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FLA 5.6
BACKGROUND: Traditional methods for cardiopulmonary assessment of patients with coro-
navirus disease 2019 (COVID-19) pose risks to both patients and examiners. This necessi-
tates a remote examination of such patients without sacrificing information quality.

RESEARCH QUESTION: The goal of this study was to assess the feasibility of a 5G-based robot-
assisted remote ultrasound system in examining patients with COVID-19 and to establish an
examination protocol for telerobotic ultrasound scanning.

STUDY DESIGN AND METHODS: Twenty-three patients with COVID-19 were included and
divided into two groups. Twelve were nonsevere cases, and 11 were severe cases. All patients
underwent a 5G-based robot-assisted remote ultrasound system examination of the lungs and
heart following an established protocol. Distribution characteristics and morphology of the
lung and surrounding tissue lesions, left ventricular ejection fraction, ventricular area ratio,
pericardial effusion, and examination-related complications were recorded. Bilateral lung
lesions were evaluated by using a lung ultrasound score.

RESULTS: The remote ultrasound system successfully and safely performed cardiopulmonary
examinations of all patients. Peripheral lung lesions were clearly evaluated. Severe cases of
COVID-19 had significantly more diseased regions (median [interquartile range], 6.0 [2.0-11.0]
vs 1.0 [0.0-2.8]) and higher lung ultrasound scores (12.0 [4.0-24.0] vs 2.0 [0.0-4.0]) than non-
severe cases of COVID-19 (both, P< .05). One nonsevere case (8.3%; 95%CI, 1.5-35.4) and three
severe cases (27.3%; 95% CI, 9.7-56.6) were complicated by pleural effusions. Four severe cases
(36.4%; 95% CI, 15.2-64.6) were complicated by pericardial effusions (vs 0% of nonsevere cases,
P < .05). No patients had significant examination-related complications.

INTERPRETATION: Use of the 5G-based robot-assisted remote ultrasound system is feasible
and effectively obtains ultrasound characteristics for cardiopulmonary assessment of patients
with COVID-19. By following established protocols and considering medical history, clinical
manifestations, and laboratory markers, this system might help to evaluate the severity of
COVID-19 remotely. CHEST 2020; -(-):---
104
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Coronavirus disease 2019 (COVID-19) is mainly
transmitted through droplets and in-person contact, and
has rapidly spread worldwide.1,2 As of April 25, 2020,
more than 2,700,000 confirmed cases and nearly 190,000
COVID-19-related deaths have been reported. Viral
nucleic acid testing verifies infection of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2),
with varying sensitivities (37%-71%) due to differences
in specimen type, site and time of collection, and disease
course and severity.3-6 High-resolution CT (HRCT)
imaging has been widely used for diagnosis of COVID-
19 because of its high spatial resolution. However, it is
potentially harmful because the patient is exposed to
ionizing radiation, transporting severe cases is risky, and
disinfection of the scanner is cumbersome.7,8 The
international consensus on diagnosis and differential
diagnosis of lung diseases indicates that bedside
ultrasound is an important method of examining and
evaluating patients with severe acute illnesses due to the
simplicity of the technique and the absence of ionizing
radiation.9,10 Bedside ultrasound has been proposed as a
potential diagnostic tool for COVID-19, based on the
disease predilection for subpleural regions. However,
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bedside ultrasound has not been widely implemented
because it requires close proximity between the
sonographer and the patient, increasing infection
risk.11,12

Over the past 20 years, advances in computer
networks, multimedia, and communication
technologies have led to the development of remote
ultrasonic robot technology for clinical applications,
and a wealth of experience has been accumulated in
abdominal, cardiac, pelvic, obstetric, vascular, and
thyroid examinations.13-21 The lack of contact
requirement and continuous improvements in safety
performance have led to its application for
examination of patients with COVID-19 in isolation
wards, as it can help to protect examiners against viral
infection. In the current study, a 5G-based robot-
assisted remote-operated ultrasound system was used
for remote examination of patients with COVID-19.
We assessed the feasibility of this approach,
established an examination and evaluation protocol,
and summarized ultrasound characteristics to expand
the application of this technology in diagnostics.
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Patients and Methods
Patients

The study adhered to the tenets of the Declaration of Helsinki, was
approved by the institutional review board of Zhongnan Hospital of
Wuhan University, and was performed with the informed consent of
the patients or their families. We retrospectively analyzed a total of
23 patients diagnosed with COVID-19 by using nucleic acid testing
between March 6, 2020, and April 1, 2020, who were hospitalized in
Zhongnan Hospital and were examined by using the 5G-based
robot-assisted remote ultrasound system. All patients were classified
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
based on the clinical stage determined by the Guidelines for the
Diagnosis and Treatment of Novel Coronavirus Pneumonia (Trial
Version 7) prior to the start of the study.22 The first was the
nonsevere group, who satisfied the diagnostic criteria of fever,
respiratory tract symptoms, and imaging manifestations of
pneumonia. The second was the severe group, who satisfied any one
of the following diagnostic criteria: (1) shortness of breath,
respiratory rate $ 30 beats/min; (2) finger oxygen saturation #

93% in resting state; (3) pulmonary imaging showing that lesions
progressed by > 50% within 24 to 48 h; and (4) PaO2/FIO2 #

300 mm Hg (1 mm Hg ¼ 0.133 kPa) with PaO2/FIO2 corrected
according to the following formula for high altitudes (> 1,000 m):

PaO2/FIO2 * [atmospheric pressure (mm Hg)/760]

The demographic information and laboratory markers of the 23
patients with COVID-19 were recorded.

Instrument

This study used a robotic ultrasound system, MGIUS-R3 (MGI
Tech Co., Ltd.), that integrated robotics, teleoperation, and
ultrasound imaging. It could achieve remote robotic control,
ultrasound examination, and audio-visual communication.
MGIUS-R3 consists of a physician-side subsystem (Fig 1A) and a
patient-side subsystem (Fig 1B), which were paired and
connected through a 5G network, with a downlink rate of 930
Mbps and an uplink rate of 132 Mbps. The physician-side
subsystem comprised the ultrasound display system, audio-visual
communication system, and control system, located at Zhejiang
Provincial People’s Hospital in Hangzhou, Zhejiang Province. A
senior sonographer with 15 to 20 years’ experience, trained per
standardized examination protocol, operated this subsystem. The
patient-side subsystem comprised the ultrasound imaging system,
audio-visual communication system, and a robotic arm with six
[ -#- CHE ST - 2 0 2 0 ]
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Figure 1 – A Q18 Q19, The sonographer on the physician-side manipulates a simulated probe, and the control signal is captured through the ultrasound control
panel and sent to the patient-side following the control protocol, with all movements replicated by the remote robotic arm in real-time. The probe has
three degrees of freedom for rotation, with the position sensor having two degrees of freedom for movement in the horizontal plane. The "UP” button
and pressure sensor have one degree of freedom each for up and down movements. B, The robotic arm and a force sensor on the patient-side are used to
execute the motion instructions from the physician-side and to complete the examinations. The ultrasound imaging results are captured and transferred
to the physician-side through the Internet. The audio-visual communication system allows communication between the sonographer and the patient.
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degrees-of-freedom, which was located next to the patient’s bed in
the isolation ward of Zhongnan Hospital of Wuhan University,
Hubei Province. The ultrasound imaging system was
manufactured by Wisonic Medical Technology Co., Ltd., and had
a 1.0 to 5.5 MHz convex array probe, which was equipped on
the robotic arm.

The MGIUS-R3 had multiple protection measures to ensure
patient safety: (1) the start reminder was prompted
simultaneously on both terminals when the robotic arm started;
(2) an emergency stop button was installed next to the
ultrasound probe socket of the robotic arm on the patient-side;
and (3) the robotic arm had speed (# 0.675 m/s for the convex
array probe and # 0.275 m/s for the linear array probe) and
pressure (3-20 N) limit settings, with parameter changes taking
effect synchronously (the robotic arm stopped moving once the
set value exceeded the standard).

Medical alcohol (75% concentration) kills SARS-CoV-2 and evaporates
quickly, and was thus used to disinfect the patient-side instrument
surface. It was the first choice in disinfectant, although it would
damage the machine. The surface residues were then removed with
disinfectant paper. The probe was disinfected once per patient. If it
contacted mucous membranes or wounds, a medical ultrasonic
coupling agent with a disinfection function or special disinfectant
was used. Finally, the instrument was disinfected regularity with UV
light once daily for 1 h each time.
Figure 2 – Twelve zones were marked as R or L, for right or left, respectively
right lower front zone, right upper side zone, right lower side zone, right uppe
R6; similar notation was used on the left.

chestjournal.org
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Examination Protocol

The robot-assisted remote ultrasound examination was performed for
patients with COVID-19 as follows. First, the clinician initiated a
consultation request through the remote system after a
comprehensive evaluation of patients with COVID-19 in the isolated
wards. The patient information was registered in the system at the
same time.

Second, the remote consultation expert switched on the physician-side
subsystem and ensured 5G network connection and patient-side
subsystem recognition. Through the audio-visual communication
system, the expert guided the patient to adopt the appropriate
examination posture. The expert then started the robotic arm,
performed the examination of the lungs and hearts of the patient
with COVID-19, and saved the ultrasound images or videos. The
probe scanned vertically along the intercostal space in the following
order: inside to outside, top to bottom, and front to back. Each lung
was divided into upper and lower parts, totaling 12 zones, using the
parasternal, front axillary, posterior axillary, and paraspinal lines as
boundaries.23,24 The 12 zones were marked as R or L, for right or
left, respectively, with corresponding numbers, for easy recording
and data analysis (Fig 2). Multipoint examination was performed for
each zone. Cardiac ultrasound evaluation was simultaneously
performed by using the left ventricular short-axis view.

Finally, patient data (eg, patient characteristics, medical history, clinical
manifestations, laboratory markers) were presented after completion of
, plus a corresponding number. For example, the right upper front zone,
r rear zone, and right lower rear zone were sequentially marked as R1 to
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Figure 3 – Left ventricular ejection fraction for evaluation of left ventricular contractile function, using the “eyeballing” method, on the short-axis view
of the LV. The main observation indicators include endocardial movement, end-systolic left ventricular cavity size, and myocardial thickness changes.
The outer edge of the LV is visible (white arrow). A, End-diastolic left ventricular cavity size (blue dotted line). B, End-systolic left ventricular cavity size
(blue dotted line). LV ¼ left ventricle; RV ¼ right ventricle.
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the examination. After storing and analyzing the examination results,
the expert issued a diagnostic report to the attending clinicians to
guide further treatment.
Figure 4 – N is characterized by the presence of lung sliding and A lines (blu
regular (red arrows) and has a score of zero. B1 is characterized by multiple
from the pleural line. The pleural line is thick and rough (red arrows) and h
occupied by the coalescent B lines (white arrows). The pleural line is thick an
echogenicity (green circle), known as pulmonary consolidation. The pleural l
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An assistant was needed during the examination, who aided in disinfecting
the instrument, guiding patients to check, applying medical coupling
agents, and appropriately adjusting the position of severely ill patients.
e arrows), or less than three B lines. The pleural line is continuous and
regularly or irregularly distributed B lines (white arrows) that originate
as a score of one. B2 is characterized by several intercostal spaces fully
d rough (red arrows) and has a score of two. C is characterized by tissue
ine is broken (red arrows) and has a score of three.
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Image Acquisition and Analysis

The acquired ultrasound images included the following
information25,26: (1) lesion pattern, including the disappearance of
lung sliding, B-line increase, and lung consolidation; (2)
distribution characteristics, including the number, location, edge,
and depth; (3) other findings such as adjacent pleural thickening
or continuity interruption, and the presence or absence of
pericardial effusion and pleural effusion; and (4) quantitative
information such as maximum depth of pericardial and pleural
effusions, left ventricular ejection fraction (LVEF; standard value,
50%-70%) (Fig 3) and the ratio of right ventricular end-diastolic
area to left ventricular end-diastolic area (RVEDA/LVEDA)
(endocardium-tracing method, on the left ventricular short-axis
view; standard value < 0.6). The storage duration of dynamic
images was 3 to 5 s.

Lung ultrasound characteristics were classified into four categories
(N, B1, B2, and C), and scored as 0 to 3 points (Fig 4).27-30 The
worst ultrasound characteristic was considered representative of a
chestjournal.org
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particular lung zone and given the corresponding score.31,32 Scores
of the 12 examined zones were summed to calculate the lung
ultrasound score (LUS), ranging from 0 to 36. LUS videos were
analyzed offline by two sonographers, who were blinded to the
clinical data and each other’s ultrasound diagnoses.

Statistical Analysis

Statistical analyses were performed by using IBM SPSS software
version 23 (IBM SPSS Statistics, IBM Corporation). Continuous
variables are presented as mean � SD (normal distribution) or
median and interquartile range (non-normal distribution).
Categorical variables are presented as percentages of the total.
Prevalence data are reported using the 95% CI. Comparisons
between groups were made by using either parametric Student t tests
or nonparametric Mann-Whitney U tests. The statistical significance
of differences among categorical variables was determined by using
the c2 test or Fisher exact test. P values < .05 were defined as
statistically significant.
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Results

Patient Information

Of the 23 patients, 12 were nonsevere cases of
COVID-19 (four male subjects and eight female
subjects) with a mean � SD age of 56.6 � 12.0 years,
and 11 were severe cases (eight male subjects and
three female subjects) with a mean age of 70.6 � 12.0
years (Table 1). There were 40 different comorbidities.
Mean oxygen saturation was lower in severe cases
than in nonsevere cases (mean, 93.0 � 1.9% vs 99.8 �
0.6%; P < .05).

On admission, all patients had a WBC count in the
normal range. Neutrophils were mostly in the normal
range. Almost one-half of the severe patients had a
below-normal eosinophil count, and more than one-
half of them had a below-normal lymphocyte count. A
few patients with nonsevere disease and more than
one-half of patients with severe disease had cardiac
markers exceeding the normal range. One-quarter of
nonsevere patients and all severe patients had
C-reactive protein levels above the normal range.
Almost one-half of the nonsevere cases and almost
three-quarters of the severe cases had an erythrocyte
sedimentation rate above normal. Few patients in both
groups had excessive procalcitonin levels. One-quarter
of the nonsevere group and almost three-quarters of
the severe group had excessive cytokine levels
(Table 1).

Differences in age, oxygen saturation, eosinophils,
lymphocytes, cardiac markers, C-reactive protein, and
cytokines between the groups were statistically
significant (P < .05) (Table 1).
Feasibility and Safety

A standard examination protocol was established (Fig
5). According to the protocol, a cardiopulmonary
assessment was completed successfully for all patients
by using the 5G-based robot-assisted remote
ultrasound system. Each examination took 10 to 20
min, on average, and there was no noticeable delay in
scanning. We obtained ultrasound image information,
such as distribution characteristics, morphology of the
lungs and surrounding tissue lesions, LVEF, RVEDA/
LVEDA, pericardial and pleural effusion, and LUS. No
patient had significant examination-related
complications.
Ultrasound Characteristics

Peripheral lung lesions could be evaluated clearly and
effectively using ultrasonography (Table 2). The severe
cases had significantly more diseased regions (including
B1, B2, or C) (6.0 [2.0-11.0] vs 1.0 [0.0-2.8]) and a
higher LUS (12.0 [4.0-24.0] vs 2.0 [0.0-4.0]) than
nonsevere cases (both, P < .05). Lesions tended to be
distributed in the lower lobes. There were 13 dorsal lung
lesion regions (9% [13 of 144]; 95% CI, 5.4-14.8) in the
nonsevere group and 36 in the severe group (27.3% [36
of 132]; 95% CI, 20.4-35.4). The incidence of lung
consolidation was 2.8% (4 of 144; 95% CI, 1.1-6.9) in the
nonsevere group (maximum length, 20 mm; depth,
5 mm) and 15.2% (20 of 132; 95% CI, 10.0-22.2) in the
severe group, with a wide range of lengths and depths.
One nonsevere case (8.3%; 95% CI, 1.5‒35.4) and three
severe cases (27.3%; 95% CI, 9.7-56.6) had pleural
effusions (5- and 14-mm deep, respectively), and the
pleural line was thick and rough (Fig 6).
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TABLE 1 ] Clinical Characteristics and Laboratory Results (N ¼ 23) Q14

Q15Patient Information

Group

P ValueNonsevere Type (n ¼ 12) Severe Type (n ¼ 11)

Clinical characteristics

Age, y .004a

Mean � SD 53.5 � 13.5 67.2 � 15.9

Range 34-71 35-81

Sex .100

Male 4 8

Female 8 3

Oxygen saturation, % 99.8 � 0.6 93.0 � 2.1 < .001a

Comorbidities

Hyperlipidemia 6 (50%) 1 (9.1%) .069

Hypertension 5 (41.7%) 6 (54.5%) .684

Diabetes 2 (16.7%) 1 (9.1%) 1.000 Q16

TB 0 (0%) 2 (18%) .217

COPD 0 (0%) 2 (18%) .217

Bacterial infections of the lung 1 (8.3%) 4 (36.4%) .155

Varicose veins of the lower extremities 2 (16.7%) 4 (36.4%) .371

Cerebral hemorrhage 0 (0%) 1 (9.1%) .478

Chronic kidney disease 1 (8.3%) 2 (18.2%) .590

Laboratory results

WBC count

Normal 12 (100%) 11 (100%)

Increased 0 (0%) 0 (0%)

Decreased 0 (0%) 0 (0%)

Neutrophil count

Normal 12 (100%) 10 (90.9%)

Increased 0 (0%) 1 (9.1%) .478

Decreased 0 (0%) 0 (0%)

Eosinophil count

Normal 12 (100%) 6 (54.5%)

Increased 0 (0%) 0 (0%)

Decreased 0 (0%) 5 (45.5%) .014a

Lymphocyte count

Normal 12 (100%) 4 (36.4%)

Increased 0 (0%) 0 (0%)

Decreased 0 (0%) 7 (63.6%) .001a

Cardiac markers

Normal 10 (83.3%) 4 (36.4%)

Increased 2 (16.7%) 7 (63.6%) .036a

Decreased 0 (0%) 0 (0%)

C-reactive protein

Normal 9 (75%) 0 (0%)

Increased 3 (25%) 11 (100%) < .001a

Decreased 0 (0%) 0 (0%)

(Continued)
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TABLE 1 ] (Continued)

Patient Information

Group

P ValueNonsevere Type (n ¼ 12) Severe Type (n ¼ 11)

Erythrocyte sedimentation rate

Normal 7 (58.3%) 3 (27.7%)

Increased 5 (41.7%) 8 (72.3%) .214

Decreased 0 (0%) 0 (0%)

Procalcitonin

Normal 10 (83.3%) 9 (81.8%)

Increased 2 (16.7%) 2 (18.2%) 1.000

Decreased 0 (0%) 0 (0%)

Cytokine

Normal 9 (75%) 3 (27.7%)

Increased 3 (25%) 8 (72.3%) .039a

Decreased 0 (0%) 0 (0%)

Data Q17are presented as No. (%) of patients or mean � SD unless otherwise indicated. Cardiac markers include aspartate aminotransferase, creatine kinase
(CK), CK-myocardial band, a-hydroxybutyrate dehydrogenase, lactate dehydrogenase, high-sensitivity troponin I, and N-terminal pro–B-type natriuretic
peptide. An increase in any indicator indicates the abnormality of the cardiac marker. Cytokine includes interferon-g, IL-2, IL-4, IL-6, and IL-10. An
increase in any indicator indicates abnormality of the cytokine. Normal range of laboratory indicators: WBC, 3.5 to 9.5 � 109/L; neutrophils, 1.8 to 6.3 �
109/L; eosinophils, 0.02 to 0.52 � 109/L; lymphocytes, 1.1 to .2 � 109/L. Cardiac injury markers: aspartate aminotransferase, 13 to 35 U/L; CK, < 140 U/L;
CK- myocardial band, 0 to 25 U/L; a-hydroxybutyrate dehydrogenase, 74 to 199 U/L; lactate dehydrogenase, 125 to 243 U/L; myoglobin, < 140.1 ng/mL;
high-sensitivity troponin I, 0 to 26.2 pg/mL; N-terminal pro–B-type natriuretic peptide, 0 to 900 pg/mL; erythrocyte sedimentation rate, 0 to 15 mm/h;
C-reactive protein, 0 to 3 mg/L; platelet count, < 0.05 ng/mL. Cytokine: interferon-g, 0.1 to 18 pg/mL; IL-2, 0.1 to 4.1 pg/mL; IL-4, 0.1 to 3.2 pg/mL; IL-6,
0.1 to 2.9 pg/mL; IL-10, 0.1 to 5.0 pg/mL.
aP < .05.
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The LVEF and ventricular area ratio of the heart were
normal in all 23 cases. Four severe cases (36.4%; 95% CI,
15.2-64.6) were complicated by pericardial effusions 3 to
10mmwide (vs 0% of the nonsevere cases; P< .05) (Fig 7).
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Figure 5 – Examination and evaluation protocol of the 5G-based robot-assiste
ultrasound score; LVEF ¼ left ventricular ejection fraction. See Figure 3 lege
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Discussion
Cardiopulmonary assessment was successfully and safely
completed in all patients with COVID-19 using the 5G-
based robot-assisted remote ultrasound system. Image
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TABLE 2 ] Ultrasound Results in Patients With Coronavirus Disease 2019 (N ¼ 23)

Group No.

Echocardiography Lung Ultrasound

LVEF (%) Pericardial Effusion Diseased Regions (B1 þ B2 þ C) Lung Ultrasound Score Pleural Effusion

Nonsevere 12 64.2 � 2.9 0 1.0 (0.0-2.8) 2.0 (0.0-4.0) 1 (8.3)

Severe 11 63.6 � 2.3 4 (36.4) 6.0 (2.0-11.0) 12.0 (4.0-24.0) 3 (27.3)

P value .635 .037a .004a .004a .317

Data are presented as mean � SD, median (interquartile range), and No. (%). LVEF ¼ left ventricular ejection fraction.
aP < .05.
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acquisition, labeling, and analysis were performed as per
the established examination protocol, without
complications. This underscores that the advances and
safety of current computer networks and
communication technology allows long-distance
ultrasonic image acquisition, transmission, analysis, and
processing, with high-precision synchronization of
multiple audio-visual signals. It can assist in the
construction of remote real-time ultrasound
collaborations, interactive operability, and consultation
modes. Current ultrasonic robot technology has made
considerable advances, and rich experience has been
accumulated through many clinical applications.13-21,33

Studies have indicated that the quality of images
captured by robot-assisted remote ultrasound systems
correlate well with those captured by conventional
ultrasound.34-36

Robot technology has been reported for assistance in the
diagnosis and treatment of lung diseases previously,37-39

but the application of a 5G-based robot-assisted remote
ultrasound system for use in lung disorders has not been
Figure 6 – Pleural effusion is characterized by an echoless dark area
(green circle) in the pleural cavity. The pleural line is thick and rough
(red arrows).
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reported to date. 5G networks have a high data
transmission rate (peak rate up to 20 Gbps) and low
network delay (approximately 1-10 ms). Consequently,
no noticeable delay occurred during scanning, and each
examination was completed quickly, facilitating further
clinical implementation of the 5G-based robot-assisted
remote ultrasound system.40 In addition, we used strict
infection control practices, including the hand hygiene
of assistants and cleaning and disinfection of the floor,
object surfaces, and the patient-side instrument. In
summary, the application of this system allowed us to
surpass time and space restrictions and guaranteed
minimization of cross-infection risk in the assessment of
patients with COVID-19.

HRCT imaging is widely used for COVID-19 diagnosis,
offering advantages of high spatial resolution and
multiplanar and multidirectional display of lesion
details, although it also has unavoidable disadvantages
such as the potential harm of ionizing radiations and the
risk of transporting critically ill patients. Based on
HRCT imaging, lung lesions are mainly distributed
under the pleura of the outer one-third of the lung field,
particularly in the dorsal and bottom lung regions. For
patients with advanced stage and severe COVID-19, CT
shows diffuse lung lesions, with extensive exudation and
lung consolidation mainly in the lower lobe, along with
pleural effusion.41,42 The accumulated CT diagnostic
experience and lesion distribution characteristics
provided a theoretical and technical reference for the
application of lung ultrasound in COVID-19.43

Ultrasonography has advantages of convenience and
dynamics.44 It facilitates the diagnosis of lung diseases,
rapid confirmation of acute respiratory failure causes,
shock classification, qualitative assessment of pleural
effusion (free or wrapped), and dynamic monitoring of
diaphragm activity to predict offline extubation
success.9-10 Studies have shown that patients with
COVID-19 have characteristic lung ultrasound
manifestations, such as coalescent B lines and subpleural
lung consolidation, mostly in the posterior and lower
[ -#- CHE ST - 2 0 2 0 ]
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Figure 7 – Pericardial effusion is characterized by an echoless dark area
(orange arrows) in the pericardial cavity. See Figure 3 legend for
expansion of abbreviations.
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parts of the lung.12 Consequently, lung ultrasound has
played a potential role in the COVID-19 epidemic.

In addition, the rapid development of remote ultrasonic
and 5G communication technology has improved the
feasibility of using a 5G-based robot-assisted remote
ultrasound system in COVID-19 diagnosis. In this
retrospective ultrasound study, B lines, lung
consolidation, or atelectasis was mainly distributed in
the lung periphery and significantly in the dorsal lung
region, consistent with reported CT results.45 The
number of diseased lung regions, incidence and number
of B lines, and incidence of lung consolidation were
significantly higher in the severe group than in the
nonsevere group. Ultrasound found no abnormalities in
the lungs of four nonsevere cases. One nonsevere case
and three severe cases had pleural effusion. Thus,
ultrasonography might be helpful for evaluating
COVID-19 severity, and the 5G-based robot-assisted
remote ultrasound system could achieve the same effect
as a face-to-face, close-range ultrasound examination.

The LUS was used for overall lung evaluation of patients
with COVID-19 in our study. The LUS was significantly
higher in the severe group than in the nonsevere group,
probably because vascular and inflammatory reactions
were more exaggerated in severe cases, causing some
bronchial embolisms to block the bronchiole and
terminal bronchiole partially or completely, triggering
lung atelectasis or consolidation, eventually leading to
ventilation dysfunction.46-50 Current literature29

indicates that, in a controlled human model of lung air
chestjournal.org
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content variation, the LUS can reliably record lung
aeration changes. This method was successfully applied
to assess extravascular lung water, which predicts failure
of mechanical ventilation weaning and allows
monitoring aeration in patients undergoing
extracorporeal membrane oxygenation. The LUS is
closely related to several ARDS diagnostic and
prognostic indexes such as the extravascular lung water
index, lung injury score, respiratory system compliance,
and PaO2/FIO2, and it serves as a death-risk prediction
index.41,42,51 In this study, one nonsevere case (1 of 12
[8.3%]) and four severe cases (4 of 11 [36.4%]) also had
pulmonary bacterial infections, with an LUS of 14 and 4
to 29, respectively. Compared with patients with
COVID-19 with nonpulmonary bacterial infections,
these patients might have displayed aggravated lung
lesions, but this topic requires further research. Some
studies51 have shown that patients with COVID-19 with
comorbidities have significantly higher risks of ICU
admission, invasive ventilation, and death than patients
without comorbidities, with risk increasing
proportionately to the number of comorbidities.

The 5G-based robot-assisted remote ultrasound system
was also used for cardiac examination in this study,
although it was limited by the patient’s position, probe
selection (only a 1.0-5.5 MHz convex array probe), and
the robotic arm’s operating angle. The left ventricular
short-axis view offered the only clear view that could be
used to assess the size and function of the ventricle. We
measured the areas of the right and left ventricles at end-
diastole and calculated the area ratio (RVEDA/LVEDA).
When the ratio is > 0.6, it indicates that the right
ventricle is dilated (ie, potential impaired function).
When accompanied by contradictory interventricular
septal movements, this finding indicates pulmonary
heart disease. Moreover, we used the “eyeballing” visual
estimation method to quickly assess the LVEF and left
ventricular wall motion. Studies have shown that this
method has a good correlation with radionuclide
scanning and other quantitative methods. Because this
method is readily and quickly performed, it could be
used in routine echocardiography. The examination
results could help to rule out lung diseases caused by
cardiogenic factors (eg, cardiogenic pulmonary edema),
clarify the cause and classification of shock, and assess
fluid responsiveness.52-54 Some patients with COVID-19
have obvious cardiac dysfunction, but all the study
patients had normal RVEDA/LVEDA and LVEF,
perhaps due to the limited viral damage to myocardial
cells or damage control by early treatment.45,46,55 Four
9
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patients with severe COVID-19 (4 of 11 [36.4%]) had
pericardial effusions (3-10 mm wide), and one of these
had increased a-hydroxybutyrate dehydrogenase (291
U/L) and lactic acid dehydrogenase (375 U/L) levels.
There were no such cases in the nonsevere group; thus,
the underlying mechanism requires investigation.

Thus, the 5G-based robot-assisted remote ultrasound
system offers a feasible option for cardiopulmonary
evaluation of patients with COVID-19. The
establishment of an examination protocol helped in
performing standardized examinations, as well as in the
learning, training, and promotion of the technology.
However, the study had some limitations. Because we
conducted ultrasound examination for patients with
COVID-19 only at a specific disease stage, dynamic
evaluation of disease progression was not possible.
Hence, further follow-up ultrasound data must be
collected, and their correlations with clinical findings
should be analyzed to observe the evolution and
outcome of the disease. Lung diseases of different
etiologies can have similar ultrasound characteristics;
consequently, this method cannot be used to determine
etiology. Differences between the two groups in age,
oxygen saturation, eosinophils, lymphocytes, cardiac
markers, C-reactive protein, and cytokines were
statistically significant (P < .05). Therefore, a
comprehensive assessment needs to be conducted in
conjunction with the medical history, clinical
manifestation, and laboratory test data.

In addition, the 5G-based robot-assisted remote
ultrasound system is still in its infancy and requires
further improvements. For example, restrictions of the
examination position of the patient (especially critically
ill patients) and operating angle of the robotic arm made
some body parts difficult for the robotic arm to reach.
The use of only one convex array probe markedly affects
10 Original Research
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the quality of cardiac images due to the frequency
limitation. It would also be valuable to include control
(non-COVID-19) patients in a later study or to assess
comparability between telerobotic and conventional
ultrasound for verifying diagnostic accuracy of
cardiopulmonary examinations. In addition, this
analysis was a single-center study with a small sample
size. More sample data could be obtained through
multicenter cooperation in the future to verify the value
of the 5G-based robot-assisted remote ultrasound
system in lung disease assessment. Finally, the impact of
the limitations of lung ultrasound on the examination
results should be considered. The restrictions included
operator dependence, patient dependence (eg,
examination posture, subcutaneous emphysema, chest
wall dressing interference), and lesion location
dependence (eg, in the center of the lung).

Although the initial application of the 5G-based robot-
assisted remote ultrasound system in the COVID-19
epidemic has achieved good results, it cannot wholly
replace CT imaging and other examinations. With the
in-depth application of artificial intelligence in the
medical field, integrating artificial intelligence into
robot-assisted remote ultrasound systems would greatly
increase the scope of use for this technology, facilitate
the diagnosis of lung lesions objectively and accurately,
and implement automatic switching between probes on
the ultrasonic robot system to facilitate optimal imaging
of multiple organs and improve image quality.56-58

Interpretation
This study showed that the 5G-based robot-assisted
remote ultrasound system is a feasible option for safely
and effectively performing cardiopulmonary
examinations of patients with COVID-19 in isolation
wards.
1086
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