain

Dαx(t) = I1−α d
dt

{x(t)} = I1−αy(t).

In addition, upon differentiating (5) with respect to t, we have

dx
dt

= y(t) = f
(
t, I1−αy(t)

)
= f

(
t, Dαx(t)

)
.

Again, from (5), we have

m

∑
k=1

ak x
(
φ(τk)

)
= x0 −

m

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ +

m

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ = x0.

This proves the equivalence between the nonlocal problem given by (1) and (2) and the integral
Equation (5).

For the problem (1) with the m-point BCs (4), we prove Theorem 1 below.
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Theorem 1. Suppose that the assumptions (i) to (iii) are satisfied. If

b
Γ(2 − α)

< 1,

then the fractional-order integral equation (6) has a solution y ∈ L1[0, 1].
Suppose also that the coefficients ak satisfy the following inequality:

m

∑
k=1

ak 	= 0.

Then the problem (1) together with the m-point BCs in (4) has at least one solution x ∈ AC[0, 1] given
by (5).

Proof. Let us define the operator T associated with Equation (6) by

(Ty)(t) = f
(
t, I1−αy(t)

)
.

In addition, for a positive number r, let

Br = {y : y ∈ L1(I) and ||y||L1 � r} ⊂ L1[0, 1],

where

r � ||a||L1

1 − b
Γ(2−α)

.

Clearly, Br is nonempty, closed, convex and bounded.
From the assumption (i), we can deduce that the operator T is continuous.
Suppose that y is an arbitrary element in Br. We will show that TBr ⊂ r. Indeed, from (6) and the

assumptions (i) and (iii), we get

||Ty||L1 =
∫ 1

0
|Ty(t)| dt

�
∫ 1

0
|a(t)|dt + b

∫ 1

0

∫ t

0

(t − ξ)−α

Γ(1 − α)
|y(ξ)| dξ dt

� ||a||L1 + b
∫ 1

0

∫ 1

ξ

(t − ξ)−α

Γ(1 − α)
dt |y(ξ)| dξ

� ||a||L1 +
b

Γ(2 − α)
‖y‖L1 � ||a||L1 +

b
Γ(2 − α)

r � r,

which implies that TBr ⊂ Br.
We will now show that T is a compact operator. In fact, if we let Ω be a bounded subset of

Br, then T(Ω) is clearly seen to be bounded in L1[0, 1], that is, the first condition of Kolmogorov’s
Compactness Criterion (see [1]) is satisfied.

We next prove that

(Ty)h → Ty uniformly in L1[0, 1] (h → 0),

where

(Ty)h(t) =
1
h

∫ t+h

t
(Ty)(ξ) dξ.
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For each y ∈ Ω, we thus find that

||(Ty)h − Ty||L1 =
∫ 1

0
|(Ty)h(t)− (Ty)(t)| dt

=
∫ 1

0
|1
h

∫ t+h

t
(Ty)(ξ) dξ − (Ty)(t)| dt

�
∫ 1

0

(
1
h

∫ t+h

t
|(Ty)(ξ)− (Ty)(t)| dξ

)
dt

�
∫ 1

0

1
h

∫ t+h

t

∣∣ f
(
ξ, I1−αy(ξ)

)
− f

(
t, I1−αy(t)

)∣∣ dξ dt.

By the assumptions (i) and (iii), y ∈ Ω implies that f ∈ L1[0, 1], so it follows that (see [36])

1
h

∫ t+h

t

∣∣ f
(
ξ, I1−αy(ξ)

)
− f

(
t, I1−αy(t)

)∣∣ dξ → 0 (h → 0) a.e.
(
t ∈ [0, 1]

)
.

Then, by Kolmogorov’s Compactness Criterion (see [1]), we find that T(Ω) is relatively compact,
that is, T is a compact operator.

As a consequence of Schauder’s Fixed Point Theorem (see [2]), the operator T has a fixed point in
Br. This proves the existence of the solution y ∈ L1[0, 1] of Equation (6). Consequently, based on the
above Lemma, problem (1) together with the m-point BCs (4) possess a solution x ∈ AC(0, 1).

Now, from Equation (5), we have

x(0) = lim
t→0+

x(t) = A x0 − A
m

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ

and

x(1) = lim
t→1−

x(t) = A x0 − A
m

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ +

∫ 1

0
y(ξ) dξ,

from which we deduce that Equation (5) has a solution x ∈ AC[0, 1].
Consequently, the nonlocal problem given by (1) and (4) has a solution x ∈ AC[0, 1] given

by (5).

4. Riemann-Stieltjes Functional Integral BCs

Let x ∈ AC[0, 1] be a solution of the problem (1) with the m-point BCs in (4). Then, we have the
following theorem.

Theorem 2. Suppose that the assumptions (i) to (iii) are satisfied. If

b
Γ(2 − α)

< 1

and g : [0, 1] → [0, 1] is an increasing function, then there exists a solution x ∈ AC[0, 1] of the
following problem:

x′(t) = f
(
t, Dαx(t)

)
a.e.

(
t ∈ (0, 1); α ∈ (0, 1]

)
,

together with the Riemann-Stieltjes functional integral condition:

∫ 1

0
x
(
φ(s)

)
dg(s) = x0,
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which is represented by
x(t) = [g(1)− g(0)]−1 x0 − [g(1)− g(0)]−1

·
∫ 1

0

∫ φ(s)

0
y(ξ) dξ dg(s) +

∫ t

0
y(ξ) dξ.

(8)

Proof. Let

ak = g(tk)− g(tk−1)
(
τk ∈ (tk−1, tk); 0 � t0 < t1 < t2, · · · < tn � 1

)
.

Then, the multi-point nonlocal condition (4) becomes

m

∑
k=1

[g(tk)− g(tk−1)] x
(
φ(τk)

)
= x0.

From the continuity of the solution x of the multi-point nonlocal problem given by (1) and (4),
we can get

lim
m→∞

m

∑
k=1

[
g(tk)− g(tk−1)

]
x
(
φ(τk)

)
=

∫ 1

0
x
(
φ(s)

)
dg(s).

Furthermore, the multi-point nonlocal boundary condition (4) can be transformed into the
following Riemann-Stieltjes functional integral form:

∫ 1

0
x
(
φ(s)

)
dg(s) = x0.

In addition, from the functional integral Equation (5), we have

lim
m→∞

x(t) = [g(1)− g(0)]−1 x0 − [g(1)− g(0)]−1

· lim
m→∞

m

∑
k=1

[
g(tk)− g(tk−1)

] ∫ φ(τk)

0
y(ξ)dξ +

∫ t

0
y(ξ)dξ

= [g(1)− g(0)]−1 x0 − [g(1)− g(0)]−1

·
∫ 1

0

∫ φ(s)

0
y(ξ) dξ dg(s) +

∫ t

0
y(ξ)dξ.

Hence, the continuous solution of the first-order nonlinear differential Equation (1) with the
Riemann-Stieltjes functional integral condition (2) is given by (8).

We would like to provide two examples of the first order BVP (1) with the Riemann-Stieltjes
functional integral boundary condition (2) (with the advanced or deviated argument φ) whose solutions
are ensured by Theorem 2.

Example 1. Let the nonlinear function f (t, u) in (1) be given by

f (t, u) = cos
(
3(t + 1)

)
+

1
5

(
t3 sin u + e−t u

)
.

It is clear that the assumptions (i) and (iii) of Theorem 2 are fulfilled with

a(t) = cos
(
3(t + 1)

)
∈ L1[0, 1] and b =

2
5

.

Let the fractional order in (1) be α = 1
2 . Then

b
Γ(2 − α)

≈ 0.4503338 < 1.
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In this case, the first-order BVP (1) has the following form:

dx
dt

= cos
(
3(t + 1)

)
+

1
5
[
t3 sin D1/2x(t) + e−t D1/2x(t)

]
. (9)

Let the function g : [0, 1] → [0, 1] be defined by the formula

g(t) = t ln (1 + t) .

If β ∈ (0, 1), we consider the advanced function φ(t) = tβ. Then, the integral condition (2) assumes the
following form: ∫ 1

0
x
(
tβ
)

d
(
t ln(1 + t)

)
= x0. (10)

Thus, clearly, one can obtain the existence of a solution of (9) and (10).

Example 2. Let f (t, u), g(t), α and β be as in Example (1) and consider the deviated function φ(t) = βt. Then
the functional integral condition (2) becomes

∫ 1

0
x(βt) d

(
t ln(1 + t)

)
= x0. (11)

Therefore, we can obtain the existence of a solution of (9) and (11).

We now consider another Riemann-Stieltjes nonlocal integral boundary condition.

Corollary 1. Let the assumptions of Theorem 2 be satisfied. Then there exists a solution x ∈ AC[0, 1] of the
following problem:

x′(t) = f
(
t, Dαx(t)

)
a.e.

(
t ∈ (0, 1); α ∈ (0, 1]

)
,

together with the Riemann-Stieltjes nonlocal integral condition given by

∫ d

c
x
(
φ(s)

)
dg(s) = x0 (0 < c < d < 1),

which is represented by

x(t) = [g(d)− g(c)]−1 x0 − [g(d)− g(c)]−1

·
∫ d

c

∫ φ(s)

0
y(ξ) dξ dg(s) +

∫ t

0
y(ξ) dξ.

Proof. The proof of the above corollary is similar to that of Theorem 2. Here, in this case, we let

ak = g(tk)− g(tk−1)
(
τk ∈ (tk−1, tk); 0 < c � t0 < t1 < t2, · · · < tn � d < 1

)
.

5. Infinite-Point Boundary Conditions

Let x ∈ AC[0, 1] be the solution of the nonlocal problem given by (1) and (4). Then, we have the
following theorem.

Theorem 3. Let the assumptions (i) and (iii) be satisfied and let

φ(τk) � τk and
b

Γ(2 − α)
< 1.
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Suppose also that the following series:

∞

∑
k=1

ak = B−1

is convergent. Then there exists a solution x ∈ AC[0, 1] of the nonlocal problem (1) and (3) given by the
following integral equation:

x(t) = B x0 − B
∞

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ +

∫ t

0
y(ξ) dξ (12)

for every solution y of the functional equation (6).

Proof. Let x ∈ AC[0, 1] be a solution of the infinite point BVP (1) and (4) given by (5). Since

∣∣ak x
(
φ(τk)

)∣∣ � ak ||x|| and
∣∣∣∣ak

∫ φ(τk)

0
y(ξ) dξ

∣∣∣∣ � ak ||y||L1 ,

by the comparison test, the series in (3) and

∞

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ

are convergent. Thus, by taking the limit as m → ∞ in (5), we obtain

x(t) = B x0 − B
∞

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ +

∫ t

0
y(ξ) dξ,

which, for every solution y of the functional Equation (6), satisfies the differential Equation (1).
Furthermore, from (12), we have

∞

∑
k=1

ak x
(
φ(τk)

)
= B−1 B x0 − B−1 B

∞

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ

+
∞

∑
k=1

ak

∫ φ(τk)

0
y(ξ) dξ = x0. (13)

This proves that the solution of the integral equation (12) satisfies the problem given by (1) under
infinite-point BCs (3).

6. Further Illustrative Examples

In this section, we consider the following examples with a view to illustrating some of our
main results.

Example 3. Consider the following infinite-point BVP:

dx
dt

=
ln
(
1 + |D2/3x(t)|

)
2 + t2 + t3e−t2

a.e. (0 < t < 1)

together with
∞

∑
k=1

1
k3 x

(
k2 − 1

k2 − σ sin2
(√

k2 − 1
k2

))
(0 � σ � 1).
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If we set

f (t, u) =
ln
(
1 + |u(t)|

)
2 + t2 + t3e−t2

,

then
| f (t, u)| � t3e−t2

+
1
3

|u|.

We also set
a(t) = t3e−t2 ∈ L1[0, 1] and b =

1
3

.

Thus, clearly, assumptions (i) and (iii) are satisfied.
On the other hand, we have

α =
2
3

so that
b

Γ(2 − α)
≈ 0.3731148 < 1.

Now, if we let

φ(τk) = τk − λ sin2 (√τk
)

and τk =
k2 − 1

k2 ∈ (0, 1),

then
φ(τk) � τk.

In addition, the following series:
∞

∑
k=1

ak =
∞

∑
k=1

1
k3

is convergent. Therefore, by appealing to Theorem 3, the given infinite-point BVP has an absolute
continuous solution.

Example 4. Consider the following infinite-point implicit BVP:

dx
dt

=
[x′(t)]3

2(1 + |x′(t)|2) +
1

4π
sin

(
π x′(t)

)
+ cos t3 + 3 a.e.

(
0 < t < 1; x′(t) :=

dx
dt

)
together with

∞

∑
k=1

10
(

3
4

)k
x

(
1
k3 − λ exp

(
− 1

k3

))
(0 � λ � 1).

If we set

f (t, u) =
u3

2(1 + |u|2) +
1

4π
sin

(
π u

)
+ cos t3 + 3,

then
| f (t, u)| � cos t3 + 3 +

3
4

|u|,

Now, putting

a(t) = cos t3 + 3 ∈ L1[0, 1] and b =
3
4

,

the assumptions (i) and (iii) hold true.
We have

α = 1 so that
b

Γ(2 − α)
=

3
4
< 1.
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On the other hand, if we let

φ(τk) = τk − λ exp
(
− τk

)
and τk =

1
k3 ∈ (0, 1),

then
φ(τk) � τk.

We also see that the following series:

∞

∑
k=1

ak = 10
∞

∑
k=1

(
2
3

)k−1

is convergent. Therefore, by applying Theorem 3, the given infinite-point implicit BVP has an absolute continuous
solution in [0, 1].

7. Conclusions

In our present investigation, we have considered the existence of an absolute continuous solution
to a class of first-order nonlinear differential equation with integral boundary conditions (BCs) or with
infinite-point BCs (see Theorems 2 and 3 and the above Corollary). We have demonstrated that, if we
can get the continuous solutions to BVPs with m-point BCs, we can easily get the solutions to these
problems with integral BCs or with infinite-point BCs. Several examples have also been given in order
to illustrate some of our main results. We note that the fractional differential Equation (1) involves
the ordinary derivative dx

dt of order 1 on its left-hand side. In the foreseeable future, we propose to
investigate the possibility of extending our results to such other higher-order derivatives as

d2x
dt2 ,

d3x
dt3 ,

d4x
dt4 , · · · ,

occurring on the left-hand side of the fractional differential Equation (1), involving the Liouville-Caputo
fractional derivatives together with integral BCs and/or the infinite-point BCs.
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Abstract: Let S∗
l denote the class of analytic functions f in the open unit disk D = {z : |z| < 1}

normalized by f (0) = f ′(0)− 1 = 0, which is subordinate to exponential function, z f ′(z)
f (z) ≺ ez (z ∈ D).

In this paper, we aim to investigate the third-order Hankel determinant H3(1) for this function class
S∗

l associated with exponential function and obtain the upper bound of the determinant H3(1).
Meanwhile, we give two examples to illustrate the results obtained.

Keywords: analytic function; Hankel determinant; exponential function; upper bound
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1. Introduction

Let S denote the class of functions f which are analytic and univalent in the open unit disk
D = {z : |z| < 1} of the form

f (z) = z +
∞

∑
n=2

anzn (z ∈ D). (1)

Assume that P denote the class of analytic functions p normalized by

p(z) = 1 + c1z + c2z2 + c3z3 + · · ·

and satisfying the condition Re p(z) > 0 (z ∈ D).
It is easy to see that, if p(z) ∈ P , then exists a Schwarz function ω(z) with ω(0) = 0 and

|ω(z)| < 1, such that (see [1])

p(z) =
1 + w(z)
1 − w(z)

(z ∈ D).

Now, we start with recalling the definition of subordination.
Suppose that f and g are two analytic functions in D. Then, we say that the function g is

subordinate to the function f , and we write

g(z) ≺ f (z) (z ∈ D),

if there exists a Schwarz function ω(z) with ω(0) = 0 and |ω(z)| < 1, such that (see [2])

g(z) = f (ω(z)) (z ∈ D).

Recently, Mendiratta et al. in [3] introduced the following subclass S∗
l of analytic functions

associated with exponential function.

Symmetry 2018, 10, 501; doi:10.3390/sym10100501 www.mdpi.com/journal/symmetry437
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Definition 1. (see [3]). A function f ∈ S is said to be in the class S∗
l , if it satisfies the following condition:

z f ′(z)
f (z)

≺ ez (z ∈ D). (2)

We easily observe that, f ∈ S∗
l , if and only if∣∣∣∣log

z f ′(z)
f (z)

∣∣∣∣ < 1 (z ∈ D). (3)

In fact, if we choose f (z) = z + 1
4 z2, then, from Equation (3), we can sketch the figure of the

function class S∗
l (see Figure 1).
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Figure 1. the figure of the function class S∗
l for f (z) = z + 1

4 z2.

The qth Hankel determinant for q ≥ 1 and n ≥ 1 is stated by Noonan and Thomas [4] as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
(a1 = 1).

This determinant has been considered by several authors, for example, Noor [5] determined the
rate of growth of Hq(n) as n → ∞ for functions f (z) given by Equation (1) with bounded boundary
and Ehrenborg [6] studied the Hankel determinant of exponential polynomials.

In particular, we have

H2(1) =

∣∣∣∣∣∣∣
a1 a2

a2 a3

∣∣∣∣∣∣∣ = a3 − a2
2 (a1 = 1, n = 1, q = 2),
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H2(2) =

∣∣∣∣∣∣∣
a2 a3

a3 a4

∣∣∣∣∣∣∣ = a2a4 − a2
3 (n = 2, q = 2),

and

H3(1) =

∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣∣∣
(n = 1, q = 3).

Since f ∈ S , a1 = 1, thus

H3(1) = a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2).

We note that H2(1) is the well-known Fekete-Szego functional (see, for instance, [7–12]).
In recent years, many authors studied the second-order Hankel determinant H2(2) and the

third-order Hankel determinant H3(1) for various classes of functions, the interested readers can
see, for example, [13–22]. We note that, they discussed the determinants H2(2) and H3(1) based
on the function classes, which are all subordinate to a certain function 1+Az

1+Bz (−1 ≤ B < A ≤ 1;
z ∈ D). Until now, very few researchers have studied the above determinants for the function class,
subordinated to ez (z ∈ D). So, in this paper, we aim to investigate the third-order Hankel determinant
H3(1) for the function class S∗

l , which is associated with exponential function, and obtain the upper
bound of the above determinant.

2. Main Results

In order to prove our desired results, we shall require the following lemmas.

Lemma 1. (see [23]). If p(z) ∈ P , then exists some x, z with |x| ≤ 1, |z| ≤ 1, such that

2c2 = c2
1 + x(4 − c2

1),

4c3 = c3
1 + 2c1x(4 − c2

1)− (4 − c2
1)c1x2 + 2(4 − c2

1)(1 − |x|2)z.

Lemma 2. (see [24]). Let p(z) ∈ P , then

|cn| ≤ 2, n = 1, 2, · · · .

Lemma 3. (see [3]). If the function f (z) ∈ S∗
l and of the form Equation (1), then

|a2| ≤ 1, |a3| ≤
3
4

, |a4| ≤
17
36

, |a5| ≤ 1. (4)

We now state and prove the main results of our present investigation.

Theorem 1. If the function f (z) ∈ S∗
l and of the form Equation (1), then we have

|a3 − a2
2| ≤

1
2

. (5)
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Proof. Since f (z) ∈ S∗
l , according to the definition of subordination, then there exists a Schwarz

function ω(z) with ω(0) = 0 and |ω(z)| < 1, such that

z f ′(z)
f (z)

= eω(z).

Now

z f ′(z)
f (z) =

z+∑∞
n=2 nanzn

z+∑∞
n=2 anzn

= (1 +
∞
∑

n=2
nanzn−1)[1 − a2z + (a2

2 − a3)z2 − (a3
2 − 2a2a3 + a4)z3 + · · · ]

= 1 + a2z + (2a3 − a2
2)z

2 + (a3
2 − 3a2a3 + 3a4)z3 + · · · .

(6)

Define a function

p(z) =
1 + ω(z)
1 − ω(z)

= 1 + c1z + c2z2 + · · · .

Then, we notice that p(z) ∈ P and

ω(z) =
p(z)− 1
1 + p(z)

=
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · · .

On the other hand,

eω(z) = 1 + ω(z) + ω(z)2

2! + ω(z)3

3! + · · ·
= 1 + c1z+c2z2+c3z3+···

2+c1z+c2z2+c3z3+··· +
1
2 (

c1z+c2z2+c3z3+···
2+c1z+c2z2+c3z3+··· )

2 + 1
6 (

c1z+c2z2+c3z3+···
2+c1z+c2z2+c3z3+··· )

3 + · · ·
= 1 + 1

2 (c1z + c2z2 + c3z3 + · · · )[1 − c1z
2 + (

c2
1
4 − c2

2 )z
2 − (

c3
1
8 − c1c2

2 + c3
2 )z

3 + · · · ]
+ 1

8 (c1z + c2z2 + c3z3 + · · · )2[1 − c1z
2 + (

c2
1
4 − c2

2 )z
2 − (

c3
1
8 − c1c2

2 + c3
2 )z

3 + · · · ]2

+ 1
48 (c1z + c2z2 + c3z3 + · · · )3[1 − c1z

2 + (
c2

1
4 − c2

2 )z
2 − (

c3
1
8 − c1c2

2 + c3
2 )z

3 + · · · ]3 + · · ·
= 1 + 1

2 c1z + ( c2
2 − c2

1
8 )z

2 + (
c3

1
48 − c1c2

4 + c3
2 )z

3 + · · · .

(7)

On comparing the coefficients of z, z2, z3 between the Equations (6) and (7), we obtain

a2 =
c1

2
, a3 =

c2

4
+

c2
1

16
, a4 =

c3

6
+

c1c2

24
− c3

1
288

. (8)

So,

|a3 − a2
2| =

∣∣∣∣∣ c2

4
+

c2
1

16
− c2

1
4

∣∣∣∣∣ =
∣∣∣∣∣ c2

4
− 3c2

1
16

∣∣∣∣∣ .

Using Lemma 1, we thus know that

|a3 − a2
2| =

∣∣∣∣∣ x(4 − c2
1)

8
− c2

1
16

∣∣∣∣∣ .

Letting |x| = t ∈ [0, 1], c1 = c ∈ [0, 2] and applying the triangle inequality, the above equation
reduces to

|a3 − a2
2| ≤

t(4 − c2)

8
+

c2

16
.

Suppose that

F(c, t) :=
t(4 − c2)

8
+

c2

16
,
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then we get
∂F
∂t

=
4 − c2

8
≥ 0,

which shows that F(c, t) is an increasing function on the closed interval [0,1] about t. Therefore,
the function F(c, t) can get the maximum value at t = 1, that is

max F(c, t) = F(c, 1) =
(4 − c2)

8
+

c2

16
.

Next, let

G(c) :=
(4 − c2)

8
+

c2

16
=

1
2

− c2

16
.

Then, we easily find the function G(c) have a maximum value at c = 0, also which is

|a3 − a2
2| ≤ G(0) =

1
2

.

The proof of Theorem 1 is thus completed.

Theorem 2. If the function f (z) ∈ S∗
l and of the form Equation (1), then we have

|a2a3 − a4| ≤
896

√
2 + 385

3087
. (9)

Proof. From the Equation (8), we have

|a2a3 − a4| = | c1c2
8 +

c3
1

32 − c3
6 − c1c2

24 +
c3

1
288 |

= | c1c2
12 − c3

6 +
5c3

1
144 |.

Again, by applying Lemma 1, we get

|a2a3 − a4| =
∣∣∣∣∣ (4 − c2

1)c1x2

24
− (4 − c2

1)c1x
24

− (4 − c2
1)(1 − |x|2)z

12
+

5c3
1

144

∣∣∣∣∣ .

Assume that |x| = t ∈ [0, 1], c1 = c ∈ [0, 2]. Then, using the triangle inequality, we deduce that

|a2a3 − a4| ≤
(4 − c2)ct2

24
+

(4 − c2)ct
24

+
(4 − c2)

12
+

5c3

144
.

Setting

F(c, t) :=
(4 − c2)ct2

24
+

(4 − c2)ct
24

+
(4 − c2)

12
+

5c3

144
.

Hence, we have
∂F
∂t

=
(4 − c2)ct

12
+

(4 − c2)c
24

≥ 0,

namely, that F(c, t) is an increasing function on the closed interval [0,1] about t. This implies that the
maximum value of F(c, t) occurs at t = 1, which is

max F(c, t) = F(c, 1) =
(4 − c2)c

24
+

(4 − c2)c
24

+
(4 − c2)

12
+

5c3

144
.

Now define

G(c) :=
(4 − c2)c

24
+

(4 − c2)c
24

+
(4 − c2)

12
+

5c3

144
,
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then

G′(c) =
(4 − c2)

12
− c2

6
− c

6
+

15c2

144
.

Let G′(c) = 0, then the root is c = r = −4+8
√

2
7 . And so the function G(c) have a maximum value

attained at c = r = −4+8
√

2
7 , also which is

|a2a3 − a4| ≤ G(r) =
896

√
2 + 385

3087
.

The proof of Theorem 2 is completed.

Theorem 3. If the function f (z) ∈ S∗
l and of the form Equation (1), then we have

|a2a4 − a2
3| ≤

7
12

. (10)

Proof. Suppose that f (z) ∈ S∗
l , then from Equation (8), we have

|a2a4 − a2
3| = | c1c3

12 +
c2

1c2
48 − c4

1
576 − ( c2

4 +
c2

1
16 )

2|
= | c1c3

12 − c2
1c2
96 − c4

1
576 − c2

2
16 − c4

1
256 |.

In view of Lemma 1, we thus obtain

|a2a4 − a2
3| =

∣∣∣∣ c1c3
12 +

c2
1c2
48 − c4

1
576 − ( c2

4 +
c2

1
16 )

2
∣∣∣∣

=

∣∣∣∣ xc2
1(4−c2

1)
192 − x2c2

1(4−c2
1)

48 − x2(4−c2
1)

2

64 − c1(4−c2
1)(1−|x|2)z

24 − c4
1

256

∣∣∣∣ .

Also, let |x| = t ∈ [0, 1], c1 = c ∈ [0, 2]. Then, using the triangle inequality, we get

|a2a4 − a2
3| ≤

tc2(4 − c2)

192
+

t2c2(4 − c2)

48
+

t2(4 − c2)2

64
+

(4 − c2)

12
+

c4

256
.

Assume that

F(c, t) :=
tc2(4 − c2)

192
+

t2c2(4 − c2)

48
+

t2(4 − c2)2

64
+

(4 − c2)

12
+

c4

256
,

thus, we have
∂F
∂t

=
c2(4 − c2)

192
+

tc2(4 − c2)

24
+

t(4 − c2)2

32
≥ 0,

which implies that F(c, t) increases on the closed interval [0,1] about t. That is, that F(c, t) have a
maximum value at t = 1, which is

max F(c, t) = F(c, 1) =
5c2(4 − c2)

192
+

(4 − c2)2

64
+

(4 − c2)

12
+

c4

256
.

Taking

G(c) :=
5c2(4 − c2)

192
+

(4 − c2)2

64
+

(4 − c2)

12
+

c4

256
,

then we have

G′(c) =
5c(4 − c2)

96
− c(4 − c2)

16
− c

6
− 5c3

96
+

c3

64
.
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If G′(c) = 0, then the root is c = 0. After a simple calculation, we can deduce that G′′(0) < 0,
which means that the function G(c) can take the maximum value at c = 0, also which is

|a2a4 − a2
3| ≤ G(0) =

7
12

,

and so we complete the proof of Theorem 3.

Theorem 4. If the function f (z) ∈ S∗
l and of the form Equation (1), then we have

|H3(1)| ≤
165, 095 + 60, 928

√
2

444, 528
≈ 0.565. (11)

Proof. Because
H3(1) = a3(a2a4 − a2

3)− a4(a4 − a2a3) + a5(a3 − a2
2),

so, by applying the triangle inequality, we obtain

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|. (12)

Next, substituting Equations (4), (5), (8) and (10) into (12), we easily get the desired assertion
Equation (11).

Finally, we give two examples to illustrate the results obtained.

Example 1. If we choose the function f (z) = ez − 1 = z + ∑∞
n=2

zn

n! ∈ S∗
l , then we have

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|

=
1
3!

× | 1
2!

× 1
4!

− 1
3!

× 1
3!

|+ 1
4!

× | 1
4!

− 1
2!

× 1
3!

|+ 1
5!

× | 1
3!

− 1
2!

× 1
2!

|

≈ 0.004 < 0.565.

Example 2. If we put the function f (z) = − log(1 − z) = z + ∑∞
n=2

zn

n ∈ S∗
l , then we get

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|

=
1
3

× |1
2

× 1
4

− 1
3

× 1
3
|+ 1

4
× |1

4
− 1

2
× 1

3
|+ 1

5
× |1

3
− 1

2
× 1

2
|

≈ 0.042 < 0.565.

3. Conclusions

In this paper, we mainly investigate the third-order Hankel determinant H3(1) for the function
class S∗

l , which is subordinate to exponential function, and obtain the upper bound of the above
determinant. The results obtained generalize and unify the theories of Hankel determinants in
geometric function theory.
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1. Introduction

Let A denote the family of functions f of the form:

f (z) = z +
∞

∑
n=2

anzn

which are analytic in the open unit disk D and satisfy the usual normalization condition
f (0) = f ′(0)− 1 = 0. Let S denote the subclass of A which are univalent in D. Also let S∗(α) and
C(α) denote the subclasses of A consisting of functions which are starlike of order α and convex of
order α in D, respectively. Analytically, these classes are characterized by the equivalence:

f ∈ S∗(α) ⇐⇒ R

{
z f ′(z)

f (z)

}
> α (0 ≤ α < 1, z ∈ D)

and

f ∈ C(α) ⇐⇒ R

{
1 +

z f ′′(z)
f ′(z)

}
> α (0 ≤ α < 1, z ∈ D).

For convenience, let S∗(0) = S∗ and C(0) = C which are the classes of starlike functions and
convex functions, respectively. Furthermore, let C(β, α) and C∗(β, α) be the subclasses of A defined by

C(β, α) =

{
f ∈ A : ∃g ∈ S∗(α) s.t. R

{
z f ′(z)
g(z)

}
> β (0 ≤ α, β < 1; z ∈ D)

}
and

C∗(β, α) =

{
f ∈ A : ∃g ∈ K(α) s.t. R

{
(z f ′(z))′

g′(z)

}
> β (0 ≤ α, β < 1; z ∈ D)

}
,

Symmetry 2018, 10, 455; doi:10.3390/sym10100455 www.mdpi.com/journal/symmetry445
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respectively. The functions in the classes C(β, α) and C∗(β, α) are known as close-to-convex functions
and quasi-convex functions, respectively.

The Lommel function of the first kind sμ,ν which is expressed in terms of a hypergeometric series

sμ,ν(z) =
zμ+1

(μ − ν + 1)(μ + ν + 1) 1F2

(
1;

μ − ν + 3
2

,
μ + ν + 3

2
; − z2

4

)
,

where μ ± ν are not negative odd integers, is a particular solution of the following inhomogeneous
Bessel differential equation [1]:

z2w′′(z) + zw′(z) + (z2 − ν2)w(z) = zμ+1.

It is observed that the function sμ,ν does not belong to the class A. Recently, Yağmur [2] and
Baricz et al. [3] considered the following function hμ,ν defined by:

hμ,ν(z) = (μ − ν + 1)(μ + ν + 1)z(1−μ)/2sμ,ν(
√

z)

and they obtained some geometric properties of the function hμ,ν. For another interesting properties of
Lommel function, we can refer to [4,5].

The above function hμ,ν belongs to A and is expressed by:

hμ,ν(z) =
∞

∑
n=1

(−1/4)n−1(
μ−ν+3

2

)
n−1

(
μ+ν+3

2

)
n−1

zn ((−μ ± ν − 3)/2 	∈ N := {1, 2, · · · }), (1)

where (λ)n is the Pochhammer symbol which defined in terms of Euler’s gamma function such that
(λ)n = Γ(λ + n)/Γ(λ) = λ(λ + 1) · · · (λ + n − 1).

Corresponding to the function hμ,ν defined by (1), we consider a linear operator Lμ,ν : A → A
defined by:

Lμ,ν f (z) = hμ,ν(z) ∗ f (z) ((−μ ± ν − 3)/2 	∈ N, z ∈ D, f ∈ A), (2)

in terms of the Hadamard product (or convolution) ∗. Then it can be easily observed from (1) and (2)
that the following relation holds:

z(Lμ+1,ν+1 f (z))′ =
(

μ + ν + 3
2

)
Lμ,ν f (z)−

(
μ + ν + 1

2

)
Lμ+1,ν+1 f (z). (3)

In a few years ago, many authors introduced new subclasses of univalent (or multivalent)
functions by using several linear operators and found many properties of them [6–13].
In [14,15], various inclusion relationships associated with several subclasses of analytic functions
were investigated.

Motivated by their works, by using the linear operator Lμ,ν, we define new subclasses of A
as follows:

S∗
μ,ν(α) :=

{
f ∈ A : R

{
z(Lμ,ν f (z))′

Lμ,ν f (z)

}
> α (0 ≤ α < 1; z ∈ D)

}
,

Kμ,ν(α) :=
{

f ∈ A : R
{

1 +
z(Lμ,ν f (z))′′

(Lμ,ν f (z))′

}
> α (0 ≤ α < 1; z ∈ D)

}
,

Cμ,ν(β, α) :=
{

f ∈ A : ∃g ∈ S∗
μ,ν(α) s.t. R

{
z(Lμ,ν f (z))′

Lμ,νg(z)

}
> β (0 ≤ α, β < 1; z ∈ D)

}
and

C∗
μ,ν(β, α) :=

{
f ∈ A : ∃g ∈ Kμ,ν(α) s.t. R

{
(z(Lμ,ν f (z))′)′

(Lμ,νg(z))′

}
> β (0 ≤ α, β < 1; z ∈ D)

}
.
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Here, we note that a function f belongs to the class S∗
μ,ν(α) (Kμ,ν(α), Cμ,ν(β, α) and C∗

μ,ν(β, α))
is equivalent to that the function Lμ,ν f (z) belongs to the class S∗(α) (K(α), C(β, α) and C∗(β, α),
respectively). Further, from the linearity of the operator Lμ,ν, the following relations hold:

f (z) ∈ Kμ,ν(α) ⇐⇒ z f ′(z) ∈ S∗
μ,ν(α) (4)

and
f (z) ∈ C∗

μ,ν(β, α) ⇐⇒ z f ′(z) ∈ Cμ,ν(β, α). (5)

In the present paper some geometric properties of the normalized Lommel function of the first
kind are obtained by applying the method of admissible function. In Section 2, we find some sufficient
conditions for starlikeness and convexity for the function hμ,ν. In Section 3, we investigate some
inclusion relationships for the classes S∗

μ,ν(α), Kμ,ν(α), Cμ,ν(β, α) and C∗
μ,ν(β, α) which are related to

the function hμ,ν.

The following lemmas will be used for the proof of our results.

Lemma 1. ([16] Miller and Mocanu) Let Ω be a set in the complex plane C and let b be a complex number
such that R(b) > 0. Suppose that the function ψ : C3 ×D → C satisfies the condition

ψ(iρ, σ, a + ib; z) 	∈ Ω

for all real ρ, σ, a, b ∈ R with σ ≤ −|b − iρ|2/(2R(b)), σ + a ≤ 0 and z ∈ D. If the function p(z) defined by
p(z) = b + b1z + b2z2 + . . . is analytic in D and if

ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω,

then R {p(z)} > 0 in D.

Lemma 2. ([17] Miller and Mocanu) Let u = u1 + iu2, v = v1 + iv2 with u1, u2, v1, v2 ∈ R and Δ ⊂ C2.
Suppose that Φ : Δ → C satisfies the following conditions

1. Φ(u, v) is continuous in Δ;
2. (1, 0) ∈ Δ and R {Φ(1, 0)} > 0;
3. R {Φ(iu2, v1)} ≤ 0 for all (iu2, v1) ∈ Δ such that v1 ≤ −(1 + u2

2)/2.

Let p be an analytic function in D such that p(0) = 1 and (p(z), zp′(z)) ∈ Δ for all z ∈ D.
If R {Φ(p(z), zp′(z))} > 0 in D, then R {p(z)} > 0 in D.

For analytic functions f and g, we say that f is subordinate to g, denoted by f ≺ g, if there is an
analytic function ω : D → D with |ω(z)| ≤ |z| such that f (z) = g(ω(z)). Further, if g is univalent,
then the definition of subordination f ≺ g can be simplified into the conditions f (0) = g(0) and
f (D) ⊆ g(D) (See [18], p. 36).

Lemma 3. ([19] Eenigenburg et al.) Let h be convex univalent in D and w be analytic in D with
R {w(z)} ≥ 0 in D. If q is analytic in D and q(0) = h(0), then the subordination

q(z) + w(z)zq′(z) ≺ h(z) (z ∈ D)

implies that
q(z) ≺ h(z) (z ∈ D).

Lemma 4. ([2] Yağmur) If μ > −1, ν ∈ R where μ ± ν are not negative odd integers, and
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(μ + 1)[(μ + 1)(μ + 3)− ν2] ≥ 1
8

,

then R
{

hμ,ν(z)/z
}
> 0 in D.

2. Sufficient Conditions for Starlikeness and Convexity

We find some sufficient conditions for starlikeness and convexity of the function hμ,ν given by (1).

Theorem 1. Let μ and ν be real numbers such that μ ± ν are not negative odd integers, μ > 2,

(μ + 1)[(μ + 1)(μ + 3)− ν2] ≥ 1
8

(6)

and
− 1

2
(μ − 2) +

1
96

(μ − 2)−1 − 1
4

(
(μ − 1)2 − ν2

)
≤ 0. (7)

Then the function hμ,ν is a starlike univalent function in D.

Proof. Since
hμ,ν(z) = (μ − ν + 1)(μ + ν + 1)z(1−μ)/2sμ,ν(

√
z)

and the function sμ,ν satisfies the inhomogeneous differential equation

z2s′′μ,ν(z) + zs′μ,ν(z) + (z2 − ν2)sμ,ν(z) = zμ+1,

we have

z2h′′
μ,ν(z) + μzh′

μ,ν(z) +
1
4

(
z + (μ − 1)2 − ν2

)
hμ,ν(z)−

(
μ − ν + 1

2

)(
μ + ν + 1

2

)
z = 0. (8)

Set

p(z) =
zh′

μ,ν(z)
hμ,ν(z)

. (9)

From (6) and Lemma 4, R
{

hμ,ν(z)/z
}
> 0 for all z ∈ D and this implies that hμ,ν(z) 	= 0 holds

for all z ∈ D \ {0}. Therefore p is analytic in D and p(0) = 1. Furthermore, by (8) and (9), we have the
following equation[

zp′(z) + p(z)2 + (μ − 1)p(z) +
1
4

(
z + (μ − 1)2 − ν2

)]
hμ,ν(z) =

(
μ − ν + 1

2

)(
μ + ν + 1

2

)
z.

Now, we put

p̃(z) = zp′(z) + p(z)2 + (μ − 1)p(z) +
1
4

(
z + (μ − 1)2 − ν2

)
.

Then we have

p̃(z)hμ,ν(z) =
(

μ − ν + 1
2

)(
μ + ν + 1

2

)
z.

Differentiating the above equation and multiplying by z, we get

[zp̃′(z) + (p(z)− 1) p̃(z)]hμ,ν(z) = 0.

Since zp̃′(z) + (p(z)− 1) p̃(z) = 0 at z = 0 and hμ,ν(z) 	= 0 for all z ∈ D \ {0}, we have

zp̃′(z) + (p(z)− 1) p̃(z) = 0
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in D, or equivalently,

p(z)3 + (μ − 2)p(z)2 + z2 p′′(z) + 3zp′(z)p(z) + (μ − 1)zp′(z)

+
1
4

(
z + (μ − 1)(μ − 5)− ν2

)
p(z)− 1

4

(
(μ − 1)2 − ν2

)
= 0

(10)

in D. Now, let Ω = {0} and define a function ψ : C3 ×D → C by

ψ(r, s, t; z)

= r3 + (μ − 2)r2 + t + 3rs + (μ − 1)s +
1
4
(z + (μ − 1)(μ − 5)− ν2)r − 1

4
((μ − 1)2 − ν2).

Then the Equation (10) can be rewritten as

ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω.

Moreover it holds that

R {ψ(ρi, σ, a + ib; z)}

= −(μ − 2)ρ2 + a + (μ − 1)σ +
1
4
R
{(

z + (μ − 1)(μ − 5)− ν2
)

iρ
}

− 1
4

(
(μ − 1)2 − ν2

)
< −1

2
(μ − 2)(1 + 3|ρ|2) + 1

4
|ρ| − 1

4

(
(μ − 1)2 − ν2

)
,

(11)

for z ∈ D and ρ, σ, a, b ∈ R with σ ≤ −(1 + ρ2)/2 and σ + a ≤ 0. Define a function g : [0, ∞) → R by

g(ρ) = −1
2
(μ − 2)(1 + 3ρ2) +

1
4

ρ.

Then, g′(ρ) = 0 occurs when ρ = ρ∗ := 1/(12(μ − 2)) > 0 and g′′(ρ∗) = −3(μ − 2) < 0.
Therefore, the function g has its maximum

g(ρ∗) = −1
2
(μ − 2) +

1
96

(μ − 2)−1

on the half interval [0, ∞). Hence from (7) and (11) we have

R {ψ(ρi, σ, a + ib; z)}

< g(ρ)− 1
4

(
(μ − 1)2 − ν2

)
≤ −1

2
(μ − 2) +

1
96

(μ − 2)−1 − 1
4

(
(μ − 1)2 − ν2

)
≤ 0,

for all z ∈ D and all ρ, σ, a, b ∈ R with σ ≤ −(1 + ρ2)/2 and σ + a ≤ 0. By Lemma 1, we have
R {p(z)} > 0 in D which shows that hμ,ν is starlike in D.

Example 1. We note that μ = 5/2 and ν = 1/2 satisfy the condition of Theorem 1. Therefore the function

h5/2,1/2(z) = 12
(

z + 2 cos
√

z − 2
z

)
(12)

is starlike in D.
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Theorem 2. Let μ and ν be real numbers such that μ ± ν are not negative odd integers, μ > 2,

(μ + 1)[(μ + 1)(μ + 3)− ν2] ≥ 1
8

and {
1

96 (μ − 2)−1 + (μ − 2)− 1
4
(
(μ − 1)2 − ν2) ≤ 0, if μ ≤ 25

12 ,

− 1
2 μ + 5

4 − 1
4
(
(μ − 1)2 − ν2) ≤ 0, if μ > 25

12 .
(13)

Then the function hμ,ν is a convex univalent function in D.

Proof. First of all, we observe that the condition (13) implies (7) in Theorem 1. To see this, we assume
that the inequality (13) holds. For the case 2 < μ ≤ 25/12, from the inequality −(μ − 2)/2 ≤ μ − 2,
we can easily obtain the inequality (7). For the case μ > 25/12, it is sufficient to check the following
inequality holds:

−1
2
(μ − 2)2 +

1
96

≤ −1
2

μ(μ − 2) +
5
4
(μ − 2).

And the above inequality is true for μ > 25/12, since

−1
2

μ(μ − 2) +
5
4
(μ − 2) +

1
2
(μ − 2)2 − 1

96
=

1
4

(
μ − 49

24

)
>

1
96

.

Therefore the function hμ,ν is starlike univalent, hence h′
μ,ν(z) 	= 0 in D. Now, set

p(z) = 1 +
zh′′

μ,ν(z)
h′

μ,ν(z)
(z ∈ D).

Since h′
μ,ν(z) 	= 0 in D, p is analytic in D with p(0) = 1. And we have

zh′′
μ,ν(z) = (p(z)− 1)h′

μ,ν(z) (14)

and
2zh′′

μ,ν(z) + z2h(3)μ,ν(z) = [zp′(z) + p(z)2 − p(z)]h′
μ,ν(z). (15)

Furthermore, from (8), we have

(p(z) + μ − 1)zh′
μ,ν(z) +

1
4

(
z + (μ − 1)2 − ν2

)
hμ,ν(z)−

(
μ − ν + 1

2

)(
μ + ν + 1

2

)
z = 0. (16)

Differentiating (16) and multiplying by z, we get

z2 p′(z)h′
μ,ν(z) + (p(z) + μ − 1)zh′

μ,ν(z) + (p(z) + μ − 1)z2h′′
μ,ν(z)

+
1
4

zhμ,ν(z) +
1
4

(
z + (μ − 1)2 − ν2

)
zh′

μ,ν(z)

−
(

μ − ν + 1
2

)(
μ + ν + 1

2

)
z = 0.

(17)

Substituting (17) into (16), we obtain

(p(z) + μ − 1)z2h′′
μ,ν(z) + [zp′(z) +

1
4

(
z + (μ − 1)2 − ν2

)
]zh′

μ,ν(z)

− 1
4

(
(μ − 1)2 − ν2

)
hμ,ν(z) = 0.

(18)

Differentiating (18) and using the equalities (14) and (15), we get
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z2 p′′(z) + 3zp′(z)p(z) + (μ − 1)zp′(z) + p(z)3 + (μ − 2)p(z)2

+
1
4

(
z + (μ − 1)(μ − 5)− ν2

)
p(z) +

1
4

(
z − (μ − 1)2 + ν2

)
= 0.

(19)

Now, let Ω = {0} and define a function ψ : C3 ×D → C by

ψ(r, s, t; z)

= t + 3rs + (μ − 1)s + r3 + (μ − 2)r2 +
1
4

(
z + (μ − 1)(μ − 5)− ν2

)
r +

1
4

(
z − (μ − 1)2 + ν2

)
.

Then, (19) becomes
ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω.

And simple calculations give us that

R {ψ(iρ, σ, a + ib; z)}

= a + (μ − 1)σ − (μ − 2)ρ2 +
1
4
R {iρz}+ 1

4
R
{

z − (μ − 1)2 + ν2
}

≤ −(μ − 2)ρ2 + (μ − 2)σ +
1
4
R {(1 + iρ)z} − 1

4

(
(μ − 1)2 − ν2

)
< −(μ − 2)ρ2 − 1

2
(μ − 2)(1 + ρ2) +

1
4

√
1 + ρ2 − 1

4

(
(μ − 1)2 − ν2

)
= −3

2
(μ − 2)u2 + (μ − 2) +

1
4

u − 1
4

(
(μ − 1)2 − ν2

)
,

(20)

for all z ∈ D and all ρ, σ, a, b, u ∈ R with σ ≤ −(1 + ρ2)/2, σ + a ≤ 0 and u =
√

1 + ρ2. Define a
function g : [1, ∞) → R by

g(u) = −3
2
(μ − 2)u2 +

1
4

u + μ − 2.

Then, by putting u∗ = 1/(12(μ − 2)) > 0, we have g′(u∗) = 0. Moreover it holds that
g′′(u) = −3(μ − 2) < 0 for all u ∈ [1, ∞). Therefore u = u∗ gives the maximum value for g when
μ ≤ 25/12. On the other hand, when μ > 25/12 the function g is maximized by setting u = 1. Hence,
for the case μ ≤ 25/12, it follows from (13) and (20) that

R {ψ(iρ, σ, a + ib; z)}

< g(u∗)− 1
4

(
(μ − 1)2 − ν2

)
≤ 1

96
(μ − 2)−1 + (μ − 2)− 1

4

(
(μ − 1)2 − ν2

)
≤ 0,

for all z ∈ D and all ρ, σ, a, b ∈ R with σ ≤ −(1 + ρ2)/2 and σ + a ≤ 0. Similarly, for the case
μ > 25/12, we obtain

R {ψ(iρ, σ, a + ib; z)}

< g(1)− 1
4

(
(μ − 1)2 − ν2

)
≤ −1

2
μ +

5
4

− 1
4

(
(μ − 1)2 − ν2

)
≤ 0,

for all z ∈ D and all ρ, σ, a, b ∈ R with σ ≤ −(1 + ρ2)/2 and σ + a ≤ 0. By Lemma 1, we thus have
R {p(z)} > 0 in D which shows that hμ,ν is convex in D.
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Example 2. We note that μ = 5/2 and ν = 1/2 satisfy the condition of Theorem 2. Therefore the function
h5/2,1/2 given by (12) is convex in D.

3. Inclusion Relationships

Now, we investigate some inclusion relationships for the classes S∗
μ,ν(α), Kμ,ν(α), Cμ,ν(β, α) and

C∗
μ,ν(β, α). We begin by proving our first inclusion relationship for the class S∗

μ,ν(α).

Theorem 3. Let μ, ν and α be real numbers such that μ ± ν are not negative odd integers, 0 ≤ α < 1 and
2α + μ + ν + 1 ≥ 0. Then

S∗
μ,ν(α) ⊂ S∗

μ+1,ν+1(α).

Proof. Let f ∈ S∗
μ,ν(α) and define a function φ : C → C by

φ(z) =
1

1 − α

(
z(Lμ+1,ν+1 f (z))′

Lμ+1,ν+1 f (z)
− α

)
. (21)

Then φ is analytic in D and φ(0) = 1. From the equality (3), we get(
μ + ν + 3

2

)
Lμ,ν f (z)

Lμ+1,ν+1 f (z)
=

z(Lμ+1,ν+1 f (z))′

Lμ+1,ν+1 f (z)
+

μ + ν + 1
2

. (22)

By combining (21) and (22), we obtain

Lμ,ν f (z)
Lμ+1,ν+1 f (z)

=
2

μ + ν + 3

[
(1 − α)φ(z) + α +

μ + ν + 1
2

]
. (23)

Now, by applying the logarithmic differentiation on both sides of (23) and multiplying the
resulting equation by z, we have

z(Lμ,ν f (z))′

Lμ,ν f (z)
=

z(Lμ+1,ν+1 f (z))′

Lμ+1,ν+1 f (z)
+

(1 − α)zφ′(z)

(1 − α)φ(z) + α + μ+ν+1
2

which, in view of (21), yields

1
1 − α

(
z(Lμ,ν f (z))′

Lμ,ν f (z)
− α

)
= φ(z) +

zφ′(z)

(1 − α)φ(z) + α + μ+ν+1
2

. (24)

Now, we define a function Φ : C2 → C by

Φ(u, v) = u +
v

(1 − α)u + α + μ+ν+1
2

.

Observe that Φ is continuous on

Δ :=

(
C \

{
α + μ+ν+1

2
α − 1

})
×C,

(1, 0) ∈ Δ and R {Φ(1, 0)} > 0. Since f ∈ S∗
μ,ν(α), it follows from (24) that

R
{

Φ(φ(z), zφ′(z), z2φ′′(z))
}

> 0 for all z ∈ D. Also, for (iu2, v1) ∈ Δ with u2, v1 ∈ R such that
v1 ≤ −(1 + u2

2)/2, we have
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R {Φ(iu2, v1)} = R

{
iu2 +

v1

i(1 − α)u2 + α + μ+ν+1
2

}

=
v1

(
α + μ+ν+1

2

)
(1 − α)2 u2

2 +
(

α + μ+ν+1
2

)2

≤ −1
2

(
1 + u2

2

) α + μ+ν+1
2

(1 − α)2 u2
2 +

(
α + μ+ν+1

2

)2

< 0

which shows that R {Φ(iu2, v1)} < 0. Therefore, by Lemma 2, we have

R {φ(z)} > 0 (z ∈ D).

Thus, by making use of (21), we find that f ∈ S∗
μ+1,ν+1(α). This completes the proof of

Theorem 3.

Theorem 4. Let μ, ν and α be real numbers such that μ ± ν are not negative odd integers, 0 ≤ α < 1 and
2α + μ + ν + 1 ≥ 0. Then

Kμ,ν(α) ⊂ Kμ+1,ν+1(α).

Proof. By applying (4) and Theorem 3, we observe that

f ∈ Kμ,ν(α) ⇐⇒ z f ′ ∈ S∗
μ,ν(α)

=⇒ z f ′ ∈ S∗
μ+1,ν+1(α)

⇐⇒ f ∈ Kμ+1,ν+1(α)

which proves Theorem 4.

Theorem 5. Let μ, ν, α and β be real numbers such that μ ± ν are not negative odd integers, 0 ≤ α < 1,
0 ≤ β < 1 and 2α + μ + ν + 1 ≥ 0. Then

Cμ,ν(β, α) ⊂ Cμ+1,ν+1(β, α).

Proof. Let f ∈ Cμ,ν(β, α). Then there exists a function g ∈ S∗
μ,ν(α) such that

R

{
z(Lμ,ν f (z))′

Lμ,νg(z)

}
> β. (25)

Define a function φ : D → C by

φ(z) =
1

1 − β

(
z(Lμ+1,ν+1 f (z))′

Lμ+1,ν+1g(z)
− β

)
. (26)

Then, φ is analytic in D with φ(0) = 1. Using the identity (3), we also have
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z(Lμ,ν f (z))′

Lμ,νg(z)
=

Lμ,ν(z f ′(z))
Lμ,νg(z)

=
z(Lμ+1,ν+1(z f ′(z)))′ +

(
μ+ν+1

2

)
Lμ+1,ν+1(z f ′(z))

z(Lμ+1,ν+1g(z))′ +
(

μ+ν+1
2

)
Lμ+1,ν+1g(z)

=

z(Lμ+1,ν+1(z f ′(z)))′

Lμ+1,ν+1g(z) +
(

μ+ν+1
2

)
Lμ+1,ν+1(z f ′(z))

Lμ+1,ν+1g(z)

z(Lμ+1,ν+1g(z))′

Lμ+1,ν+1g(z) + μ+ν+1
2

.

(27)

Now we define a function q : D → C by

q(z) =
1

1 − α

(
z(Lμ+1,ν+1g(z))′

Lμ+1,ν+1g(z)
− α

)
. (28)

Since g ∈ S∗
μ,ν(α), by Theorem 3, we have g ∈ S∗

μ+1,ν+1(α) and therefore we get R {q(z)} > 0 in
D. Upon substituting from (26) and (28) into (27), we have

z(Lμ,ν f (z))′

Lμ,νg(z)
=

z(Lμ+1,ν+1(z f ′(z)))′

Lμ+1,ν+1g(z) +
(

μ+ν+1
2

)
((1 − β)φ(z) + β)

(1 − α)q(z) + α + μ+ν+1
2

. (29)

By logarithmically differentiating both sides of (26) with respect to z, we have

z(Lμ+1,ν+1(z f ′(z)))′

Lμ+1,ν+1g(z)
= ((1 − β)φ(z) + β)((1 − α)q(z) + α) + (1 − β)zφ′(z)

which, in conjunction with (29), yields

1
1 − β

(
z(Lμ,ν f (z))′

Lμ,νg(z)
− β

)
= φ(z) +

zφ′(z)

(1 − α)q(z) + α + μ+ν+1
2

.

Put
ω(z) =

1

(1 − α)q(z) + α + μ+ν+1
2

.

Then, ω is analytic in D and, from the inequality (25), we have

R
{

φ(z) + ω(z)zφ′(z)
}
> 0

in D. Using the fact that R {q(z)} > 0 in D and the inequality 2α + μ + ν + 1 ≥ 0, we have
R {ω(z)} > 0 in D. Applying Lemma 3 with h(z) = (1 + z)/(1 − z), we have R {φ(z)} > 0 in D.
Thus, by making use of (26), we get f ∈ Cμ+1,ν+1(β, α). This completes the proof of Theorem 5.

Finally, we state the inclusion relationship for the class C∗
μ,ν(β, α).

Theorem 6. Let μ, ν, α and β be real numbers such that μ ± ν are not negative odd integers, 0 ≤ α < 1,
0 ≤ β < 1 and 2α + μ + ν + 1 ≥ 0. Then

C∗
μ,ν(β, α) ⊂ C∗

μ+1,ν+1(β, α).

Proof. By applying (5) and Theorem 5, we observe that

f ∈ C∗
μ,ν(β, α) ⇐⇒ z f ′(z) ∈ Cμ,ν(β, α)

=⇒ z f ′(z) ∈ Cμ+1,ν+1(β, α)

⇐⇒ f ∈ C∗
μ+1,ν+1(β, α)
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which proves Theorem 6.
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Abstract: The goal of this paper is to define the (p, q)-analogue of tangent numbers and polynomials
by generalizing the tangent numbers and polynomials and Carlitz-type q-tangent numbers and
polynomials. We get some explicit formulas and properties in conjunction with (p, q)-analogue of
tangent numbers and polynomials. We give some new symmetric identities for (p, q)-analogue of
tangent polynomials by using (p, q)-tangent zeta function. Finally, we investigate the distribution
and symmetry of the zero of (p, q)-analogue of tangent polynomials with numerical methods.
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1. Introduction

The field of the special polynomials such as tangent polynomials, Bernoulli polynomials,
Euler polynomials, and Genocchi polynomials is an expanding area in mathematics (see [1–16]).
Many generalizations of these polynomials have been studied (see [1,3–9,11–18]). Srivastava [14]
developed some properties and q-extensions of the Euler polynomials, Bernoulli polynomials, and
Genocchi polynomials. Choi, Anderson and Srivastava have discussed q-extension of the Riemann zeta
function and related functions (see [5,17]). Dattoli, Migliorati and Srivastava derived a generalization
of the classical polynomials (see [6]).

It is the purpose of this paper to introduce and investigate a new some generalizations of
the Carlitz-type q-tangent numbers and polynomials, q-tangent zeta function, Hurwiz q-tangent
zeta function. We call them Carlitz-type (p, q)-tangent numbers and polynomials, (p, q)-tangent
zeta function, and Hurwitz (p, q)-tangent zeta function. The structure of the paper is as follows:
In Section 2 we define Carlitz-type (p, q)-tangent numbers and polynomials and derive some of their
properties involving elementary properties, distribution relation, property of complement, and so on.
In Section 3, by using the Carlitz-type (p, q)-tangent numbers and polynomials, (p, q)-tangent zeta
function and Hurwitz (p, q)-tangent zeta function are defined. We also contains some connection
formulae between the Carlitz-type (p, q)-tangent numbers and polynomials and the (p, q)-tangent
zeta function, Hurwitz (p, q)-tangent zeta function. In Section 4 we give several symmetric
identities about (p, q)-tangent zeta function and Carlitz-type (p, q)-tangent polynomials and numbers.
In the following Section, we investigate the distribution and symmetry of the zero of Carlitz-type
(p, q)-tangent polynomials using a computer. Our paper ends with Section 6, where the conclusions
and future developments of this work are presented. The following notations will be used throughout
this paper.

Symmetry 2018, 10, 395; doi:10.3390/sym10090395 www.mdpi.com/journal/symmetry456
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• N denotes the set of natural numbers.
• Z

−
0 = {0, −1, −2, −2, . . .} denotes the set of nonpositive integers.

• R denotes the set of real numbers.
• C denotes the set of complex numbers.

We remember that the classical tangent numbers Tn and tangent polynomials Tn(x) are defined
by the following generating functions (see [19])

2
e2t + 1

=
∞

∑
n=0

Tn
tn

n!
, (|2t| < π), (1)

and (
2

e2t + 1

)
ext =

∞

∑
n=0

Tn(x)
tn

n!
, (|2t| < π). (2)

respectively. Some interesting properties of basic extensions and generalizations of the tangent numbers
and polynomials have been worked out in [11,12,18–20]. The (p, q)-number is defined as

[n]p,q =
pn − qn

p − q
= pn−1 + pn−2q + pn−3q2 + · · ·+ p2qn−3 + pqn−2 + qn−1.

It is clear that (p, q)-number contains symmetric property, and this number is q-number when
p = 1. In particular, we can see limq→1[n]p,q = n with p = 1. Since [n]p,q = pn−1[n] q

p
, we observe

that (p, q)-numbers and p-numbers are different. In other words, by substituting q by q
p in the

definition q-number, we cannot have (p, q)-number. Duran, Acikgoz and Araci [7] introduced the
(p, q)-analogues of Euler polynomials, Bernoulli polynomials, and Genocchi polynomials. Araci,
Duran, Acikgoz and Srivastava developed some properties and relations between the divided
differences and (p, q)-derivative operator (see [1]). The (p, q)-analogues of tangent polynomials were
described in [20]. By using (p, q)-number, we construct the Carlitz-type (p, q)-tangent polynomials
and numbers, which generalized the previously known tangent polynomials and numbers, including
the Carlitz-type q-tangent polynomials and numbers. We begin by recalling here the Carlitz-type
q-tangent numbers and polynomials (see [18]).

Definition 1. For any complex x we define the Carlitz-type q-tangent polynomials, Tn,q(x), by the equation

Fq(t, x) =
∞

∑
n=0

Tn,q(x)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[2m+x]qt. (3)

The numbers Tn,q(0) are called the Carlitz-type q-tangent numbers and are denoted by Tn,q.
Based on this idea, we generalize the Carlitz-type q-tangent number Tn,q and q-tangent polynomials
Tn,q(x). It follows that we define the following (p, q)-analogues of the the Carlitz-type q-tangent
number Tn,q and q-tangent polynomials Tn,q(x). In the next section we define the (p, q)-analogue of
tangent numbers and polynomials. After that we will obtain some their properties.

2. (p, q)-Analogue of Tangent Numbers and Polynomials

Firstly, we construct (p, q)-analogue of tangent numbers and polynomials and derive some of
their relevant properties.

Definition 2. For 0 < q < p ≤ 1, the Carlitz-type (p, q)-tangent numbers Tn,p,q and polynomials Tn,p,q(x)
are defined by means of the generating functions

Fp,q(t) =
∞

∑
n=0

Tn,p,q
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[2m]p,qt, (4)
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and

Fp,q(t, x) =
∞

∑
n=0

Tn,p,q(x)
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[2m+x]p,qt, (5)

respectively.

Setting p = 1 in (4) and (5), we can obtain the corresponding definitions for the Carlitz-type
q-tangent numbers Tn,q and q-tangent polynomials Tn,q(x) respectively. Obviously, if we put p = 1,
then we have

Tn,p,q(x) = Tn,q(x), Tn,p,q = Tn,q.

Putting p = 1, we have

lim
q→1

Tn,p,q(x) = Tn(x), lim
q→1

Tn,p,q = Tn.

Theorem 1. For n ∈ N∪ {0}, one has

Tn,p,q = [2]q

(
1

p − q

)n n

∑
l=0

(
n
l

)
(−1)l 1

1 + q2l+1 p2(n−l)
. (6)

Proof. By (4), we have

∞

∑
n=0

Tn,p,q
tn

n!
= [2]q

∞

∑
m=0

(−1)mqme[2m]p,qt

=
∞

∑
n=0

(
[2]q

(
1

p − q

)n n

∑
l=0

(
n
l

)
(−1)l 1

1 + q2l+1 p2(n−l)

)
tn

n!
.

Equating the coefficients of tn

n! , we arrive at the desired result (6).

If we put p = 1 in Theorem 1, we obtain (cf. [18])

Tn,q = [2]q

(
1

1 − q

)n n

∑
l=0

(
n
l

)
(−1)l 1

1 + q2l+1 .

Next, we construct the Carlitz-type (h, p, q)-tangent polynomials T(h)
n,p,q(x). Define the Carlitz-type

(h, p, q)-tangent polynomials T(h)
n,p,q(x) by

T(h)
n,p,q(x) = [2]q

∞

∑
m=0

(−1)mqm phm[2m + x]np,q. (7)

Theorem 2. For n ∈ N∪ {0}, one has

Tn,p,q(x) = [2]q

(
1

p − q

)n n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x 1

1 + q2l+1 p2(n−l)+h

= [2]q
∞

∑
m=0

(−1)mqm[2m + x]np,q.

Proof. By (5), we obtain

Tn,p,q(x) = [2]q

(
1

p − q

)n n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x 1

1 + q2l+1 p2(n−l)
. (8)
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Again, by using (5) and (8), we obtain

∞

∑
n=0

Tn,p,q(x)
tn

n!

=
∞

∑
n=0

(
[2]q

(
1

p − q

)n n

∑
l=0

(
n
l

)
(−1)lqxl p(n−l)x 1

1 + q2l+1 p2(n−l)

)
tn

n!

= [2]q
∞

∑
m=0

(−1)mqme[2m+x]p,qt.

(9)

Since [x + 2y]p,q = p2y[x]p,q + qx[2y]p,q, we have

Tn,p,q(x) = [2]q
n

∑
l=0

(
n
l

)
[x]n−l

p,q qxl
l

∑
k=0

(
l
k

)
(−1)k

(
1

p − q

)l 1
1 + q2k+1 p2(n−k)

. (10)

By using (9) and (10), (p, q)-number, and the power series expansion of ext, we give Theorem 2.

Furthermore, by (7) and Theorem 2, we have

Tn,p,q(x) =
n

∑
l=0

(
n
l

)
[x]n−l

p,q qxlT(2n−2l)
l,p,q ,

Tn,p,q(x + y) =
n

∑
l=0

(
n
l

)
pxlqy(n−l)[y]lp,qT(2l)

n−l,p,q.

From (4) and (5), we can derive the following properties of the Carlitz-type tangent numbers
Tn,p,q and polynomials Tn,p,q(x). So, we choose to omit the details involved.

Proposition 1. For any positive integer n, one has

(1) Tn,p,q(x) =
[2]q
[2]qm

[m]np,q ∑m−1
a=0 (−1)aqaTn,pm ,qm

( 2a+x
m

)
, (m = odd).

(2) Tn,p−1,q−1(2 − x) = (−1)n pnqnTn,p,q(x).

Theorem 3. For n ∈ N∪ {0}, one has

qTn,p,q(2) + Tn,p,q =

{
[2]q, if n = 0,
0, if n 	= 0.

Theorem 4. If n is a positive integer, then we have

n−1

∑
l=0

(−1)lql [2l]mp,q =
(−1)n+1qnTm,p,q(2n) + Tm,p,q

[2]q
.

Proof. By (4) and (5), we get

− [2]q
∞

∑
l=0

(−1)l+nql+ne[2l+2n]p,qt + [2]q
∞

∑
l=0

(−1)lqle[2l]p,qt = [2]q
n−1

∑
l=0

(−1)lqle[2l]p,qt. (11)
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Hence, by (4), (5) and (11), we have

(−1)n+1qn
∞

∑
m=0

Tm,p,q(2n)
tm

m!
+

∞

∑
m=0

Tm,p,q
tm

m!

=
∞

∑
m=0

(
[2]q

n−1

∑
l=0

(−1)lql [2l]mp,q

)
tm

m!
.

Equating coefficients of tm

m! gives Theorem 4.

3. (p, q)-Analogue of Tangent Zeta Function

Using Carlitz-type (p, q)-tangent numbers and polynomials, we define the (p, q)-tangent zeta
function and Hurwitz (p, q)-tangent zeta function. These functions have the values of the Carlitz-type
(p, q)-tangent numbers Tn,p,q, and polynomials Tn,p,q(x) at negative integers, respectively. From (4),
we note that

dk

dtk Fp,q(t)

∣∣∣∣∣
t=0

= [2]q
∞

∑
m=0

(−1)nqm[2m]kp,q

= Tk,p,q, (k ∈ N).

From the above equation, we construct new (p, q)-tangent zeta function as follows:

Definition 3. We define the (p, q)-tangent zeta function for s ∈ C with Re(s) > 0 by

ζp,q(s) = [2]q
∞

∑
n=1

(−1)nqn

[2n]sp,q
. (12)

Notice that ζp,q(s) is a meromorphic function on C(cf.7). Remark that, if p = 1, q → 1,
then ζp,q(s) = ζT(s) which is the tangent zeta function (see [19]). The relationship between the
ζp,q(s) and the Tk,p,q is given explicitly by the following theorem.

Theorem 5. Let k ∈ N. We have
ζp,q(−k) = Tk,p,q.

Please note that ζp,q(s) function interpolates Tk,p,q numbers at non-negative integers. Similarly,
by using Equation (5), we get

dk

dtk Fp,q(t, x)

∣∣∣∣∣
t=0

= [2]q
∞

∑
m=0

(−1)mqm[2m + x]kp,q (13)

and (
d
dt

)k
(

∞

∑
n=0

Tn,p,q(x)
tn

n!

)∣∣∣∣∣
t=0

= Tk,p,q(x), for k ∈ N. (14)

Furthermore, by (13) and (14), we are ready to construct the Hurwitz (p, q)-tangent zeta function.

Definition 4. For s ∈ C with Re(s) > 0 and x /∈ Z
−
0 , we define

ζp,q(s, x) = [2]q
∞

∑
n=0

(−1)nqn

[2n + x]sp,q
. (15)

Obverse that the function ζp,q(s, x) is a meromorphic function on C. We note that, if p = 1 and
q → 1, then ζp,q(s, x) = ζT(s, x) which is the Hurwitz tangent zeta function (see [19]). The function
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ζp,q(−k, x) interpolates the numbers Tk,p,q(x) at non-negative integers. Substituting s = −k with k ∈ N

into (15), and using Theorem 2, we easily arrive at the following theorem.

Theorem 6. Let k ∈ N. One has
ζp,q(−k, x) = Tk,p,q(x).

4. Some Symmetric Properties About (P, Q)-Analogue of Tangent Zeta Function

Our main objective in this section is to obtain some symmetric properties about (p, q)-tangent
zeta function. In particular, some of these symmetric identities are also related to the Carlitz-type
(p, q)-tangent polynomials and the alternate power sums. To end this section, we focus on some
symmetric identities containing the Carlitz-type (p, q)-tangent zeta function and the alternate
power sums.

Theorem 7. Let w1 and w2 be positive odd integers. Then we have

[2]qw1 [w1]
s
p,q

w2−1

∑
i=0

(−1)iqw1iζpw2 ,qw2

(
s, w1x +

2w1i
w2

)

= [2]qw2 [w2]
s
p,q

w1−1

∑
j=0

(−1)jqw2 jζpw1 ,qw1

(
s, w2x +

2w2 j
w1

)
.

Proof. For any x, y ∈ C, we observe that [xy]p,q = [x]py ,qy [y]p,q. By substituting w1x + 2w1i
w2

for x in
Definition 4, replace p by pw2 and replace q by qw2 , respectively, we derive

ζpw2 ,qw2

(
s, w1x +

2w1i
w2

)
= [2]qw2

∞

∑
n=0

(−1)nqw2n

[w1x + 2w1i
w2

+ 2n]spw2 ,qw2

= [2]qw2 [w2]
s
p,q

∞

∑
n=0

(−1)nqw2n

[w1w2x + 2w1i + 2w2n]sp,q
.

Since for any non-negative integer m and positive odd integer w1, there exist unique non-negative
integer r such that m = w1r + j with 0 ≤ j ≤ w1 − 1. Thus, this can be written as

ζpw2 ,qw2

(
s, w1x +

2w1i
w2

)
= [2]qw2 [w2]

s
p,q

∞

∑
w1r+j=0

0≤j≤w1−1

(−1)w1r+jqw2(w1r+j)

[2w2(w1r + j) + w1w2x + 2w1i]sp,q

= [2]qw2 [w2]
s
p,q

w1−1

∑
j=0

∞

∑
r=0

(−1)w1r+jqw2(w1r+j)

[w1w2(2r + x) + 2w1i + 2w2 j]sp,q
.

It follows from the above equation that

[2]qw1 [w1]
s
p,q

w2−1

∑
i=0

(−1)iqw1iζpw2 ,qw2

(
s, w1x +

2w1i
w2

)
= [2]qw1 [2]qw2 [w1]

s
p,q[w2]

s
p,q

×
w2−1

∑
i=0

w1−1

∑
j=0

∞

∑
r=0

(−1)r+i+jq(w1w2r+w1i+w2 j)

[w1w2(2r + x) + 2w1i + 2w2 j]sq
.

(16)
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From the similar method, we can have that

ζpw1 ,qw1

(
s, w2x +

2w2 j
w1

)
= [2]qw1

∞

∑
n=0

(−1)nqw1n

[w2x + 2w2 j
w1

+ 2n]spw1 ,qw1

= [2]qw1 [w1]
s
p,q

∞

∑
n=0

(−1)nqw1n

[w1w2x + 2w2 j + 2w1n]sp,q
.

After some calculations in the above, we have

[2]qw2 [w2]
s
p,q

w1−1

∑
j=0

(−1)jqw2 jζ
(h)
pw1 ,qw1

(
s, w2x +

2w2 j
w1

)
= [2]qw1 [2]qw2 [w1]

s
p,q[w2]

s
p,q

×
w2−1

∑
i=0

w1−1

∑
j=0

∞

∑
r=0

(−1)r+i+jq(w1w2r+w1i+w2 j)

[w1w2(2r + x) + 2w1i + 2w2 j]sp,q
.

(17)

Thus, from (16) and (17), we obtain the result.

Corollary 1. For s ∈ C with Re(s) > 0, we have

ζp,q(s, w1x) = [w1]
−s
p,q

w1−1

∑
j=0

(−1)jqjζpw1 ,qw1

(
s,

x + 2j
w1

)
.

Proof. Let w2 = 1 in Theorem 7. Then we immediately get the result.

Next, we also derive some symmetric identities for Carlitz-type (p, q)-tangent polynomials by
using (p, q)-tangent zeta function.

Theorem 8. Let w1 and w2 be any positive odd integers. The following multiplication formula holds true for
the Carlitz-type (p, q)-tangent polynomials:

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iTn,pw2 ,qw2

(
w1x +

2w1i
w2

)

= [2]qw2 [w1]
n
p,q

w1−1

∑
j=0

(−1)jqw2 jTn,pw1 ,qw1

(
w2x +

2w2 j
w1

)
.

Proof. By substituting Tn,p,q(x) for ζp,q(s, x) in Theorem 7, and using Theorem 6, we can find that

[2]qw1 [w1]
−n
p,q

w2−1

∑
i=0

(−1)iqw1iζpw2 ,qw2

(
−n, w1x +

2w1i
w2

)

= [2]qw1 [w1]
−n
p,q

w2−1

∑
i=0

(−1)iqw1iTn,pw2 ,qw2

(
w1x +

2w1i
w2

)
,

(18)

and

[2]qw2 [w2]
−n
p,q

w1−1

∑
j=0

(−1)jqw2 jζpw1 ,qw1

(
−n, w2x +

2w2 j
w1

)

= [2]qw2 [w2]
−n
p,q

w1−1

∑
j=0

(−1)jqw2 jTn,pw1 ,qw1

(
w2x +

2w2 j
w1

)
.

(19)

Thus, by (18) and (19), this concludes our proof.
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Considering w1 = 1 in the Theorem 8, we obtain as below equation.

Tn,p,q(x) =
[2]q
[2]qw2

[w2]
n
p,q

w2−1

∑
j=1

(−1)jqjTn,pw2 ,qw2

(
x + 2j

w2

)
.

Furthermore, by applying the addition theorem for the Carlitz-type (h, p, q)-tangent polynomials
T(h)

n,p,q(x), we can obtain the following theorem.

Theorem 9. Let w1 and w2 be any positive odd integers. Then one has

[2]qw2

n

∑
l=0

(
n
l

)
[w2]

l
q[w1]

n−l
p,q pw1w2xlT(2l)

n−l,pw1 ,qw1 (w2x)Tn,l,pw2 ,qw2 (w1)

= [2]qw1

n

∑
l=0

(
n
l

)
[w1]

l
p,q[w2]

n−l
p,q pw1w2xlT(2l)

n−l,pw2 ,qw2 (w1x)Tn,l,pw1 ,qw1 (w2).

Proof. From Theorem 8, we have

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iTn,pw2 ,qw2

(
w1x +

2w1i
w2

)

= [2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1i
n

∑
l=0

(
n
l

)
q2w1(n−l)i pw1w2xl

× T(2l)
n−l,pw2 ,qw2 (w1x)

(
[w1]p,q

[w2]p,q

)l

[2i]lpw1 ,qw1

= [2]qw1 [w2]
n
p,q

n

∑
l=0

(
n
l

)(
[w1]p,q

[w2]p,q

)l

pw1w2xlT(2l)
n−l,pw2 ,qw2 (w1x)

×
w2−1

∑
i=0

(−1)iqw1iq2(n−l)w1i[2i]lpw1 ,qw1 .

Therefore, we obtain that

[2]qw1 [w2]
n
p,q

w2−1

∑
i=0

(−1)iqw1iTn,pw2 ,qw2

(
w1x +

2w1i
w2

)
= [2]qw1

n

∑
l=0

(
n
l

)
[w1]

l
p,q[w2]

n−l
p,q pw1w2xlT(2l)

n−l,pw2 ,qw2 (w1x)Tn,l,pw1 ,qw1 (w2),

(20)

and

[2]qw2 [w1]
n
p,q

w1−1

∑
j=0

(−1)jqw2 jTn,pw1 ,qw1

(
w2x +

2w2 j
w1

)

= [2]qw2

n

∑
l=0

(
n
l

)
[w2]

l
q[w1]

n−l
p,q pw1w2xlT(2l)

n−l,pw1 ,qw1 (w2x)Tn,l,pw2 ,qw2 (w1).

(21)

where Tn,l,p,q(k) = ∑k−1
i=0 (−1)iq(1+2n−2l)i[2i]lp,q is called as the alternate power sums. Thus, the theorem

can be established by (20) and (21).
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5. Zeros of the Carlitz-Type (P, Q)-Tangent Polynomials

The purpose of this section is to support theoretical predictions using numerical experiments
and to discover new exciting patterns for zeros of the Carlitz-type (p, q)-tangent polynomials Tn,p,q(x).
We propose some conjectures by numerical experiments. The first values of the Tn,p,q(x) are given by

T0,p,q(x) = 1,

T1,p,q(x) = − −px − pxq3 + qx + p2q1+x

(p − q)(1 + p2q)(1 − q + q2)
,

T2,p,q(x) =
p2x + p2+2xq3 + p2xq5 + p2+2xq8 − 2pxqx + q2x − 2p4+xq1+x

(p − q)2(1 + p4q)(1 + p2q3)(1 − q + q2 − q3 + q4)

− 2pxq5+x − 2p4+xq6+x + p4q1+2x + p2q3+2x + p6q4+2x

(p − q)2(1 + p4q)(1 + p2q3)(1 − q + q2 − q3 + q4)
.

Tables 1 and 2 present the numerical results for approximate solutions of real zeros of Tn,p,q(x).
The numbers of zeros of Tn,p,q(x) are tabulated in Table 1 for a fixed p = 1

2 and q = 1
10 .

Table 1. Numbers of real and complex zeros of Tn,p,q(x), p = 1
2 , q = 1

10 .

Degree n Real Zeros Complex Zeros

1 1 0
2 2 0
3 1 2
4 2 2
5 1 4
6 2 4
7 1 6
8 2 6
9 1 8

10 2 8
11 1 10
12 2 10
13 1 12
14 2 12
...

...
...

30 2 28

Table 2. Numerical solutions of Tn,p,q(x) = 0, p = 1
2 , q = 1

10 .

Degree n x

1 0.0147214
2 –0.0451666, 0.0490316
3 0.0737013
4 –0.0782386, 0.0906197
5 0.102727
6 –0.0935042, 0.111767

The use of computer has made it possible to identify the zeros of the Carlitz-type (p, q)-tangent
polynomials Tn,p,q(x). The zeros of the Carlitz-type (p, q)-tangent polynomials Tn,p,q(x) for x ∈ C are
plotted in Figure 1.

In Figure 1(top-left), we choose n = 10, p = 1/2 and q = 1/10. In Figure 1(top-right), we choose
n = 20, p = 1/2 and q = 1/10. In Figure 1(bottom-left), we choose n = 30, p = 1/2 and
q = 1/10. In Figure 1(bottom-right), we choose n = 40, p = 1/2 and q = 1/10. It is amazing
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that the structure of the real roots of the Carlitz-type (p, q)-tangent polynomials Tn,p,q(x) is regular.
Thus, theoretical prediction on the regular structure of the real roots of the Carlitz-type (p, q)-tangent
polynomials Tn,p,q(x) is await for further study (Table 1). Next, we have obtained the numerical
solution satisfying Carlitz-type (p, q)-tangent polynomials Tn,p,q(x) = 0 for x ∈ R. The numerical
solutions are tabulated in Table 2 for a fixed p = 1

2 and q = 1
10 and various value of n.

-0.1 0 0.1 0.2

Re�x�

-0.1

0

0.1

0.2

Im�x�

-0.1 0 0.1 0.2

Re�x�

-0.1

0

0.1

0.2

Im�x�

-0.1 0 0.1 0.2

Re�x�

-0.1

0

0.1

0.2

Im�x�

-0.1 0 0.1 0.2

Re�x�

-0.1

0

0.1

0.2

Im�x�

Figure 1. Zeros of Tn,p,q(x).

6. Conclusions and Future Developments

This study constructed the Carlitz-type (p, q)-tangent numbers and polynomials. We have
derived several formulas for the Carlitz-type (h, q)-tangent numbers and polynomials.
Some interesting symmetric identities for Carlitz-type (p, q)-tangent polynomials are also obtained.
Moreover, the results of [18] can be derived from ours as special cases when q = 1. By numerical
experiments, we will make a series of the following conjectures:

Conjecture 1. Prove or disprove that Tn,p,q(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic complex
functions. Furthermore, Tn,p,q(x) has Re(x) = a reflection symmetry for a ∈ R.

Many more values of n have been checked. It still remains unknown if the conjecture holds or
fails for any value n (see Figure 1).

Conjecture 2. Prove or disprove that Tn,p,q(x) = 0 has n distinct solutions.
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In the notations: RTn,p,q(x) denotes the number of real zeros of Tn,p,q(x) lying on the real plane
Im(x) = 0 and CTn,p,q(x) denotes the number of complex zeros of Tn,p,q(x). Since n is the degree of the
polynomial Tn,p,q(x), we get RTn,p,q(x) = n − CTn,p,q(x) (see Tables 1 and 2).

Conjecture 3. Prove or disprove that

RTn,p,q(x) =

{
1, if n = odd,
2, if n = even.

We expect that investigations along these directions will lead to a new approach employing
numerical method regarding the research of the Carlitz-type (p, q)-tangent polynomials Tn,p,q(x)
which appear in applied mathematics, and mathematical physics (see [11,18–20]).
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1. Introduction

Let A be the class of analytic functions defined on the unit disk D := {z ∈ C : |z| < 1} and
having the form:

f (z) = z + a2z2 + a3z3 + · · · . (1)

The subclass of A consisting of univalent functions is denoted by S . An analytic function f is
subordinate to another analytic function g if there is an analytic function w with |w(z)| ≤ |z| and
w(0) = 0 such that f (z) = g(w(z)), and we write f ≺ g. If g is univalent, then f ≺ g if and only if
f (0) = g(0) and f (D) ⊆ g(D). The classes S∗ and K of star-like and convex functions, respectively,
are among the most studied subclasses of S . These classes are defined, respectively, as:

S∗ :=
{

f ∈ S : Re
(

z f ′(z)
f (z)

)
> 0, z ∈ D

}
and:

K :=
{

f ∈ S : Re
(

1 +
z f ′′(z)
f ′(z)

)
> 0, z ∈ D

}
.

The Koebe function k(z) = z/(1 − z)2 ∈ S∗ and z/(1 − z) ∈ K.
General forms of these classes were considered by Janowski [1]. For −1 ≤ B < A ≤ 1, these

classes are defined by:

S∗[A, B] :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 + Az

1 + Bz

}
and K[A, B] :=

{
f ∈ S : 1 +

z f ′′(z)
f ′(z)

≺ 1 + Az
1 + Bz

}
.
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Symmetry 2018, 10, 348

These classes are called the class of Janowski star-like and Janowski convex functions, respectively.
On specializing the parameters A and B, we get several well-known classes such as S∗ := S∗[1, −1]
and K := K[1, −1]. The functions h0 and k0 defined by:

h0(z) =

{
z(1 + Bz)

A
B −1, B 	= 0;

zeAz, B = 0,
(2)

and:

k0(z) =

⎧⎪⎨⎪⎩
1
A [(1 + Bz)

A
B − 1], B 	= 0, A 	= 0;

1
B log(1 + Bz), A = 0;
1
A [e

Az − 1], B = 0.
(3)

belong to the classes S∗[A, B] and K[A, B] (−1 ≤ B < A ≤ 1), respectively. In particular, 2z/(2 − z) ∈
S∗[1/2, −1/2] and 4z/(2 − z)2 ∈ K[1/2, −1/2].

The quantity a2
2 − a3 is associated with the Schwarzian derivative of function f ∈ S . Recall that

the Schwarzian derivative of a locally univalent function f is defined by:

S( f )(z) :=
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

which is an important quantity in univalent function theory. For example, the quantity a3 − μa2
2 =

( f ′′′(0) − 3μ( f ′′(0))2/2)/6 is called the Fekete–Szegö functional, and finding the sharp bound on
modulus of this quantity is popularly known as the Fekete–Szegö problem. Nehari [2] (see also [3])
proved that the necessary condition for an analytic function f to be in the class S is |S( f )(z)| ≤
6(1 − |z|2)−2, and the sufficient condition is |S( f )(z)| ≤ 2(1 − |z|2)−2. In both directions, the results
are the best possible in the sense that the constants two and six cannot be replaced by the smaller
numbers. The sharpness of the later condition was verified by Hille [4]. The first inequality is sharp
in the case of the Koebe function, whereas the sharpness in the second can be seen in the case of the
function f0(z) = (1/2) log((1 + z)/(1 − z)). Later, Nehari [5] proved that if f is a convex function,
then |S( f )(z)| ≤ 2(1 − |z|2)−2.

Aharanov and Harmelin [6] studied the higher order Schwarzian derivatives σn( f ) with
invariance under composition on the left by Möbius transformations T, σn(T ◦ f ) = σn( f ), and
their relation to univalence of the function f . The higher order Schwarzian derivative is defined as
follows (see [6,7]):

σ3( f ) = S( f )

and for any integer n ≥ 4, it is given by:

σn+1( f ) = (σn( f ))′ − (n − 1)σn( f )
f ′′

f ′
.

In particular,

σ4( f ) =
f (4)

f ′
− 6

f ′′′ f ′

f ′2
+

(
f ′′

f ′

)3

and for:

σ5( f ) =
f (5)

f ′
− 10

f (4) f ′′

f ′2
− 6

(
f ′′′

f ′

)2

+ 48
f ′′′ f ′2

f ′3
− 36

(
f ′′

f ′

)4

.

Schippers [7] derived the differential equation for the Loewner flow of the Schwarzian derivative
of univalent functions and used this to investigate the bounds on the modulus of higher order
Schwarzian derivatives. These bounds were shown to be sharp in the case of the Koebe function.
He also proved certain two-point distortion theorems for the higher order Schwarzian derivatives in
terms of the hyperbolic metric. Later, the higher order Schwarzian derivatives for convex functions
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were considered by Dorff and Szynal [8]. Since the class K is linearly invariant (see [9]), so there
is no loss in restricting consideration to σn( f )(0) =: Sn. From the above definition of σn( f ), we
see that S3 = σ3( f )(0) = 6(a3 − a2

2), S4 = σ4( f )(0) = 24(a4 − 3a2a3 + 2a3
2) and S5 = σ5( f )(0) =

24(5a5 − 20a2a4 − 9a2
3 + 48a3a2

2 − 24a4
2). Droff and Szynal proved that |S3| ≤ 2, |S4| ≤ 4 and |S5| ≤ 12

with inequality in the case of the function:

fn(z) =
∫ z

0
(1 − tn−1)−

2
n−1 dt, n = 3, 4, 5.

They also conjectured that the maximal value of |Sn| for n = 6, 7, 8, · · · is attained in the case of
the function fn defined above.

In general, it is not so easy for researchers to deal with the higher order Schwarzian derivatives as
the methods in geometric function theory known at present time are not substantial enough. However,
they have a very important role in geometric/univalent function theory. In particular, Gal [10],
by using the powerful method of admissible functions of Miller and Mocanu [11], investigated
the geometric criterion of univalence, which combines higher order Schwarzian derivatives with
those of the Ruscheweyh and Sălăgean operators. Therefore, it is very natural to consider higher
order Schwarzian derivatives for various geometric results of analytic functions. In this direction,
Tamanoi [12], investigated various properties of higher Schwarzian derivatives and their relation
with combinatorial polynomials. Tamanoi also proved that the higher Schwarzian derivatives are
Möbius invariant; see [12] (p. 135 Theorems 3–3(ii)). Later, in 2011, Kim and Sugawa [13] investigated
relations between the Aharonov invariants ([13,14]) and Tamanoi’s Schwarzian derivatives of higher
order and gave a recursive formula for Tamanoi’s Schwarzians. In the same paper, they proposed a
new definition of invariant Schwarzian derivatives of a non-constant holomorphic function between
Riemann surfaces with conformal metrics. In 2011, Kim and Sugawa reviewed the Peschl–Minda
derivatives [15,16] and Schwarzian derivatives of higher order due to Aharonov [14], Tamanoi [12]
and Kim and Sugawa [13] for a non-constant holomorphic map between Riemann surfaces with
conformal metrics. They also proved that the higher-order Schwarzian derivatives of Aharonov
and Tamanoi cannot be extended to holomorphic functions between projective Riemann surfaces
unlike the classical Schwarzian derivatives. The higher order Schwarzian derivative are useful in the
study of the properties of non-linear dynamical system and has been studied extensively by several
researchers [17]. For many applications of the higher order Schwarzian derivatives related to the real
functions, the reader may refer to [17,18] and the references cited therein. Kwon and Sim [19], in
2017, using the theory of admissible functions investigated some sufficient conditions for normalized
analytic functions to be star-like, associated with Tamanoi’s Schwarzian derivative of third order.

Motivated by the works of Schippers [7] and Dorff and Szynal [8] and other related works
cited above, in this paper, we shall consider the higher order Schwarzian derivatives for Janowski
star-like and convex functions. The sharp bound on the first three consecutive Schwarzian derivatives
for Janowski star-like and convex functions is investigated. We shall also point out some relevant
connections of our results with the existing result. Several examples in support of our main results are
also given with explanations. To prove our results, we need the following results:

Let B be the class of Schwarz functions consisting of analytic functions of the form w(z) =

c1z + c2z2 + c3z3 + · · · (z ∈ D) and satisfying the condition |w(z)| < 1 for z ∈ D. Let P denote the
class of analytic functions of the form p(z) = 1+ p1z+ p2z2 + p3z3 + · · · for which Re p(z) > 0 (z ∈ D).
The following correspondence between the classes B and P holds:

p ∈ P if and only if w(z) =
p(z)− 1
p(z) + 1

∈ B. (4)
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Comparing coefficients in (4), we have:

c1 =
p1

2
, c2 =

2p2 − p2
1

4
, c3 =

4p3 − 4p1 p2 + p3
1

8
, c4 =

8p4 − 8p1 p3 − 4p2
2 + 6p2

1 p2 − p4
1

16
. (5)

Consider the functional Ψ(μ, ν) = |c3 + μc1c2 + νc3
1| for w ∈ B and μ, ν ∈ R.

Lemma 1. If w ∈ B [20] (p. 128 Lemma 2), then for any real numbers μ and ν, we have:

|Ψ(μ, ν)| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, (μ, ν) ∈ Ω1 ∪ Ω2 ∪ {(2, 1)};

|ν|, (μ, ν) ∈
7⋃

k=3
Ωk;

2
3 (|μ|+ 1)

( |μ|+1
3(|μ|+ν+1)

)1/2
, (μ, ν) ∈ Ω8 ∪ Ω9;

1
3 ν

(
μ2−4

μ2−4ν

) (
μ2−4

3(ν−1)

)1/2
, (μ, ν) ∈ Ω10 ∪ Ω11 − {(2, 1)};

2
3 (|μ| − 1)

( |μ|−1
3(|μ|−ν−1)

)1/2
, (μ, ν) ∈ Ω12.

Here, the symbols Ωk’s are defined as follows:

Ω1 :=
{
(μ, ν) ∈ R

2 : |μ| ≤ 1/2, |ν| ≤ 1
}

,

Ω2 :=
{
(μ, ν) ∈ R

2 :
1
2

≤ |μ| ≤ 2,
4
27

(|μ|+ 1)3 − (|μ|+ 1) ≤ ν ≤ 1
}

,

Ω3 :=
{
(μ, ν) ∈ R

2 : |μ| ≤ 1
2

, ν ≤ −1
}

, Ω4 :=
{
(μ, ν) ∈ R

2 : |μ| ≥ 1/2, ν ≤ −2
3
(|μ|+ 1)

}
,

Ω5 :=
{
(μ, ν) ∈ R

2 : |μ| ≤ 2, ν ≥ 1
}

, Ω6 :=
{
(μ, ν) ∈ R

2 : 2 ≤ |μ| ≤ 4, ν ≥ 1
12

(μ2 + 8)
}

,

Ω7 :=
{
(μ, ν) ∈ R

2 : |μ| ≥ 4, ν ≥ 2
3
(|μ| − 1)

}
,

Ω8 :=
{
(μ, ν) ∈ R

2 :
1
2

≤ |μ| ≤ 2, −2
3
(|μ|+ 1) ≤ ν ≤ 4

27
(|μ|+ 1)3 − (|μ|+ 1)

}
,

Ω9 :=
{
(μ, ν) ∈ R

2 : |μ| ≥ 2, −2
3
(|μ|+ 1) ≤ ν ≤ 2|μ|(|μ|+ 1)

μ2 + 2|μ|+ 4

}
,

Ω10 :=
{
(μ, ν) ∈ R

2 : 2 ≤ |μ| ≤ 4,
2|μ|(|μ|+ 1)
μ2 + 2|μ|+ 4

≤ ν ≤ 1
12

(μ2 + 8)
}

,

Ω11 :=
{
(μ, ν) ∈ R

2 : |μ| ≥ 4,
2|μ|(|μ|+ 1)
μ2 + 2|μ|+ 4

≤ ν ≤ 2|μ|(|μ| − 1)
μ2 − 2|μ|+ 4

}
,

Ω12 :=
{
(μ, ν) ∈ R

2 : |μ| ≥ 4,
2|μ|(|μ| − 1)
μ2 − 2|μ|+ 4

≤ ν ≤ 2
3
(|μ| − 1)

}
.

The extremal functions, up to rotations, are of the form:

w1(z) = z3, w2(z) = z, w3(z) =
z(t1 − z)
1 − t1z

, w4(z) =
z(t2 + z)
1 + t2z

and w5(z) = c1z + c2z2 + c3z3 + · · · , where the parameters t1, t2 and the coefficients ci are given by:

t1 =

( |μ|+ 1
3(|μ|+ ν + 1)

)1/2

, t2 =

( |μ| − 1
3(|μ| − ν − 1)

)1/2

, c1 =

(
2ν(μ2 + 2)− 3μ2

3(ν − 1)(μ2 − 4ν)

)1/2

,
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c2 = (1 − c2
1)e

iθ0 , c3 = −c1c2eiθ0 , θ0 = ± arccos

[
μ

2

(
ν(μ2 + 8)− 2(μ2 + 2)

2ν(μ2 + 2)− 3μ2

)1/2]
.

Lemma 2. If w ∈ B [21](see also, [22]), then for any complex numbers τ, we have:

|c2 − τc2
1| ≤ max {1; |τ|} .

The result is sharp for the functions w(z) = z or w(z) = z2.

Lemma 3. Let α̂, β̂, γ̂ and â satisfy the inequalities [23] (p. 506 Lemma 2.1), 0 < α̂ < 1, 0 < â < 1 and:

8â(1 − â)[(α̂β̂ − 2γ̂)2 + (α̂(â + α̂)− β̂)2] + α̂(1 − α̂)(β̂ − 2âα̂)2 ≤ 4âα̂2(1 − α̂)2(1 − â). (6)

If p(z) = 1 + p1z + p2z2 + p3z3 + · · · ∈ P , then:

|γ̂p4
1 + âp2

2 + 2α̂p1 p3 − (3/2)β̂p2
1 p2 − p4| ≤ 2.

2. Main Results

The following theorem gives the sharp bound on the first three consecutive higher order
Schwarzian derivatives for Janowski convex functions. In fact, Theorem 1 is a generalization of
the result in [8] (p. 8 Theorem 1 ) due to Dorff and Szynal.

Theorem 1. Let f ∈ K[A, B]. Then, the following implications hold:

1. If −1 ≤ B < A ≤ 1, then |S3| ≤ (A − B).

2. (a) If either of the set of conditions:
|3A + B| ≤ 1

or 1 ≤ |3A + B| ≤ 4 and:

4
27

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)3

−
(∣∣∣∣3A + B

2

∣∣∣∣+ 1
)

≤ A(A + B)
2

≤ 1

hold, then |S4| ≤ 2(A − B).

(b) If 1 ≤ |3A + B| ≤ 4 and:

−2
3

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)

≤ A(A + B)
2

≤ 4
27

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)3

−
(∣∣∣∣3A + B

2

∣∣∣∣+ 1
)

hold, then:

|S4| ≤
4(A − B)

3

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)⎛⎝

∣∣∣ 3A+B
2

∣∣∣+ 1

3
(∣∣∣ 3A+B

2

∣∣∣+ A(A+B)
2 + 1

)
⎞⎠1/2

.

3. If −1 < B < A < 1 and:(
A2 − 2A + 2

)
(A − 1)2(A − B)2(A + B − 2)(A + B + 2)

− 36
(

A2 − 1
)2

(A + B − 2)(A + B) + 24(A + 1)(A − 1)2(A − B) ≥ 0 (7)

hold, then |S5| ≤ 6(A − B).
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All estimates are sharp.

Proof. Let f ∈ K[A, B]. For such a function f , by definition, we can write:

1 +
z f ′′(z)
f ′(z)

=
1 + Aw(z)
1 + Bw(z)

, (8)

where w(z) = c1z + c2z2 + c3z3 + · · · ∈ B. Comparing the coefficients of the like power terms in (8),
we have:

a2 =
1
2
(A − B)c1, a3 =

1
6
(A − B)

[
(A − 2B)c2

1 + c2

]
, (9)

a4 =
1
24

(A − B)
[
(A2 − 5AB + 6B2)c3

1 + (3A − 7B)c1c2 + 2c3

]
(10)

and:

a5 =
1

120
(A − B)[(A3 − 24B3 − 9A2B + 26B2 A)c4

1 + 2(3A2 − 17AB + 23B2)c2
1c2

+ 3(A − 3B)c2
2 + 4(2A − 5B)c1c3 + 6c4]. (11)

(1) From (9), we have:

S3 = 6(a3 − a2
2)

= (A − B)
[

c2 − A + B
2

c2
1

]
. (12)

Now, an application of Lemma 2 in (12) gives the desired estimate on |S3|. The function for which
equality holds is given by (8) with the choice w(z) = z2.

(2) Next, we consider:

S4 = 24(a4 − 3a2a3 + 2a3
2)

= 2(A − B)
[
c3 + μc1c2 + νc3

1

]
= 2(A − B)Υ(μ, ν), (13)

where Υ(μ, ν) := c3 + μc1c2 + νc3
1 with μ := −(3A + B)/2 and ν := A(A + B)/2.

Assume that Ωi’s are as defined in Lemma 1 with μ and ν as given above. We observe that
ν = A(A+ B)/2 ≥ −1 as AB ≥ −2 − A2, and so, (μ, ν) /∈ Ω3. Furthermore, |μ| = | − (3A+ B)/2| < 2
because −4 < 3A + B < 4. Therefore, we can conclude that (μ, ν) /∈ Ωi (i = 6, 7, 9, 10, 11, 12).
Moreover, ν < 1 as A2 + AB < 2. This reveals that (μ, ν) /∈ Ω5. We now claim that (μ, ν) /∈ Ω4. For
this, we first assume that μ ≤ 0. Then, |μ| ≥ 1/2 gives 3A + B ≥ 1. Furthermore, the condition
ν ≤ (−2/3)(|μ| + 1) holds if 3A(A + B)/2 ≤ −2(3A + B + 2) or equivalently if −3A(A + B) ≥
2(3A + B + 2) = 2(3A + B) + 4 ≥ 6, that is if −AB ≥ 2 + A2. Clearly, this is false. Similarly, in the
case when μ ≤ 0, the condition ν ≤ (−2/3)(|μ|+ 1) does not hold. Thus, we conclude that our claim
is true. Further, if |3A + B| ≤ 1, then (μ, ν) ∈ Ω1. Furthermore, if 1 ≤ |3A + B| ≤ 4 and:

4
27

(∣∣∣∣−3A + B
2

∣∣∣∣+ 1
)3

−
(∣∣∣∣−3A + B

2

∣∣∣∣+ 1
)

≤ A(A + B)
2

≤ 1,

then (μ, ν) ∈ Ω2. In view of Lemma 1, we see that if (μ, ν) ∈ Ω1 ∪ Ω2, then |Υ(μ, ν)| ≤ 1, and hence,
|S4| ≤ 2(A − B). The function for which equality holds is given by (8) with the choice w(z) = z3.
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Now, if 1 ≤ |3A + B| ≤ 4 and:

−2
3

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)

≤ A(A + B)
2

≤ 4
27

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)3

−
(∣∣∣∣3A + B

2

∣∣∣∣+ 1
)

,

then (μ, ν) ∈ Ω8. Now, an application of Lemma 1, in this case, gives:

|Υ(μ, ν)| ≤ 2
3
(|μ|+ 1)

( |μ|+ 1
3(|μ|+ ν + 1)

)1/2

=
2
3

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)⎛⎝

∣∣∣ 3A+B
2

∣∣∣+ 1

3
(∣∣∣ 3A+B

2

∣∣∣+ A(A+B)
2 + 1

)
⎞⎠1/2

.

This inequality together with (13) gives the desired bound on |S4|. To show the sharpness, we consider
the function f defined by (8) with the choice of the Schwarz function:

w(z) =
z(t1 − z)
1 − t1z

,

where:

t1 :=

⎛⎝
∣∣∣ 3A+B

2

∣∣∣+ 1

3
(∣∣∣ 3A+B

2

∣∣∣+ A(A+B)
2 + 1

)
⎞⎠1/2

.

For this Schwarz function w, we see that c1 = t1, c2 = t2
1 − 1, c3 = t3

1 − t1 and:

S4 = 2(A − B)
[

c3 +

∣∣∣∣3A + B
2

∣∣∣∣ c1c2 +
A(A + B)

2
c3

1

]
= 2(A − B)

[
t3
1 − t1 +

∣∣∣∣3A + B
2

∣∣∣∣ t1(t2
1 − 1) +

A(A + B)
2

t3
1

]
= 2(A − B)

[
t3
1

(∣∣∣∣3A + B
2

∣∣∣∣+ A(A + B)
2

+ 1
)

− t1

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)]

=
4(A − B)

3

(∣∣∣∣3A + B
2

∣∣∣∣+ 1
)⎛⎝

∣∣∣ 3A+B
2

∣∣∣+ 1

3
(∣∣∣ 3A+B

2

∣∣∣+ A(A+B)
2 + 1

)
⎞⎠1/2

.

This confirms the sharpness of the result.
(3) Now, it remains to find the estimate on |S5|. Using (5)–(11), we get:

S5 = 24(5a5 − 20a2a4 − 9a2
3 + 48a2

2a3 − 24a4
2)

= 3(A − B)
[
γ̂p4

1 + âp2
2 + 2α̂p1 p3 − (3/2)β̂p2

1 p2 − p4

]
= 3(A − B)Ψ(γ̂, â, α̂, β̂), (14)

where Ψ(γ̂, â, α̂, β̂) := γ̂p4
1 + âp2

2 + 2α̂p1 p3 − (3/2)β̂p2
1 p2 − p4 with the parameters γ̂, â, α̂ and β̂ given

by:

γ̂ :=
(A − 1)2(2 − A − B)

16
, â :=

2 − A − B
4

, α̂ :=
1 − A

2
, β̂ :=

(1 − A)(3 − B − 2A)

6
.

Since the case A = 1, B = −1 was considered by Dorff and Szynal [8], we assume that A and B are
constrained as −1 < B < A < 1. Under these conditions, it is a simple matter to verify that 0 < α̂ < 1
and 0 < â < 1. Moreover, the condition (6) holds if and only if:
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(A − 1)2 (A2 − 2A + 2
)
(A − B)2(A + B − 2)(A + B + 2)

1152
+

1
48

(A − 1)2(A + 1)(A − B)

≥ 1
32

(
A2 − 1

)2
(A + B − 2)(A + B)

or equivalently, if and only if (7) holds. Therefore, in view of Lemma 3, we conclude that if the above
condition holds, then we must have |Ψ(γ̂, â, α̂, β̂)| ≤ 2, and thus, from (14), the result follows at once.
Equality holds in the case of the function f defined by (8) with the choice of the Schwarz function
w(z) = z4.

Remark 1. In particular, when A = 1 and B = −1, Theorem 1 reduces to the result in [8] (p. 8 Theorem 1 )
due to Dorff and Szynal.

Example 1. Setting A = 1/2 and B = −1 in Equation (3), we get the function f1 ∈ K defined by:

f1(z) =
2
(
1 −

√
1 − z

)
√

1 − z
= z +

3z2

4
+

5z3

8
+

35z4

64
+

63z5

128
+ · · · .

Here, we see that, B = −1 < 1/2 = A, a2 = 3/4, a3 = 5/8, a4 = 35/64 and |S3| = 6|a3 − a2
2| = 3/8 <

3/2 = A − B. This supports Part (1) of Theorem 1. Now, for the function f1, we see that 3A + B = 1/2 < 1
and |S4| = 24|a4 − 3a2a3 + 2a3

2| = 3/8 < 2(A − B) = 3. This supports Part 2(a) of Theorem 1.

Example 2. Let A = 1/2 and B = −1 in Equation (3). Then, we get the function f2 ∈ K defined by:

f2(z) = ez − 1 = z +
z2

2
+

z3

6
+

z4

24
+

z5

120
+ · · · .

Here, 1 < |3A + B| = 3 < 4, a2 = 1/2, a3 = 1/6, a4 = 1/24 and |S4| = 24|a4 − 3a2a3 + 2a3
2| = 1 <

2(A − B) = 2. This supports Part 2(b) of Theorem 1. For an example satisfying Part (3) of Theorem 1, we set
A = 3/4 and B = 1/4 in Equation (3), and thus, we get the function f3 defined by:

f3(z) = z +
z2

4
+

z3

48
.

Here, a2 = 1/4, a3 = 1/48, a4 = 0, a5 = 0 and |S5| = 24|5a5 − 20a2a4 − 9a2
3 + 48a2

2a3 − 24a4
2| = 27/32 <

3 = 6(A − B).

Theorem 2. Let f ∈ S∗[A, B]. Then, the following inequalities hold:

1. If −1 ≤ B < A ≤ 1, then |S3| ≤ 3(A − B).
2. (a) If A and B satisfy either:

|B − 3A| ≤ 1/2 and |A(2A − B)| ≤ 1

or:
1/2 ≤ |B − 3A| ≤ 1 and

4
27

(|B − 3A|+ 1)3 − (|B − 3A|+ 1) ≤ A(2A − B) ≤ 1,

then |S4| ≤ 8(A − B).

(b) Let us denote:

T(A, B) := −2
3
(|B − 3A|+ 1).
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If either of the following sets of conditions:

1/2 ≤ |B − 3A| ≤ 2, T(A, B) ≤ A(2A − B) ≤ 4
27

(|B − 3A|+ 1)3 − (|B − 3A|+ 1),

or:

|B − 3A| ≥ 2, T(A, B) ≤ A(2A − B) ≤ 2|B − 3A|(|B − 3A|+ 1)
(B − 3A)2 + |B − 3A|+ 4

hold, then:

|S4| ≤
16(A − B)(|B − 3A|+ 1)3/2

3(3(|B − 3A|+ A(2A − B) + 1))1/2 .

(c) Moreover,

|S4| ≤
{

8(A − B)|A(2A − B)|, 2 ≤ |B − 3A| ≤ 4, A(2A − B) ≥ ((B − 3A)2 + 8)/12;
48, A = 1, B = −1.

3. If A and B satisfy the conditions 0 < (A + 1)
[
43A2 − 43A(B − 1) + 10B2 − 23B + 10

]
< 80, 0 <

13A − 3B + 10 < 20 and:

450(13A − 3B − 10)(13A − 3B + 10)
(

4A2 − 4AB + B2 − 1
)2

− 50(2A − B − 1)(2A − B + 1)(
8A2 + A(7 − 9B) + (B − 7)B

)2
− (13A − 3B − 10)(13A − 3B+ 10)(1849A4 − 172A3(23B − 20)

+ A2
(

2976B2 − 5916B + 2878
)

− 4A
(

230B3 − 798B2 + 928B − 231
)

+ 100B4 − 520B3 + 1177B2 − 630B + 98)(A − B)2 ≤ 0, (15)

then |S5| ≤ 15(A − B).

All estimates are sharp.

Proof. Since f ∈ S∗[A, B], it follows that there exists a Schwarz function w(z) = c1z+ c2z2 + c3z3 + · · ·
such that:

z f ′(z)
f (z)

=
1 + Aw(z)
1 + Bw(z)

. (16)

Comparing the coefficients on both sides of (16), we have:

a2 = (A − B)c1, a3 =
1
2
(A − B)

(
Ac2

1 − 2Bc2
1 + c2

)
, (17)

a4 =
1
6
(A − B)

[
(A − 2B)(A − 3B)c3

1 + (3A − 7B)c1c2 + 2c3

]
(18)

and:

a5 =
1
24

(A − B)[(A3 − 9A2B + 26AB2 − 24B3)c4
1 +

(
6A2 − 34AB + 46B2

)
c2

1c2

+ 4 (2A − 5B) c1c3 + 3 (A − 3B) c2
2 + 6c4]. (19)

As in the proof of Theorem 1, using (17)–(19), we get:

S3 = −3(A − B)
(

Ac2
1 − c2

)
, S4 = 8(A − B)

[
A(2A − B)c3

1 + (B − 3A) c1c2 + c3

]
(20)
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and:

S5 = − 3
16

(A − B)[(A + 1)
(

43A2 − 43A(B − 1) + 10B2 − 23B + 10
)

p4
1

− 4
(

43A2 + A(53 − 33B) + 5B2 − 23B + 15
)

p2
1 p2 + 80(2A − B + 1)p1 p3

+ 4(13A − 3B + 10)p2
2 − 80p4]. (21)

(1) From (20), we have:

|S3| = 3(A − B)
∣∣∣Ac2

1 − c2

∣∣∣
≤ 3(A − B)max {1; |A|}
= 3(A − B).

This gives the required estimate on |S3|. The extremal function in this case is given by (16) with the
function w(z) = z2.

(2) Again, from (20), we get:

|S4| = 8(A − B)
∣∣∣A(2A − B)c3

1 + (B − 3A)c1c2 + c3

∣∣∣
≤ 8(A − B)

∣∣∣c3 + μc1c2 + νc3
1

∣∣∣ , (22)

where μ := B − 3A and ν := A(2A − B). Assume that Ω′
is are as defined in Lemma 1 with the setting

μ and ν mentioned above. In particular, |μ| 	> 4 and |μ| = 4 if and only if A = 1 and B = −1. It can be
easily verified that for A = 1 and B = −1, (μ, ν) /∈ Ω11 ∪ Ω12. Now, in view of Lemma 1, from (22),
we see that if A and B satisfy either:

|B − 3A| ≤ 1
2

and |A(2A − B)| ≤ 1

or:
1
2

≤ |B − 3A| ≤ 1 and
4

27
(|B − 3A|+ 1)3 − (|B − 3A|+ 1) ≤ A(2A − B) ≤ 1,

then |S4| ≤ 8(A − B). The extremal function in this case is given by (16) with the choice of the function
w(z) = z3.

Further, since ν > −1, it follows that (μ, ν) /∈ Ω3. Moreover, a computation reveals that (μ, ν) /∈
Ω4 ∪ Ω5. Furthermore, it can be verified that (μ, ν) ∈ Ω7 if and only if A = 1 and B = −1. Now, an
application of Lemma 1 gives:

|S4| ≤
{

8(A − B)|A(2A − B)|, 2 ≤ |B − 3A| ≤ 4, A(2A − B) ≥ ((B − 3A)2 + 8)/12;
48, A = 1, B = −1.

The extremal function in this case is given by (16) with the choice of the function w(z) = z.
Similarly, we can prove that if either of the sets of following conditions:

1/2 ≤ |B − 3A| ≤ 2, −2
3
(|B − 3A|+ 1) ≤ A(2A − B) ≤ 4

27
(|B − 3A|+ 1)3 − (|B − 3A|+ 1),

or:

|B − 3A| ≥ 2, −2
3
(|B − 3A|+ 1) ≤ A(2A − B) ≤ 2|B − 3A|(|B − 3A|+ 1)

(B − 3A)2 + |B − 3A|+ 4

hold, then

|S4| ≤
16(A − B)(|B − 3A|+ 1)3/2

3(3(|B − 3A|+ A(2A − B) + 1))1/2 .
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To show the sharpness, we consider the function f defined by (16) with the choice of the Schwarz
function w(z) = z(t2 − z)/(1 − t2z), where:

t2 :=
( |B − 3A|+ 1

3 (|B − 3A|+ A(2A − B) + 1)

)1/2
.

For the Schwarz function w, given above, we see that c1 = t2, c2 = t2
2 − 1, c3 = t3

2 − t2 and:

S4 = 8(A − B)
(

A(2A − B)c3
1 + |B − 3A|c1c2 + c3

)
= 8(A − B)

(
A(2A − B)t3 + |B − 3A|t2(t2

2 − 1) + t3
2 − t2

)
= 8(A − B)

(
[A(2A − B) + |B − 3A|+ 1]t3

2 − (|B − 3A|+ 1)t2

)
= −16(A − B)

3
(|B − 3A|+ 1)3/2

(3(|B − 3A|+ A(2A − B) + 1))1/2 .

This confirms the sharpness of the result.
(3) Finally, it remains to find the estimate on |S5|. The expression for S5 given in (21) can be

written as:
S5 = −15

2
(A − B)[γ̂p4

1 + âp2
2 + 2α̂p1 p3 − (3/2)β̂p2

1 p2 − p4], (23)

where:

γ̂ := (A + 1)
(

43A2 − 43A(B − 1) + 10B2 − 23B + 10
)

/80, â := (13A − 3B + 10)/20

α̂ := (2A − B + 1)/2, β̂ :=
(

43A2 + A(53 − 33B) + 5B2 − 23B + 15
)

/30.

In order to apply Lemma 3, we assume that the parameters A and B satisfy the conditions 0 <

(A + 1)
[
43A2 − 43A(B − 1) + 10B2 − 23B + 10

]
< 80 and 0 < (13A − 3B + 10) < 20 together with

the condition:

(13A − 3B − 10)(13A − 3B + 10)(A − B)2(1849A4 − 172A3(23B − 20)

+ A2(2976B2 − 5916B + 2878)− 4A(230B3 − 798B2 + 928B − 231)

+ 100B4 − 520B3 + 1177B2 − 630B + 98)

+ 50(2A − B − 1)(2A − B + 1)
(

8A2 + A(7 − 9B) + (B − 7)B
)2

≥ 450(13A − 3B − 10)(13A − 3B + 10)
(

4A2 − 4AB + B2 − 1
)2

,

or equivalently, if (15) holds.
Thus, all conditions of Lemma 3 are fulfilled. Therefore, we have |S5| ≤ 15(A − B). The function

f defined by (16) with the choice of the Schwarz function w(z) = z4 shows that the result is sharp.
This completes the proof.

Example 3. Let A = 1/2 and B = −1. Then, from Equation (2), we get the function f4 defined by:

f4(z) =
z

(1 − z)3/2 = z +
3z2

2
+

15z3

8
+

35z4

16
+

315z5

128
+

693z6

256
+ · · · .

The function f4 ∈ S∗ and satisfies the assertion in Part (1) of Theorem 2, as for this function, we have
a2 = 3/2, a3 = 15/8, a4 = 35/16 and |S3| = 6|a3 − a2

2| = 9/4 < 9/2 = 3(A − B).

478



Symmetry 2018, 10, 348

Example 4. (i) Let A = 1/2 and B = −1 in Equation (2). Then, we get the function f5 ∈ S∗ defined by:

f5(z) = zez/4 = z +
z2

4
+

z3

32
+

z4

384
+

z5

6144
+ · · · .

Here, we have |B − 3A| = 3/4 < 1/2 and |A(2A − B)| = 1/8 < 1, a2 = 1/4, a3 = 1/32, a4 = 1/384 and
|S4| = 1/4 < 2 = 8(A − B). This verifies the result asserted in Part 2(a) of Theorem 2.

(ii) Let A = 0 and B = −1. Then, we have:

T(A, B) := −2
3
(|B − 3A|+ 1) = −4

3
1/2 < |B − 3A| = 1 < 2

and
T(A, B) = −4

3
< A(2A − B) = 0 <

4
27

(|B − 3A|+ 1)3 − (|B − 3A|+ 1) = 12.

For A = 0 and B = −1, we get the function f6 from Equation (2) defined by:

f6(z) =
z

1 − z
= z + z2 + z3 + z4 + z5 + · · · .

Now, a computation gives

|S4| = 0 <
32

3
√

3
=

16(A − B)(|B − 3A|+ 1)3/2

3[3(|B − 3A|+ A(2A − B) + 1)]1/2 .

This confirms the correctness of the assertion in 2(b) of Theorem 2.
(iii) For an example of a function satisfying the assertion in 2(c) of Theorem 2, we take A = 1 and B = −1

in Equation (2). Then, we get the function f7 defined by:

f7(z) =
z

(1 − z)2 = z + 2z2 + 3z3 + 4z4 + · · · .

For this function, it can be verified that |S4| = 48.
(iv) For A = −1/4 and B = −1/2, computations show that 0 < 13A − 3B + 10 = 33/4 < 20:

0 < (A + 1)
[
43A2 − 43A(B − 1) + 10B2 − 23B + 10

]
=

507
64

< 80

and Inequality (15) becomes −2777538049/65536 < 0. Setting A = −1/4 and B = −1/2 in (2), we get the
function f8 defined by:

f8(z) = z +
z2

4
+

5z4

128
+

35z5

2048
+ · · · .

For this function, we see that S4 = 0 < 15/4 = 15(A − B). This verifies the assertion in Part (3) of Theorem 2.

3. Conclusion

In Theorems 1 and 2, the sharp bounds on the first three consecutive derivatives for Janowski
convex and star-like functions are investigated. Examples 1 and 2 support the conclusions of Theorem 1,
whereas Examples 3 and 4 validate the assertions in Theorem 2. The results obtained in this paper
generalize several existing results in this direction, and they are pointed out. It would be interesting
to investigate the estimation on other higher order Schwarzian derivatives and their applications to
study the properties of a non-linear dynamical system.
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Abstract: Lubich’s convolution quadrature rule provides efficient approximations to integrals with
special kernels. Particularly, when it is applied to computing highly oscillatory integrals, numerical
tests show it does not suffer from fast oscillation. This paper is devoted to studying the convergence
property of the convolution quadrature rule for highly oscillatory problems. With the help of
operational calculus, the convergence rate of the convolution quadrature rule with respect to the
frequency is derived. Furthermore, its application to highly oscillatory integral equations is also
investigated. Numerical results are presented to verify the effectiveness of the convolution quadrature
rule in solving highly oscillatory problems. It is found from theoretical and numerical results that the
convolution quadrature rule for solving highly oscillatory problems is efficient and high-potential.

Keywords: highly oscillatory; convolution quadrature rule; volterra integral equation; Bessel kernel;
convergence

1. Introduction

Highly oscillatory integrals (HOI) arise frequently in antenna problems involving Sommerfeld
integrals (see [1,2]), computation of mutual impedance between conductors (see [3,4]) and many other
oscillatory problems (HOP). Generally, an oscillatory integral can be written as

I[ f ] =
∫ b

0
f (t)W(t)dt. (1)

Here W(·) denotes a highly oscillatory function and f (·) is slowly varied. Due to the high
oscillation, classical quadrature rules (e.g., Newton-Cotes and Gauss rules ) are often ineffective,
and calculation of this class of integrals is deemed to be a challenging problem ([5]).

Past decades witness a rapid development of researches on calculation of HOIs. Based on Filon’s
idea ([6]), Iserles and Nørsett developed the Filon-type method by approximating the slowly varied
function by its Hermite interpolant. Both of theoretical and numerical results manifested that this
method enjoyed high-order convergence rates with respect to the frequency ([7]). To get stable and fast
algorithms, Domínguez, et al. ([8]), and Xiang, et al. ([9]), proposed the Clenshaw-Curtis-Filon-type
method, respectively, which enjoyed extensive applications at present.

Although Filon’s methodology leads to many efficient algorithms, most of them suffer to
complicate computation of moment integrals. An alternative way to addressing this problem is
transforming the integral interval into the complex plane, which derives the numerical steepest descent
method. In [10], the complex integration method in the standard case was discussed extensively.
In [11], the general form and corresponding error analysis were studied. This method was extended
to the case of HOIs on semi-finite intervals in [12]. It is notable that the numerical steepest descent

Symmetry 2018, 10, 239; doi:10.3390/sym10070239 www.mdpi.com/journal/symmetry481
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method with Gauss-Laguerre quadrature may not provide satisfactory solutions in practice (see [13]).
Therefore, computation of transformed integrals is still an interesting topic.

Another important quadrature rule for HOIs is Levin’s method ([14]). It enjoys a wide application
for its being free of computing complex moments and less restrictions to integrands. The spirit of this
method is transforming the integration problem into an ODE, and solving this equation by collocation
methods. It is well-know that implementing of Levin methods comes down to efficient solutions of
linear systems, which are often singular and dense. In [15], an SVD solver for the ill-conditioned
system was presented. In [16], Olver developed a moment-free method by using the shifted GMRES.
Recently, by employing the property of Chebyshev polynomials and preconditioners, a sparse and
well-conditioned Levin method was constructed in [17].

There are many other important methods for calculating HOIs, for example, the homotopy
perturbation method ([18]), the generalized quadrature rule ([19]), the extrapolation method ([20]).
For simplicity, we omit the details. It is quite unexpected that little attention has been paid to
the convolution quadrature rule (CQ) for HOIs ([21,22]), especially its asymptotic property in
the case of high oscillation. In fact, CQ is well-known for its efficient in evaluating convolution
integrals, and oscillatory integrals of convolution-type play significant roles in solving oscillatory and
evolutionary problems (see [23,24]). Therefore, it is a meaningful issue to study CQ for HOIs.

Consider integral transforms with Bessel kernels as∫ x

0
f (t)Jm(ω(x − t))dt, x ∈ [0, T], (2)

with m ≥ 0 being an integer and ω $ 1, and oscillatory Volterra integral equations as∫ x

0
J0(ω(x − t))u(t)dt = f (x), x ∈ [0, T], (3)

where f (·) is sufficiently smooth, f (0) = 0, and u(t) is unknown. In this paper, we are devoted to
studying convergence property of CQ with respective to the frequency for solving above two problems.
The same models have been considered in [25,26], where authors concluded that Filon-type methods
enjoyed the property that the higher the oscillation, the better the approximation. In the following,
we will find CQ share a similar property as Filon-type methods, and even better when they are
applied to solving highly oscillatory integral equations. The remaining parts are organized as follows.
In Section 2, we briefly review CQ and give the convergence analysis. A modified rule is also proposed
in this part. Then we study CQ for solving Volterra integral equations with highly oscillatory kernels
in Section 3. Some numerical experiments are carried out in Section 4 to verify our given results.

2. Convergence of the Convolution Quadrature Rule

In this section, we revisit Lubich’s convolution quadrature firstly. Then the convergence property
with respect to the frequency is studied. In [21,22], Lubich proposed an algorithm for computing the
following integral,

I[ f , g] =
∫ x

0
f (t)g(x − t)dt, x > 0. (4)

Let F(·) denote the Laplace transform of f (·) and satisfy

• F(s) is analytic in the region |arg(s − c)| < π − ϕ, ϕ < π/2, c ∈ R;
• there exist constants M and μ, such that |F(s)| ≤ M|s|−μ.

By the definition of Laplace transform, it follows that

f (t) =
1

2πi

∫
Γ

F(λ)eλtdλ, (5)
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where Γ is a curve locates in the analytic region of F(s) and goes from ∞ · e−i(π−ϕ) to ∞ · ei(π−ϕ).
Substituting (5) into (4) gives∫ x

0
f (t)g(x − t)dt =

1
2πi

∫
Γ

F(λ)
∫ x

0
eλtg(x − t)dtdλ. (6)

Noting that y(x) =
∫ x

0
eλtg(x − t)dt satisfies the initial value problem

⎧⎨⎩
dy
dx

= λy(x) + g(x),

y(0) = 0.
(7)

Defining the grid {tn := nh, n = 0, 1, ...}, we can approximate y(x) by

k

∑
j=0

αjyn+j−k = hβ(λyn + g(nh)), n ≥ 0, (8)

where y−k = ... = y−1 = 0, g(x) = 0(x < 0). Multiplying both sides by ζn(n ≥ 0) in (8) and
summing give

(α0ζk + ... + αk)y(ζ) = β(hλy(ζ) + hg(ζ)), (9)

where y(ζ) =
∞

∑
n=0

ynζn, g(ζ) =
∞

∑
n=0

g(nh)ζn. Letting

δ(ζ) =
α0ζk + ... + αk

β
, (10)

it follows that

y(ζ) =

(
δ(ζ)

h
− λ

)−1

g(ζ). (11)

Since F(s) is analytic in the inside region of the curve Γ, we have, by Cauchy’s integral formula
(see [27], p. 32),

1
2πi

∫
Γ

F(λ)
(

δ(ζ)

h
− λ

)−1

dλ = F
(

δ(ζ)

h

)
. (12)

Therefore, it follows that

1
2πi

∫
Γ

F(λ)y(ζ)dλ =
1

2πi

∫
Γ

F(λ)
(

δ(ζ)

h
− λ

)−1

g(ζ)dλ

=F
(

δ(ζ)

h

)
g(ζ).

(13)

Here the coefficient corresponding to ζn denotes an approximation to the integral (4) at
x = nh. Suppose

F
(

δ(ζ)

h

)
=

∞

∑
j=0

wj(h)ζ j. (14)
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Then CQ for (4) is defined as

Qcq
h (x) = ∑

0≤jh≤x
wj(h)g(x − jh). (15)

By the definition of coefficients of Taylor expansions, we get

wn(h) =
1

2πi

∫
|z|=ρ

F
(

δ(ζ)

h

)
z−n−1dz, (16)

where ρ is sufficiently small such that the disc |z| ≤ ρ falls in the analytic region of F (δ(ζ)/h) . Letting
z = ρeiθ , we obtain

wn(h) =
ρ−n

2π

∫ 2π

0
F
(

δ(ρeiθ)

h

)
e−inθdθ. (17)

Discretizing
∫ 2π

0
F
(

δ(ρeiθ)

h

)
e−inθdθ by the composite trapezoid rule gives

∫ 2π

0
F
(

δ(ρeiθ)

h

)
e−inθdθ =

L−1

∑
l=0

∫ (l+1) 2π
L

l 2π
L

F
(

δ(ρeiθ)

h

)
e−inθdθ

≈
L−1

∑
l=0

π

L

(
F

(
δ(ρeil 2π

L )

h

)
e−inl 2π

L + F

(
δ(ρei(l+1) 2π

L )

h

)
e−in(l+1) 2π

L

)

=
2π

L

L−1

∑
l=0

F

(
δ(ρeil 2π

L )

h

)
e−inl 2π

L .

(18)

The last equal sign works due to F
(

δ(ρeiθ)

h

)
e−inθ is 2π−periodic. This leads to

wn(h) ≈ ρ−n

L

L−1

∑
l=0

F

(
δ(ρeil 2π

L )

h

)
e−inl 2π

L , n = 0, 1, ..., N. (19)

Its computation complexity is O(N log N) by FFT. In this paper, we adopt L = 10 N,
ρN =

√
ε, ε = 10−16 to guarantee a precision of order O(

√
ε) in (19).

Remark 1. In [28], convolution quadrature weights were rewritten as

wj(h) =
∫ ∞

0
g(s)φj(s/h)ds. (20)

Here φj(t) = e−t tj

j!
for backward differentiation formula of order 1 (BDF1), and φj(t) =

Hj(
√

2t)
j!

(
t
2

)j/2
e−3t/2 for BDF2 with Hj(·) denoting the jth Hermite polynomial. Recurrence relations

of frequently-used bases can be found in Table 1.
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Table 1. Recurrence relations for the CQ basis functions.

Scheme Initial Basis (φ−n = 0, n ≥ 1) Recurrence for Basis Functions (j ≥ 1)

BDF1 φ0(t) = e−t jφj(t)− tφj−1(t) = 0
BDF2 φ0(t) = e−3t/2 jφj(t)− 2tφj−1(t) + tφj−2(t) = 0
BDF3 φ0(t) = e−11t/6 jφj(t)− 3tφj−1(t) + 3tφj−2(t)− tφj−3(t) = 0
BDF4 φ0(t) = e−25t/12 jφj(t)− 4tφj−1(t) + 6tφj−2(t)− 4tφj−3(t) + tφj−4(t) = 0

Existing convergence analysis of CQ often restricts to the property with respect to the stepsize.
For example, setting

F (s)g(x) =
∫ x

0
f (t)g(x − t)dt, (21)

F (sh)g(x) = ∑
0≤jh≤x

wj(h)g(x − jh), (22)

the convergence rate of CQ is as follows

Theorem 1. ([21], Theorem 3.1) Suppose that δ(ζ) satisfies

• δ(ζ) is analytic and without zeros in a neighbourhood of the closed unit disc |ζ| ≤ 1, with the exception of
a zero at ζ = 1;

• | arg δ(ζ)| ≤ π − α, for |ζ| < 1, for some α > ϕ;

• δ(e−h)

h
= 1 + O(hp), for some p ≥ 1.

Then we have

|F (sh)g(x)− F (s)g(x)| ≤Cxμ−1{h|g(0)|+ ... + hp−1|g(p−2)(0)|
+ hp(|g(p−1)(0)|+ x max

0≤t≤x
|g(p)(t)|)},

(23)

where the constant C does not depend on the stepsize h.

One point which should be remarkable is that A-stable linear multistep methods for solving the
initial value problem (7) are more reliable in actual computation. Therefore, in this paper, we make use
of BDF2 in numerical experiments.

In the following parts, we study the convergence property of CQ for

I[ f ] =
∫ b

0
f (t)Jm(ωt)dt, ω $ 1. (24)

Here Jm(·) denotes the first kind Bessel function of order m with m being a nonnegative integer.
Defining f̃ (s) := f (b − s), we transform (1) into

I[ f ] =
∫ b

0
f̃ (b − s)Jm(ωs)ds. (25)

Here the Laplace transform of Jm(ωs) can be represented as (see [29], p. 1024)

FJm(s) =

(√
s2 + ω2 − s

)m

ωm
√

s2 + ω2
. (26)

Before elaborating on the convergence property of CQ, the following lemma should be
presented first.
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Lemma 1. Suppose f (·) is continuous on the interval S, where S may be a closed interval on the positive real

axis or [a, ∞) for some a ≥ 0. Assume
∫

S
| f (t)|dt,

∫
S
| f ′(t)|dt exist. Then for any v > 0 and sufficiently large

ω, there exists a constant C, which does not depend on the frequency ω, such that∣∣∣∣∫S
f (t)Jm(ωt)dt

∣∣∣∣ ≤ Cω−1. (27)

Furthermore, if the interval S does not contain origin, then it follows∣∣∣∣∫S
f (t)Jm(ωt)dt

∣∣∣∣ ≤ Cω−3/2. (28)

This lemma can be proved by integration by parts and we omit the detail. Now the main theorem
of this section follows.

Theorem 2. Suppose f (·) ∈ C2[0, b], and
∫ b

0
| f (t)|dt,

∫ b

0
| f ′(t)|dt,

∫ b

0
| f ′′(t)|dt exist. Then there exists a

positive constant C independent of ω, such that, as the frequency ω tends to infinity, CQ satisfies

|Qcq
h (b)− I[ f ]| ≤ Cω−3/2. (29)

Proof. Denote by δj the coefficients of δ(ζ) =
∞

∑
j=0

δjζ
j, and define

shg(x) :=
1
h ∑

0≤jh≤x
δjg(x − jh), 0 < x ≤ b. (30)

Then I[ f ] can be represented as a Dunford-Taylor integral

I[ f ] = F (sh) f̃ (x) =
1

2πi

∫
Γ

FJm(λ)(sh − λ)−1 f̃ (x)dλ. (31)

By noting

FJm(s) =
∫ ∞

0
e−ts Jm(ωt)dt, (32)

we have
F (sh) f̃ (x) =

1
2πi

∫
Γ

∫ ∞

0
e−tλ Jm(ωt)(sh − λ)−1 f̃ (x)dtdλ

=
∫ ∞

0
Jm(ωt)e−tsh f̃ (x)dt.

(33)

This implies

F (sh) f̃ (x)− F (s) f̃ (x) =
∫ x

0
Jm(ωt)(e−tsh f̃ (x)− f̃ (x − t))dt

+
∫ ∞

x
Jm(ωt)e−tsh f̃ (x)dt.

(34)

Define φ1(t) := e−tsh f̃ (x) − f̃ (x − t) and φ2(t) := e−tsh f̃ (x). By recurrence relations and
derivatives of Bessel functions, we get
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F (sh) f̃ (x)− F (s) f̃ (x) =φ1(0)
∫ x

0
Jm(ωt)dt +

1
ω
(φ1(t)− φ1(0))Jm+1(ωt)

∣∣x
t=0

− 1
ω

∫ x

0

(
φ′

1(t)−
m + 1

t
(φ1(t)− φ1(0))

)
Jm+1(ωt)dt

+
1
ω

φ2(t)Jm+1(ωt)
∣∣∞
t=x

− 1
ω

∫ ∞

x

(
φ′

2(t)−
m + 1

t
φ2(t)

)
Jm+1(ωt)dt.

(35)

According to φ1(0) = 0 and Lemma 1, it follows

|F (sh) f̃ (x)− F (s) f̃ (x)| ≤ Cω−3/2, (36)

where the constant C does not depend on ω. This completes the proof.

This theorem verifies the accuracy of CQ will increase as the frequency tends to infinity.
According to the proof of Theorem 2, we can eliminate low order terms in (35) and get a modified
convolution quadrature rule.

• Modified convolution quadrature rule for (1) of the first kind (MCQ1).

Qmcq1
h (b) =F (sh)( f (x)− f (b)) |x=1 + f (b)

∫ b

0
Jm(ωt)dt. (37)

According to ([30], p. 681), we have

∫ 1

0
tμ Jν(ωt)dt =

2μΓ( μ+ν+1
2 )

ωμ+1Γ( ν−μ+1
2 )

+ ω−μ(μ + ν − 1)Jν(ω)s(2)μ−1,ν−1(ω)− ω−μ Jν−1(ω)s(2)μ,ν(ω). (38)

Here s(2)μ,ν(x) denotes the Lommel function of the second kind, and can be efficient computed by
asymptotic expansions ([31]). This implies

∫ b

0
Jm(ωt)dt =

1
b2ω

+
(m − 1)Jm(ωb)s(2)−1,m−1(ωb)− Jm−1(ωb)s(2)0,m(ωb)

b
. (39)

Analogy to the proof of Theorem 2, we immediately arrive at the following results.

Theorem 3. Suppose f (·) ∈ C2[0, b], and
∫ b

0
| f (t)|dt,

∫ b

0
| f ′(t)|dt,

∫ b

0
| f ′′(t)|dt exist. Then there exists a

positive constant C independent of ω, such that, as the frequency ω tends to infinity, MCQ1 satisfies

|Qmcq1
h (b)− I[ f ]| ≤ Cω−2. (40)

Remark 2. By Lubich’s methodology of eliminating low order terms, we also obtain a modified convolution
quadrature rule of the second kind for (1) (MCQ2). Although these two modified quadrature rules share the
same convergence rates with respect to the stepsize, their convergence properties are quite different in the case of
calculation of HOI. We will illustrate this phenomenon in Section 4.
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3. Application to a Volterra Equation

In literature, convolution quadrature rules are important tools for solving Volterra equations with
convolution kernels ([32]). Many numerical experiments show they are efficient for solving some
highly oscillatory Volterra integral equations (HOVIE). Consider HOVIE (3),∫ x

0
J0(ω(x − t))u(t)dt = f (x), x ∈ [0, T],

where f (·) is sufficiently smooth and f (0) = 0. Let

IN := {xn : 0 = x0 < x1 < ... < xN = T}, (41)

be a uniform grid on [0, T] with spacing h := T/N. This equation arises from acoustic scattering
problems (see [33]). By applying CQ to (3), we get

k

∑
j=0

wk−j(h)ũj = fk, k = 1, 2, ..., N. (42)

Here uj denotes the numerical solution ũ(x) at xj and fk := f (xk). Once the initial value u0 is
known, the numerical solution at the uniform grid IN can be obtained by solving the linear system (42),
and the numerical solution on [0, T] can be written as

ũ(x) :=
N

∑
j=0

ũjφj(x). (43)

Following the methodology from [24,26], we establish the convergence analysis by expressing the
error function in terms of moments with highly oscillatory kernels. So let us consider some integrals
involving Bessel kernels.

Lemma 2. Define the functional Tx : C([0, T]) → R as

Tx( f ) =
∫ x

0
Jm(ωs) f (s)ds, (44)

with x ∈ [0, T] and f ∈ C([0, T]). Then ∞−norm of the functional Tx satisfies

‖Tx‖ ≤ Cω−1/2, as ω → ∞, (45)

where C is a constant independent of ω.

Proof. It is easy to show

‖Tx‖ =
∫ x

0
| Jm(ωs) | ds. (46)

By the variable transformation t = ωs, we have

‖Tx‖ =
1
ω

∫ ωx

0
| Jm(t) | dt. (47)
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According to the asymptotic expansions of Bessel functions (see [34], p. 228), there exists Z > 0
such that for any z > Z, and a constant C∗, we have

| Jm(z) |≤ C∗
√

z
. (48)

This implies

‖Tx‖ =
1
ω

∫ Z

0
| Jm(t) | dt +

1
ω

∫ ωx

Z
| Jm(t) | dt

≤ 1
ω

∫ Z

0
| Jm(t) | dt +

1
ω

∫ ωx

Z

C∗
√

z
dt.

(49)

Therefore, there exists a constant C, such that

‖Tx‖ ≤ Cω−1/2, as ω → ∞. (50)

This completes the proof.

Lemma 3. For any integers μ, ν > 0 and x ∈ (0, T], the following integral

I = ω1/2
∫ x

0

Jμ(ωt)Jν(ω(x − t))
t

dt (51)

is uniformly bounded with respect to ω > 0.

Proof. The variable transformation s = ωt gives

I = ω1/2
∫ ωx

0

Jμ(s)Jν(ωx − s)
s

ds. (52)

According to ([34], p. 242), we have

I =
ω1/2 Jμ+ν(ωx)

μ
. (53)

By the asymptotic expansion of Bessel functions, we completes the proof.

Now we get the convergence property of CQ for the numerical solution to HOVIE.

Theorem 4. Suppose that f ∈ C3[0, T], then the convolution quadrature rule for solving (3) introduces a
unique numerical solution ũ, and satisfies

|u(x)− ũ(x)| ≤ Cω−1/2, x ∈ IN , ω → ∞, (54)

where C is a constant independent of ω.

Proof. By noting

F (sh)ũ(x) = f (x) (55)

and

F (s)u(x) = f (x) (56)
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with x ∈ Ih, we get the error equation

F (sh)ε(x)− (F (s)u(x)− F (sh)u(x)) = 0, (57)

where ε(x) := ũ(x)− u(x). By Remark 1 and Lemma 1, we have

wj(h) =

{
O(ω−1), j = 0,

O(ω−3/2), j > 0.
(58)

Therefore, the remaining work is proving F (s)u(x)− F (sh)u(x) behaves as O(ω−3/2). A similar
process to the proof of Theorem 2 gives

F (sh)u(x)− F (s)u(x) =φ1(0)
∫ x

0
J0(ωt)dt +

1
ω
(φ1(t)− φ1(0))J1(ωt)

∣∣x
0

− 1
ω

∫ x

0

(
φ′

1(t)−
1
t
(φ1(t)− φ1(0))

)
J1(ωt)dt

+
1
ω

φ2(t)J1(ωt)
∣∣∞
x − 1

ω

∫ ∞

x

(
φ′

2(t)−
1
t

φ2(t)
)

J1(ωt)dt,

(59)

where φ1(t) := e−tsh u(x)− u(x − t) and φ2(t) := e−tsh u(x). Consider the integrals

Ĩ :=
∫ x

0

(
φ′

1(t)−
1
t
(φ1(t)− φ1(0))

)
J1(ωt)dt +

∫ ∞

x

(
φ′

2(t)−
1
t

φ2(t)
)

J1(ωt)dt. (60)

By using integration by parts we have

Ĩ =
1
ω

(
φ′

1(t)−
φ1(t)

t

)
J2(ωt)

∣∣x
0 − 1

ω

∫ x

0

t2φ′′
1 (t)− 3tφ′

1(t) + 3φ1(t)
t2 J2(ωt)dt

+
1
ω

(
φ′

2(t)−
φ2(t)

t

)
J2(ωt)

∣∣∞
x − 1

ω

∫ ∞

x

(
φ′′

2 (t)−
3φ′

2(t)
t

+
3φ2(t)

t2

)
J2(ωt)dt.

(61)

According to [35], the exact solution to (3) can be written as

u(x) = f ′(x) + ω2
∫ x

0
J0(ωs) f (x − s)ds − ω

∫ x

0
J1(ωs) f ′(x − s)ds. (62)

Furthermore, we have

u′(x) = f ′′(x) + ω2
∫ x

0
J0(ωs) f ′(x − s)ds − ω J1(ωx) f ′(0)− ω

∫ x

0
J1(ωs) f ′′(x − s)ds, (63)

u′′(x) = f ′′′(x) +
ω J1(ωx)

x
f ′(0) + ω

∫ x

0

J1(ωs)
s

f ′′(x − s)ds. (64)

A direct calculation implies
t2φ′′

1 (t)− 3tφ′
1(t) + 3φ1(t)

t2 +
ω J1(ω(x − t))

x − t
f ′(0) is O(ω) as ω goes

to infinity. By Lemmas 2 and 3, we obtain∣∣∣∣∣
∫ x

0

t2φ′′
1 (t)− 3tφ′

1(t) + 3φ1(t)
t2 J2(ωt)dt

∣∣∣∣∣ ∼ O(ω1/2), ω → ∞. (65)

With the help of Lemma 1, we have Ĩ = O(ω−1/2). It follows that

| F (s)u(x)− F (sh)u(x) |= O(ω−3/2). (66)
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Combining Equations (58) and (66) gives

|u(x)− ũ(x)| ≤ Cω−1/2, x ∈ I, ω → ∞, (67)

where C is a constant independent of ω. This completes the proof.

4. Numerical Results

In this section, we present some numerical results to verify given estimates in previous sections.
All experiments are performed in MATLAB 2013b.

As a first example, we consider the following HOI,

I1 =
∫ 1

0
J0(ωt)

1
1 + 25t2 dt, I2 =

∫ 2

0
J1(ωt) cos(t)e−tdt. (68)

In Figures 1–3, we show the convergence rates of three convolution quadrature rules. Slowly
varied lines in these figures manifest that given asymptotic orders in Section 2 are optimal. Absolute
errors of these methods are given in Tables 2 and 3. The numerical results illustrate MCQ1 is much
more efficient than other two methods in computing HOI.

Table 2. Comparisons of quadrature rules for
∫ 1

0
J0(ωt)

1
1 + 25t2 dt.

ω 20 100 200 400 600 800 1000

CQ 9.7 × 10−4 3.4 × 10−5 1.1 × 10−5 9.4 × 10−7 1.5 × 10−6 1.3 × 10−6 1.7 × 10−7

MCQ1 8.3 × 10−4 5.0 × 10−6 6.3 × 10−7 6.6 × 10−8 2.1 × 10−8 1.2 × 10−8 7.2 × 10−9

MCQ2 9.4 × 10−4 3.5 × 10−5 1.1 × 10−5 9.4 × 10−7 1.5 × 10−6 1.3 × 10−6 1.7 × 10−7

Table 3. Comparisons of quadrature rules for
∫ 2

0
J1(ωt) cos(t)e−tdt.

ω 20 100 200 400 600 800 1000

CQ 1.3 × 10−5 7.8 × 10−6 1.1 × 10−5 1.3 × 10−6 1.4 × 10−6 1.4 × 10−6 4.0 × 10−7

MCQ1 6.3 × 10−6 9.3 × 10−7 1.6 × 10−7 2.5 × 10−8 1.9 × 10−8 9.2 × 10−9 4.6 × 10−9

MCQ2 1.3 × 10−5 7.8 × 10−6 1.1 × 10−5 1.3 × 10−6 1.4 × 10−6 1.4 × 10−6 4.0 × 10−7

Figure 1. Asymptotic convergence rates of CQ for
∫ 1

0
J0(ωt)

1
1 + 25t2 dt (left) and∫ 2

0
J1(ωt) cos(t)e−tdt (right).
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Figure 2. Asymptotic convergence rates of MCQ1 for
∫ 1

0
J0(ωt)

1
1 + 25t2 dt (left) and∫ 2

0
J1(ωt) cos(t)e−tdt (right).

Figure 3. Asymptotic convergence rates of MCQ2 for
∫ 1

0
J0(ωt)

1
1 + 25t2 dt (left) and∫ 2

0
J1(ωt) cos(t)e−tdt (right).

In the second example, we consider application of CQ to solving HOVIE (3). Firstly, by letting
T = 2 and N = 20, we give the computed solution in Table 4 with various ω. Absolute errors listed
in this table show CQ shares the same property as Filon methods ([24,26]), that is, the higher the
oscillation, the better the approximation. Then we compare these two methods in Figure 4, where we
can learn CQ behaves better than Filon methods.
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Table 4. CQ for Volterra integral equations with f (x) = xe−x.

ω x = 0.1 x = 0.4 x = 0.8 x = 1.2 x = 1.6 x = 1.8 x = 2

10 3.3 × 10−1 7.6 × 10−2 4.7 × 10−2 2.5 × 10−2 8.0 × 10−3 1.4 × 10−2 3.1 × 10−3

100 9.1 × 10−2 5.5 × 10−3 6.3 × 10−4 7.0 × 10−5 3.5 × 10−4 3.6 × 10−5 2.6 × 10−4

200 5.0 × 10−2 1.4 × 10−4 3.6 × 10−4 1.1 × 10−4 1.2 × 10−4 1.1 × 10−4 1.8 × 10−5

500 1.9 × 10−2 1.9 × 10−4 1.2 × 10−5 4.6 × 10−5 3.7 × 10−5 2.2 × 10−5 6.8 × 10−6

1000 1.0 × 10−2 5.9 × 10−7 3.9 × 10−5 1.2 × 10−5 8.7 × 10−10 9.6 × 10−6 9.2 × 10−6

Figure 4. Comparisons between Filon methods and CQ for solving Volterra equations with

f (x) =
x

1 + x2 .

5. Conclusions

The above theoretical and numerical results contribute to the study on the convergence property of
CQ for solving HOP. The theoretical results in Section 2 reveal the convergence rate of CQ with respect
to the frequency, that is, CQ converges in negative powers of ω as ω goes to infinity. Among them,
the new modified rule (MCQ1) enjoys the fastest convergence rate. When we apply CQ to solving
HOVIE, similar phenomenon is detected and analyzed. The numerical results in Section 4 show given
convergence orders in Section 2 are optimal. In addition, this paper merely opens a window to the
convergence theory of CQ for HOP, much work on various versions of CQ, such as Runge-Kutta CQ
([36]), Fourier CQ ([37]), and so forth, is needed in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

BDF backward differentiation formula
CQ convolution quadrature rule
FFT fast Fourier transform
GMRES generalized minimal residual method
HOI highly oscillatory integral
HOP highly oscillatory problem
ODE ordinary differential equation
HOVIE highly oscillatory Volterra integral equation
MCQ1 modified convolution quadrature of the first kind
MCQ2 modified convolution quadrature of the second kind
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