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Abstract 

Human-pathogenic viruses are still a chief reason for illness and death on the globe, as 

epitomized by the COVID-19 pandemic instigated by a coronavirus in 2020. Multiple novel 

sensors have been invented because diseases must be detected and diagnosed as early as 

possible, and recognition methods have to be carried out with minimal invasivity. Sensors have 

been particularly developed focusing on miniaturization by the use of nanomaterials for 

fabricating nanosensors. The nano-sized nature of nanomaterials and their exclusive optical, 

electronical, magnetical, and mechanical attributes can enhance patient care through the use of 

sensors with minimal invasivity and extreme sensitivity. Amongst the nanomaterials utilized for 

fabricating nano-sensors, carbon-based nanomaterials are promising as these sensors respond 

better to signals in various sensing settings. This review provides an overview of the recent 

developments in carbon nanomaterial-based biosensors for viral recognition based on the 

biomarkers that arise from the infection, the nucleic acids from the viruses, and the entire virus. 

The role of carbon nanomaterials is highlighted by the improvement of sensor and recognition 

functionality.  The Dengue virus, Ebola virus, Hepatits virus, human immunodeficiency virus 

(HIV), influenza virus, Zika virus and Adenovirus are the virus types reviewed to illustrate the 

implementation of the techniques.  Finally, the drawbacks and advantages of carbon 

nanomaterial-based biosensors for viral recognition are identified and discussed. 

Keywords: Virus; Carbon; Nanomaterial; Sensor; Viral Recognition; Graphene.  
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Abstract 

Human-pathogenic viruses are still a chief reason for illness and death on the globe, as 

epitomized by the COVID-19 pandemic instigated by a coronavirus in 2020. Multiple novel 

sensors have been invented because diseases must be detected and diagnosed as early as 

possible, and recognition methods have to be carried out with minimal invasivity. Sensors 

have been particularly developed focusing on miniaturization by the use of nanomaterials for 

fabricating nanosensors. The nano-sized nature of nanomaterials and their exclusive optical, 

electronical, magnetical, and mechanical attributes can enhance patient care through the use 

of sensors with minimal invasivity and extreme sensitivity. Amongst the nanomaterials 

utilized for fabricating nano-sensors, carbon-based nanomaterials are promising as these 

sensors respond better to signals in various sensing settings. This review provides an 

overview of the recent developments in carbon nanomaterial-based biosensors for viral 

recognition based on the biomarkers that arise from the infection, the nucleic acids from the 

viruses, and the entire virus. The role of carbon nanomaterials is highlighted by the 

improvement of sensor and recognition functionality.  The Dengue virus, Ebola virus, 

Hepatits virus, human immunodeficiency virus (HIV), influenza virus, Zika virus and 

Adenovirus are the virus types reviewed to illustrate the implementation of the techniques.  

Finally, the drawbacks and advantages of carbon nanomaterial-based biosensors for viral 

recognition are identified and discussed. 
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1. Introduction 

Viral pollution of resources is one of the major causes of diseases leading to several hundred 

thousands of demises per annum. Such health-related problems continue to be unsolved as is 

evinced by a plethora of individuals that suffer from multiple diseases. Currently, the 

incidence of infective diseases that can importantly affect human life has risen outstandingly. 

A number of communicable diseases influence a lot of individuals and continuously cause 

substantial health issues[1]. Viruses are obligatory intracellular parasites that require the host 

cell system and resources for replication and propagation. Mammalian cells have developed 

defense machineries elaborately for detecting and inhibiting viral reproduction. This, in turn, 

has resulted in emerging viral strains being able to manipulate and subvert host immune 

reactions, leading to a boosted virus-mediated pathogenesis[2]. These human-pathogenic 

viruses are still a chief reason for illness and death on the globe, as epitomized by the 

COVID-19 pandemic instigated by a coronavirus in 2020. In the absence of primary 

diagnostics, it is not possible to adequately and promptly make proper disease treatments. 

Sensitive, specific and rapid diagnostic tests not only provide the basis towards effectual 

therapies but also have a major contribution to prevent the transmission of infective 

diseases[3]. 

The approach conventionally applied to detect viruses is the cell/tissue culture process, in 

which permissive cells are inoculated with a virus or a deactivated virus solution. The method 

creates cytopathic impacts and, subsequently, comprises titration of a 50% tissue culture 

infectious dose of the virus into the tissue culture. Although virus titration with the observed 

cytopathic impacts has a protracted history as the golden rule in research of detecting viruses, 

still several multiple drawbacks continue to exist[4]. For virus detection, a manifold of 

studies has applied alternative approaches to the conventional cytopathic impacts technique. 

Electron Microscopy, Serological Methods and Nucleic Acid based approaches are the major 

alternative techniques[5]. The polymerase chain reaction, enzyme-linked immunosorbent 

assay and reverse transcription polymerase chain reaction are utilized for the detection of 

viruses. Whereas key clinical laboratories propose sensitive and specific tests, these are time-

taking and laborious, expensive and rely on complex devices and skilled operators. Figure 1 

presents the “ASSURED” criteria according to the World Health Organization (WHO) and 

addresses the infectious disease control needs. Based on that, research has focused on novel 

detection components to promote detection in biosensing[6] as there is a need for rapid 
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diagnosis and improvements in biosensor technologies with more selectivity, stability, and 

cost-effectiveness.  

 

Fig.1 According to the World Health Organization (WHO), POC tests that address infectious disease 

control needs, especially for the developing countries, should follow “ASSURED” criteria. 

Multiple novel sensors have been invented because diseases must be detected and diagnosed 

as early as possible and recognition methods have to be carried out with minimal invasivity. 

Sensors have been particularly developed focusing on miniaturization by the use of novel 

materials for fabricating sensors. The interesting characteristics of nanomaterials are 

illustrated in their combined advantages of a tiny size with an extreme increase in the surface 

area, rendering them a tremendous potential for versatile applications [7-10]. The nano-sized 

nature of nanomaterials and their exclusive optical, electronic, magnetic, and mechanical 

attributes can enhance patient care through the use of sensors with minimal invasivity and 

extreme sensitivity. Amongst the nanomaterials utilized for fabricating nano-sensors, carbon-

based nanomaterials are promising as these sensors respond better to signals in various 

sensing applications[11-13].  In addition to their high surface area, carbon-based 

nanomaterials are biocompatible materials and are advantageous in terms of simplicity, 

rapidity, and sensitivity rendering them a high position to be considered in up-to-date 

technologies for viral recognition[14]. To the extent of authors’ knowledge, no review can be 

found concerning the use of carbon nanomaterial structures for viral sensing and detection. 

The present paper, therefore, reviews existing carbon nanomaterial-based biosensors for viral 

recognition at the level of the virus type. Dengue virus, Ebola virus, Hepatits virus, human 

immunodeficiency virus (HIV), influenza virus (H5N1 and H1N1), Zika virus and 

Adenovirus are the virus types reviewed here and presented in Figure 2. The review is 
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divided according to the analyte type into three main groups based on what could be detected 

from the virus: the biomarkers that arise from the infection, the nucleic acids from the viruses 

and the entire virus. The role of carbon nanomaterials is highlighted in the improvement of 

the sensor and recognition functionality. 

 

Fig.2 Carbon nanomaterial applications for the detection of different human viruses. 

2. Carbon Nanomaterials for diagnostic applications 

As an amply occurring element, carbon is widely applied in scientific and technological 

areas. It is possible to synthesize a variety of carbon allotropes by changing the combinations 

of sp, sp2, and sp3 hybridization and an array of carbon structures and nanostructures has been 

presented up to the present time[15]. The specifications of carbon nanomaterials are 

exclusive, including high electrical conductivity and chemical stability as well as a vast 

functional surface area[16,17]. This section discusses the specifications of carbon 

nanomaterials for diagnostic applications. 

2.1 Carbon Nanomaterials 

The three major classes of carbon nanostructures, viz. zero, one and two–dimensional, are 

widely used in biosensing. For example, carbon dots and graphene quantum dots fall into the 

class of zero-dimension carbon nanostructures. Nanotubes comprise one-dimensional carbon 

nanostructures. Graphene and its derivatives are two-dimensional carbon nanostructures with 

fascinating specifications[15]. Carbon and graphene quantum dots (CDs and GQDs), denoted 

as zero-dimensional (0D) nanomaterials, have gained increasing ground in the past years. 
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Their exclusive electronic, fluorescent, photoluminescent, chemiluminescent and 

electrochemiluminescent features are those providing them with sensing potentiality[18-21]. 

Other merits of CDs include simple synthetic paths, cost-effective synthesis, inexpensive 

preparatory materials, water-solubility, low toxicity level, chemical stability and facile 

functionalization. CD-based sensors and biosensors function by different modes of action, 

namely: fluorescence quenching, static quenching, dynamic quenching, energy transfer, inner 

filter effect (IFE), photo-induced electron transfer (PET) and fluorescence resonance energy 

transfer (FRET)[22]. Carbon nanotubes (CNTs) are carbon molecules with a cylindrical 

hollow structure whose walls are made by sheets of sp2-hybridized carbon. Two main types 

of CNTs are: single walled CNTs (SWCNTs) and multi walled CNTs (MWCNTs), with the 

former composed of a sole layer of graphene and diameters in the range of 0.7-1.4 nm, 

whereas their length can  vary from a few hundred nm up to several μm. MWCNTs comprise 

multiple concentric cylinders of rolled-up graphene sheets  forming tubes with diameters up 

to 100 nm [23-25]. CNTs are interesting options for elechtrochemical sensing applications. 

The electronic specifications need to be taken into consideration in the manufacture of CNT-

based electrodes as an essential factor in the electron transfer rate. The CNT modified 

electrodes are primarily advantageous owing to their minor diameter and long length 

allowing their plugging into an analyte, their electro‐activity being apparently similar to or 

better than all other carbon-based electrodes and the high surface area of the nanotube 

modified electrodes[26]. By definition, graphene is a single-atom-thick sheet of hexagonally 

arrayed, sp2-bonded carbon atoms that occurs inside a carbon material construct. The 

thickness of a graphene film with 100 μm of lateral size is regarded as a stack of carbon 

planes joined together by van der Waals forces that act over a distance of ca. 0.335 nm. 

Graphene possesses notable thermal and electrical conductivity and a striking mechanical 

strength. In particular, it has the potential for sensing because of its exceptionally high 

conductivity and vast surface area. The charge transfer and electronic features of graphene 

result from its exclusive electronic band structure. Particularly, graphene is an available 

nanomaterial that possesses a vast surface area (2630 m2/g) by which it can directly interact 

with a variety of biomolecules[ 27-30]. As excellent members of the graphene family, 

graphene-derived materials, such as graphene oxide (GO) and reduced graphene oxide 

(RGO), are widely used as biosensors, the applications of which are greatly influenced by 

their faults, dysfunctions and chemical functionalization on their surfaces. GO, a result of 

chemical exfoliation and oxidation of layered crystalline graphite (normal or synthetic), is a 

single atom carbon layer in which both surfaces have undergone modification with oxygen 
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bearing functional groups. Despite the fact that GO, smilar to grapheme, is a 2-D carbon 

material, its features highly differ from those of graphene. It is characterized by a plethora of 

exclusive chemical, optical, and electronic specifications. GO is not capable of absorbing 

visible light, possesses a low electric conductance relative to that of graphene and exhibits a 

considerably greater chemical reactivity. There are a lot of epoxide, carboxyl and hydroxyl 

groups on the basal plane and edges of GO, showing a high potential for binding with 

biomolecules through covalent, electrostatic, and hydrogen interplays[31-32]. With a wide 

utilization, RGO is typically manufactured byoxidizing/exfoliating graphite to GO, after 

which it is reduced to graphene through various chemical, thermal or electrochemical paths. 

The likely different features of fabricated RGO in terms of defects (vacancies and holes) and  

carbon to oxygen ratio (C/O) depend on the applied reduction procedure, which has a critical 

contribution to the electrochemical features of the material. In comparison to graphene, there 

is even a small number of functional groups on the RGO surface enabling chemical 

functionalization for immobilization of the molecular receptors onto its surface. Within the 

last decade, the development of RGO-based sensors have aimed at detecting a variety of 

intended analytes owing to their brilliant electrochemical features and electrocatalytic 

functions[33-35]. 

2.2. Diagnostic techniques based on carbon nanomaterials 

As an analytic instrument, a biosensor consists of a biologically active substance that is 

utilized and closely combined with an apparatus that converts a biochemical signal into a 

measureable signal. Typically, a biosensor conformation possesses a three-component 

system: a bioreceptor involved in the selectiveness of the apparatus, a transducer translating 

the physical or chemical alteration by recognition of the analyte, and a signal-processing unit 

(signal output) (Figure 3). Since the biomarker oftentimes has an extremely low 

concentration and detects diseases selectively, its sensibility and selectiveness are critically 

important. Further needs are its reproducibility, stability, cost-effectiveness, and 

disposability. Transducing components integrated commonly in the biomarker biosensor 

scaffold, hitherto comprise components with electrochemistry, optic or mass-sensitivity 

properties capable of generating quantifiable current, light or frequency signals[36,37]. 
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Fig.3 Schematic diagram of biosensor for detection of human viruses as an analytes.  

2.2.1. Electrochemical Biosensors: The basis of these biosensors consists of electrochemical 

methods in which the analyte is sensed by determining the electric response due to the 

electrochemical reaction of the analyte with the surface of the functional electrode of the 

sensor. Analyte concentrations and sensor responses generally need to be linearly correlated 

in order to be applied practically. Amongst a variety of biosensors, the electrochemical 

biosensors show the promise that they are highly sensitive, have a high signal-to-noise-ratio, 

are relatively simple and have a fast response time. As carbon has a wide-ranging potential, is 

chemically inert and affordable, it has been for long time of interest as an electrode substance 

of importance in electrochemical biosensors. Despite the variable eminent features of CNs, they 

share attributes causing their attractiveness for the production of electrochemical biosensors 

including electrochemical activity, electric conductance, wide surface area, easiness of 

functionalization and biocompatibility.  Some CNs and their derived products are able to 

display electrochemical responses, as they are electrochemically active, intrinsically or 

capably. The high electric conductance of CNs assures their function as a perfect electron 

transfer agent in electrochemical biosensors. A wide surface area of CNs makes it possible to 

assemble extra necessary elements in electrochemical biosensors. Modification of CNs is 

simple, which will improve and uplift the operations of CNs in electrochemical biosensors. 

As CNs are biocompatible, the use of CN-based instruments are facilitated in biologic areas. 

Owing to the above specifications, CNs can serve either as nanoprobes, depending upon their 

predominant electrochemical features, or as nanocarriers depending upon their additional 

manifold of specifications. Utilization of CNs in electroanalytical analyses allows a 

substantial improvement of their analytic functioning[36,37]. 
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2.2.2. Optical Biosensors: The basis of these sensors consists of the detection of alterations in 

the emanation of light upon the target-detection element interplay. Carbon nanomaterials, in 

particular graphene–derived products, are effective fluorescence quenching agents. In the last 

few years, CNTs have widely been a matter of concern for developing biosensors due to their 

exclusive optical features. CDs hold optical specifications with regard to optical absorption, 

fluorescence, chemiluminescence, electrochemiluminescence, phosphorescence, up-

conversion photoluminescence and photo-stimulated electron transfer activity. CNTs are 

highly luminosity intensive and have outstanding features, which can ideally be used for 

optical biosensing. Semiconductive CNTs are able to serve as quenching agents for the 

fluorophores and can exhibit distinct near-infrared (NIR, wavelength ∼0.8–2 µm) 

photoluminescence emitting from the band-gap fluorescence. GO possesses  recombined 

electron–hole pairs positioned inside sp 2 carbon clusters imbedded inside a sp 3 matrix and 

displays light absorption from UV to near-infrared (NIR). The π-electrons of GO with large 

dislocations result in a high fluorescence quenching capability, which is helpful in optical-

based biosensors. Besides, graphene is usable as a SERS substratum to improve Raman 

signals of absorbed biomolecules. Another type of optical biosensor is Surface plasmon 

resonance (SPR) that utilizes surface plasmon polaritons to probe interplays between an 

analyte in solution and a biomolecular detection component subjected to immobilization on 

the SPR sensor surface. Depending on  the binding-induced refractive index alteration of the 

solvent near the surface, SPR biosensors can accomplish a real-time, label-free recognition 

for the target analyte with high sensitivity. Carbon nanomaterials are good candidates for 

these types of optical biosensors tools [39-42].  

2.3, Field-Effect Transistor (FET) Biosensors: The field-effect transistor is a semiconductor 

instrument, where the current flows from an electrode (source) on one side to the electrode 

(drain) on the other side. The semiconductor channel between source and drain is controlled 

by the electric field generated by a voltage at a third electrode named gate, which is 

capacitively attached via a thin dielectric layer. The electric FET biosensor specifications can 

be altered by the adhesion of biomolecules onto the biosensor. CNTs can be metallic or 

semiconductive contingent on the helicity. Semiconductive CNTs are usable for fabricating 

FET-based biosensors. The electric CNTFET specifications can be altered by the adhesion of 

biomolecules onto the CNTs. In recent years, graphene-based FET biosensors have been of 

great interest as they are highly sensitive to electric disturbances and have a high carrier 

mobility[39,41]. 
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3. Application of carbon nanomaterials for viral diagnosis 

In this section, the recent developments in carbon nanomaterial-based biosensors for viral 

recognition are reviewed based on what could be detected from the virus. Detection of the 

antibodies that arise from the infection, detection of the nucleic acids from the viruses and 

detection of the entire virus are the subdivisions of this section. 

3.1. Detection of the biomarkers that arise from the virus infection 

The dengue virus of the Flavivirus genus in the family Flaviviridae, is an arthropod-borne 

virus consisting of four different serotypes (DEN-1, DEN-2, DEN-3, and DEN-4), all of 

which are encased, spherical viral particles with a diameter of approx. 500Å20(?) [43]. The 

WHO declares dengue as a main challenging worldwide public health problem in the tropical 

and subtropical populations [12]. This viral infection results in a variety of pathogenic 

indications including febrile, fever, and hazardous life threatening situations. Hence, it is not 

only a major peril to the public but also a main issue for personnel healthcare. Scarce data are 

available regarding the pathognomonic characteristics of Dengue infection from other febrile 

ailments. Thus, it is critical to diagnose this viral strain in the initial phases of the disease[44]. 

The non-structural (NS) proteins  of the dengue virus are NS1, NS2A, NS2B, NS3, NS4A, 

NS4B and NS5[45 ]. NS1 is a secretive protein abundantly present in the acute phase of 

diseases linked to hemorrhagic fever. Dias et al. invented an immunosensor for the NS1 of 

the dengue virus on the basis of carbon nanotube-screen printed electrodes (CNT-SPE). A 

homogenous mixture comprising carboxylated carbon nanotubes was disseminated in carbon 

ink for preparation of a screen printed working electrode. Anti-NS1 antibodies were 

connected by a covalent link to CNT-SPE using an ethylenediamine film approach. 

Evaluation of the matrix effect and the performance of the tests were achieved through spiked 

blood serum samples yielding superb recovery levels in the outcomes. CNTs integrated into 

the carbon ink led to improvements in the duplicability and sensitiveness of the CNT-SPE 

immunosensor[46]. Silva et al. designed a sensitive nanostructured immunoelectrode 

according to a poly(allylamine) (PAH) sandwich for NS1 of the dengue virus. Anti‐NS1 

antibodies undergo immobilization on the electrode surface by a thin layer of PAH amassed 

on carboxylated CNTs. PAH is a cationic polymer serving as a bi‐functional material for tight 

attachment of CNTs to the electrode surface and anti‐NS1 antibodies through their Fc(?) 

terminal, which prevents them to be immobilized randomly. Electrochemical responses of the 

immunoassay are created at a controlled level by a reaction between H₂O₂ and the peroxidase 
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enzyme coupled to the anti‐NS1 antibodies. Assayed serum samples revealed an accurate and 

specific process as well [47]. The whole of laboratory and commercial techniques for 

diagnosing the Dengue Virus NS1 needs the drawing of blood for sample assays, which 

limits the point-of-care diagnostics and lowers the patient compliance. Instead, NS1 

identification in human saliva has the potential to diagnose the Dengue Virus infection 

earlier. The saliva can be collected simply, non-invasively, painlessly, and inexpensively, 

even with a staff of minimal training. Wasik et al. offered a label-less chemiresistive 

immunosensor for detecting the Dengue Virus NS1 protein through a network of SWCNTs 

subjected to the functionalization with anti-dengue NS1 monoclonal antibodies. Sensitive and 

selective NS1 detection was successful in contaminated synthetic human saliva within 

concentration ranges of clinical relevance[48]. An electronic nanobiosensor using a SWCNT 

network chemiresistor transducer was functionalized with antidengue NS1 monoclonal 

antibodies to rapidly detect the dengue NS1. Wasik et al. discovered NS1 in a spiked 

adult Aedes aegypti homogenate in a sensitive and selective way over a vast dynamic scope. 

The biosensor has compatibility with “gold-standard” adult mosquito field-collection 

instructions and produces electronic data capable for storage or wireless transmission. It has, 

therefore, the potential for monitoring remotely and real-time[49]. Palomar et al. represented 

an impedimetric immunosensor for detecting the dengue virus antibody (Figure4(a)). The 

system takes the advantage of forming CNT deposits on electrodes in a controllable and 

reproducible way. Their simple functionalization through electrogeneration of a polypyrrole-

NHS (N-hydroxysuccinimido 11-(pyrrol-1-yl) undecanoate) film makes it possible to 

immobilize the Dengue Virus 2 NS1 glycoprotein, the receptor unit, on the porous CNT layer 

by covalent amide joining to offer the required selectivity toward the Dengue NS1 antibody. 

The entire fabrication stages of this immunosensor and the functionality of this system were 

scrutinized by impedance spectroscopy and cyclic voltammetry. The resultant impedimetric 

dengue biosensor was examined in bovine blood plasma besides measuring conventionally 

under a controlled environment[50].  

The human immunodeficiency virus (HIV) belongs to the genus Lentivirus within the family 

of Retroviridae and the subfamily Orthoretrovirinae. According to genetically characterized 

variations in the virus antigens, HIV is grouped into the types HIV-1 and HIV-2. The HIV 

genome contains two equal single-stranded RNA molecules enveloped inside the core of the 

viral particle [51]. CD4+ T cells are mostly targeted by HIV. Following a spreading event, 

HIV occupies the mucosal tissues, and during days is dispersed to the lymphoid organs. At 
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around day 10, the virus can be detected in the circulation after which it keeps spreading at an 

exponential rate within the subsequent few weeks, which mostly peaks around day 30, when 

it is possible to detect the HIV antibody levels[52]. Developing more dependable approaches 

for detecting and quantifying HIV is highly interesting and worthwhile. A simple one-stage 

approach for preparing hydrophilic and peptide-functionalized upconversion nanoparticles 

was presented by Wu et al. (Figure 4(b)). The technique was utilized for designing a 

biosensor to sensitively and selectively determine HIV antibodies in human serum according 

to FRET from the upconversion nanoparticles to the graphene oxide. The sensor is usable for 

anti-HIV-1 gp120 antibody sensing both in an aqueous buffer and in a serum matrix with 

equivalent performances, demonstrating that the biosensor is able to overcome background 

interference from complicated biologic samples. The sensor was employed for determining 

antibody concentrations in human sera[53]. The development of a GO-based fluorescence 

biosensing platform by Zhang et al.   aimed at detecting HIV-1 protease, where fluorescent labeled 

HIV-1 protease substrate peptide molecules underwent a covalent linking to GO. Without the use of 

HIV-1 protease, fluorescein quenching was efficiently achieved by GO. On the contrary, the use of 

HIV-1 protease could split the substrate peptide into short segments, thereby creating fluorescence. 

The sensor was able to identify HIV-1 protease in human serum[54]. In the last decade, the HIV-

1-related capsid protein p24 has gained ground due to the necessity for screening approaches 

with simplicity, rapidity, sensitivity, specificity, and affordability for diagnosing HIV 

infection. A competitory electrochemical immunosensor for detecting p24 in unprocessed 

human serum was designed as a facile and convenient device to screen serum for ahead-of-

time discovery of HIV contamination. The immunodevice was employed on throw-away 

gold-free SWCNT-functionalized screen-printed electrodes. The competitory sensor depends 

upon immobilizing the target protein on the electrode surface by a chitosan/glutaraldehyde 

crosslinking system, capable of ensuring, under modrate settings, a strong immobilization and 

a good exhibition of p24 to interact with a mouse anti-p24 IgG1[55]. 

 
 

ba 
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Fig.4 a) Construction steps of the  impedimetric immunosensor for the dengue virus antibody detection 

using functional CNT. Reprinted with the permission of Ref [50]. b) Schematic illustration of the 

upconversion FRET-based biosensor for the detection of anti-HIV-1 gp120 antibody. Reprinted with the 

permission of Ref [53]. 

Influenza viruses are among the utmost prevalent causative agents of human respiratory 

infections, and one of the most important ones as they induce elevated illness and fatality 

rates. Influenza viruses of the family Orthomyx-oviridae are encased negative-strand RNA 

viruses with fragmented genomes consisting of seven to eight gene fragments[56]. Of the 

four existing genera of this family, viz. types A, B, C and Thogotovirus, only the genera A 

and B are of clinical relevance for humans[57]. Fowl influenza viruses in aquatic birds 

function as the natural source for all identified subtypes of influenza A viruses and may be 

the final source of human pandemic influenza strains[58]. Influenza A viruses are further 

divided by antigenic classification of the hemagglutinin (HA) and NA surface glycoproteins 

projecting from the virion. There are 16 HA and 9 NA known subtypes[59]. A challenge is to 

diagnose Influenza A viruses accurately and rapidly as several strains circulate in humans and 

animal communities and new strains are emerging. An electrochemical immunosensor with a 

sandwich-type immunoassay format was fabricated for quantification of the fowl influenza 

virus H7 (AIV H7) with the help of silver nanoparticle-graphene (AgNPs-G) as trace label in 

clinical immunoassays. The instrument possesses a gold electrode covered with gold 

nanoparticle-graphene nanocomposites (AuNPs-G), the gold nanoparticle surface of which 

can additionally be subjected to modification with H7-monoclonal antibodies (MAbs). The 

immunoassay was done with H7-polyclonal antibodies (PAbs) that were coupled to the 

AgNPs-G surface (PAb-AgNPs-G). Such a technique of applying PAb-AgNPs-G for 

detecting antibodies presents a high signal intensification[60].  

3.2. Detection of the Nucleic Acid from the Virus  

A single viral particle typically consists of either an RNA or a DNA genome. The basis of a 

DNA biosensor is to immobilize a single stranded oligonucleotide on a transducer surface to 

identify its complemental DNA sequence because of (due to?) surface hybridization. Then, 

the hybrid created on the electrode surface undergoes a transformation into an analytic signal 

through a transducer. This section covers the detection of a nucleic acid from the virus using 

carbon nanomaterials[61]. The genome of each serotype of the dengue virus contains ca. 11 

kb of positive-sense, single-stranded RNA, encoding ten proteins. Jin et al. formulated a 

composite of 3-Aminopropyltriethoxysilane (APTES) functionalized graphene oxide 
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(APTES-GO) twined on SiO2 particles (SiO2@APTES-GO) through self-assemblage. An 

impedimetric biosensor was made for detecting dengue DNA and dengue RNA through 

hybridizing primers by a variety of oligonucleotide sequences. It was observed that the 

SiO2@APTES-GO electrode material could enhance the dengue RNA recognition sensitivity 

with selectivity and an LOD of 1 femto-Molar as opposed to both APTES-GO and APTES-

SiO2. The three-dimensional structure, higher contact area, electrical specifications and the 

capability of fast hybridization displayed by the SiO2@APTES-GO resulted in the design of a 

dengue biosensor[62]. Ebola, is a seriously fatal disease mainly affecting humans and 

nonhuman primates. The occurrence of the Ebola virus disease (EVD) results from a viral 

infection belonging to the genus Ebolavirus of the family Filoviridae in the order 

Mononegavirales, viruses whose genome comprises a single-strand RNA with negative 

polarity[63,64]. Facile, facilitated tests are required to detect and manage the Ebola endemics 

earlier tests which are capable of detecting the virus in blood at highly little quantities. The 

WHO announced  rapid, sensitive, safe, and simple EBOV diagnostic assays in November 

2014[65-67]. Wen et al. developed a GO assisted rolling circle amplification platform for 

simple and sensitive identification of the Ebola virus. No rolling circle amplification products 

were produced when the Ebola virus gene was absent, and the adsorption of the 

fluorescein amidate labeled recognition probe on the surface of GO resulted in 

quenched fluorescence  of the fluorescein amidate. Adding the Ebola virus gene led to the 

occurrence of an amplified rolling circle, and a double-stranded DNA formed  between the 

rolling circle amplification products and the fluorescein amidate labeled recognition probe, 

by which   the fluorescein amidate labeled detection probe was desorbed from the GO surface 

associated with the fluorescence retrieval. The ebola virus gene can be identified both in 

aqueous and 1% serum solutions [68].  

By definition, hepatitis is an inflammatory state of the liver. Oftentimes, it has a viral cause 

defined as viral hepatitis[69]. The hepatitis B virus (HBV) is a hepatotropic virus capable of 

establishing persisting and prolonged contamination in humans via immunity anergy. HBV is 

an encased viral DNA belonging to the Hepadnaviridae family[70]. Assays of HBV paves the 

ground for providing therapy and preventive instructions to positively detected people (and 

their contacts) and for recommending vaccination to those diagnosed negatively but of 

persistent risk[71]. Research is mostly focusing on the leading issues of HBV screening and 

diagnosing infective HBV[72]. Given the robust interplay between single-stranded DNA and 

graphene material, Xiang et al. have produced a simplistic but intelligent electrochemical 
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instrument for detection of HBV-DNA with the help of a GQD modified glassy carbon 

electrode connected to a specific sequence of DNA molecules as probes. The probe DNA is 

produced such that it is complemental to the HBV-DNA. The strong coupling of the probe 

DNA to the GQD modified electrode surface  makes it difficult for an electron to convey  

from the electrode to the electrochemically active species K3[Fe(CN)6]. Even so, when the 

target HBV-DNA is present in the assay solution, the probe DNA will attach to the target 

HBV-DNA rather than to GQDs. Consequently, the resultant peak currents of K3[Fe(CN)6] 

will elevate differently with varying concentrations of the target HBV-DNA[73]. Hepatitis C 

is an infective illness induced by the hepatitis C virus (HCV), which is a viral RNA of the 

family Flaviviridae.  When HCV infection is screened by simple and rapid techniques with  

high sensitivity and specificity, it can assist to control the encumbrance on HCV health care 

globally[74]. Fan et al. established an experiment to ultra-sensitively identify HCV RNA 

according to the RGO nanosheets (rGONS) and hybridization chain reaction amplification 

technique (Figure 5(b)). The recognition system possesses a pair of single fluorophore-

labeled hairpin probes capable of free existence in the solution in the lack of target RNA. By 

introducing target RNA, a robust hybridization chain reaction is triggered with the two probes 

which produces long nanowires having a double-stranded construct. The poor adsorption to 

rGONS induces the long nanowires for emitting a robust fluorescence. Additionally, the 

technique is selective for discriminating complemental and incompatible sequences. Lastly, 

the innovative technique was utilized as a HCV RNA test in biologic samples with a robust 

anti-interfering ability in complex settings[75]. In an introduced DNA aided magnetic rGO-

copper nanocomposite (mrGO-CuNCs), copper ions can expedite the oxidation of o-

phenylenediamine. The electrochemical signals of the oxidized product, 2,3-

diaminobenazine, are applied for characterizing the HCV DNAs. In a critical manner, it was 

capable of effective discrimination of the 1b and 6 k subtypes of HCV[76]. Based on the 

host-and-guest interplay between cucurbit[7]uril(CB[7]) and methylene blue, a CB[7]-

graphene nano-composite(CB[7]-N3-GO) is publicized to detect HCV DNA 

electrochemically. The introduced identification approach has the ability of discriminating 

the 1b and 6k subtypes of HCV and is promising in screening the blood for HCV in clinical 

diagnostics[77]. 

The HIV genome contains two equal single-stranded RNA molecules enveloped inside the 

core of the viral particle[51].  A sensitive impedimetric DNA biosensor for determining the HIV-1 

gene was designed by the use of electrochemical RGO (ERGO) as a sensing tool. Gong et al. 
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manufactured the DNA biosensor by drop-coating GO on a glassy carbon electrode and by covalent 

immobilization of the fabricated single-stranded DNA probe onto the GO by carbodiimide 

chemistry. Then, GO was exposed to electrochemical reduction to produce ERGO and utilized for 

genosensing. The incidence of hybridizations between the surface-confined single-stranded DNA 

probe with the target DNA in solution for forming double-stranded DNA at the electrode surface led 

to changes in the negative charge in the electrode/electrolyte interface, and, in turn, to the electron 

transfer resistance of the electrodes towards the [Fe(CN)6]3−/4− redox couple. Tthe change was 

utilized for impedimetric DNA biosensing. According to reported findings, the application of ERGO 

as an immobilization platform resulted in an efficient acceleration of the electron transfer and  in an 

enhancement of the EIS response of the DNA biosensor. This approach excluded the need for DNA 

labelling, which significantly simplified the process[78]. Wang et al. produced an electrochemical 

biosensor on the basis of  an one-stage ultrasonic manufactured graphene stabilized gold nanocluster 

(GR/AuNC) modified glassy carbon electrode with an exonuclease III (Exo III)-assisted target 

recycling amplification approach for detecting HIV DNA. GR/AuNCs have been utilized as 

biosensor instruments and as aptamer with a cytosine-rich base set as capture probe for constructing 

the biosensor. By combining the cytosine-rich capture probe, the proper conductivity and the high 

surfaces of GR/AuNCs, and Exo III-assisted target recycling amplification, they achieved the 

recognition of target HIV DNA sensitively and selectively [79]. A nanocomposite of 

polyaniline/graphene (PAN/GN) was formulated by reverse-phase polymerization. The 

nanocomposite material was dropcasted onto a glassy carbon electrode. Next, a single-

stranded DNA probe for detecting the HIV-1 gene was exposed to immobilization on the 

modified electrode, and the negatively charged phosphate framework of the HIV-1 was 

coupled to the modified electrode surface through π-π∗ stacking interplays. The hybridization 

between the single-stranded DNA probe and the target HIV-1 formed double-stranded DNA, 

and the electron transfer resistance of the electrode was determined by impedimetric 

examinations with a [Fe(CN)6]
3-/4- redox couple[80]. SWCNT-based sensors proved to be 

capable of optical recognition of small, free oligonucleotides in biofluids and in vivo, 

although proteins reduced the sensitiveness. Harvey noticed a phenomenon in which the CNT 

optical response to nucleic acids could be improved by denatured proteins. Mechanistic 

investigations revealed that hydrophobic patches of the denatured protein chain interacted 

with the unbound nanotube surface following hybridization, leading to improved shifting of 

the nanotube emission. They utilized this machinery to discover an untouched HIV in serum, 

giving rise to particular responses within minutes(Figure 5(c)). The present survey 

Jo
urn

al 
Pre-

pro
of



16 

 

foreshadows the application of carbon nanotubes to optically detect viruses at the point-of-

care by measuring viral nucleic acids[81]. 

Influenza viruses of the family Orthomyx-oviridae are encased negative-strand RNA viruses 

with fragmented genomes consisting of seven to eight gene fragments[56]. The development 

of a microfluidic incorporated rGO transistor was also reported for recognition of the H5N1 

influenza virus gene through a flow-through approach. Both the fluorescence determination 

and the electrical recognition were executed for evaluating the functionality of rGO 

transistors in a flowing environment. This microfluidic incorporated rGO transistor with its 

expanded capture probe immobilization technique was able to offer a tool for sensitive and 

stable recognition of nucleic acid and can potentially be applied for flow-through chips[82]. 

Jeong et al. produced a fluorometric system to detect influenza subtype viral genes by GO. A 

fluorescent DNA probe corresponding to the hemagglutinin gene of the influenza virus is 

broken by the 5'-3' exonuclease function of Taq polymerase throughout PCR. After adding 

GO, the emitted fluorophore maintains its fluorescence while not being adsorbed onto GO, 

while the unchanged fluorescent DNA probe undergoes adsorption onto GO with quenched 

fluorescence. The multi-well plate system can identify 3.8 pg of the influenza viral RNA[83]. 

Binary-NP-decorated CNTs (bNP-CNTs) were manufactured via a facile two-stage technique 

and utilized as a biosensing tool (Figure 5(b)). Gold (Au)/iron-oxide magnetic NP-decorated 

CNTs (Au/MNP-CNT) were employed for influenza sensing channels. The biosensing was 

demonstrated by initial magnetic alignment of the Au/MNP-CNTs on a Pt-

interdigitated electrode, after which a thiol-group-functionalized probe DNA was connected 

to the Au NP surface on the bNP-CNT hybrid structure through thiol chemistry. DNA 

hybridization between the target influenza and probe DNA was determined for monitoring 

changes in electrical conductivity  of the Au/MNP-CNTs. The specificity was demonstrated 

by differing mismatched DNA sequences, presenting specificity[84]. 
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Fig.5 a) Schematic of the proposed rGONS-HCR platform for HCV detection. Reprinted with the 
permission of Ref [75]. b) Illustration of the preparation of the magnetically aligned Au/MNP-CNTs on 
the Pt-IDE for DNA sensing channels. Reprinted with the permission of Ref [84]. c) Model depicting HIV 
RNA detection via a CNT RNA sensor. Reprinted with the permission of Ref [81].  

 

3.3. Detection of the Entire Virus  

This part covers the detection of the entire virus using carbon nanomaterial. The three 

structural proteins of the dengue virus encoded by the genome are the membrane (M) protein, 

envelope (E) protein and capsid (C) protein. It was reported that a biofunctionalized tapered 

optical fiber based sensor with the incorporation of GO could be utilized to detect Dengue 

virus II E proteins. The narrowed site was amassed with GO and underwent functionalization 

with anti-DENV II E protein IgG antibodies for testing with various concentrations of DENV 

II E proteins. The sensor was found to be precise, selective, and affinitive towards E proteins 

[85]. Omar et al. reported the development of a SPR sensor on the basis of a self-assembled 

monolayer/rGO-polyamidoamine dendrimer (SAM/NH2rGO/PAMAM) thin film to identify 

DENV II E proteins. They then assessed the SPR sensor in terms of specific, sensitive, 

binding affinity and selective activities. The researchers found that variations in the sensing 

layer because of differing spin speed, time incubation, and concentration could provide an 

improved interplay between the analyte and the sensing layer. Selective activity of the SPR 

sensor toward the DENV II E proteins was obtained with the use of other competitors[86].  

Heparins, an analogue of the heparan sulfate proteoglycans, are receptors for the dengue virus 

during infection of Vero cells and hepatocytes. Wasik et al. proposed an electronic biosensor 

based on a SWCNTs network chemiresistive transducer, which was subjected to 

functionalization with heparin for recognition of the entire dengue virus (Figure 6(a)). 

Recognition of the dengue virus in a viral culture supernatant is as sensitive as the 

corresponding viral titer in a phosphate buffer in spite of using growth media and Vero cell 

lysate. The biosensor exhibited sensitivity within a range of clinical relevance for humans and 

infected Aedes aegypti[87]. A report indicates a novel procedure for detecting, classifying 

and antibody screening of the dengue virus  on the basis of electrochemical impedance 
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spectroscopy . Navakul et al. discovered that the charge transfer resistance  of a gold 

electrode covered with a GO strengthened polymer was affected by virus strains (and amount 

subjected to the surface?). Such a finding could  explain the ability to recognize  molecularly 

(proven?) while preparing the GO-polymer composite. This technique can demonstrate that 

DENV is present at an initial stage of the infectious condition. This technique could 

distinguish between DENV and the other sub-types, besides H5N1[88]. 

Ebola virus glycoprotein is the only protein capable of expression on the viral surface. The 

Ebola glycoprotein has crucial contributions to the viral entrance into cells and to the escape 

of the immune system. Maity et al. offered an electronic resonance frequency modulation to 

identify Ebola glycoprotein within a dielectric-gated rGO field-effect transistor. The 

sensitiveness of Ebola recognition can be considerably improved by evaluating the device 

electronic-resonance frequency, including its inflection frequency, in which the phase angle 

approaches a maximum. Utilizing charge-relaxation dynamics, a bio-FET sensing platform is 

achieved for healthcare and bioelectronic uses via resonance shifting[89]. In a further 

research, Jin et al. reported a field effect transistor based immunoassay for detecting the 

deactivated Ebola virus. An (equid?) antibody versus the Ebola virus glycoprotein underwent 

immobilization on the surface of the field effect transistor T modified earlier with RGO. The 

antibody versus Ebola virus was subjected to immobilization on the modified field effect 

transistor and the response to Ebola virus was assessed as a function of the shift of Dirac 

voltage. The test is specific satisfactorily and was utilized to quantize the deactivated Ebola 

virus in spiked serum[90]. 

A composite comprising GO and gold nanorods (GO-GNRs) was invented by Liu et al. for 

determining the trace of hepatitis B surface antigen (HBsAg) through surface enhanced 

Raman spectroscopy (Figure 6(b)). The antibody on the GO-GNRs couples HBsAg with a 

high specific activity, resulting in a brilliant selectivity. The immunoassay determines the 

sensitivity and selectivity of HBsAg in serum and develops the potential of GO-GNR based 

surface enhanced Raman spectroscopy tag to be utilized in clinically related 

examinations[91]. Zhao et al. manufactured a composite of graphene oxide‐ferrocene‐

chitosan (GO‐Fc‐CS) and utilized it for developing an electrochemical immunosensor with a 

GO‐Fc‐CS/Au‐nanoparticle layer film for HBsAg recognition. The modified layer film 

demonstrated not only an improved electron conductivity, but also a robust reversible redox 

signal for current changes, superb biocompatibility and good film‐making capability to bind a 

plethora of antibodies. The functionality in HBsAg recognition implies that the introduced 
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immunosensor can potentially be applied in clinical diagnostics[92]. A hybrid biosensor on 

the basis of a graphene resistor functionalized with self-assembled Graphene-AuNPs (Gold 

Nanoparticles) is established for the instantaneous recognition of HBsAg. The hybrid 

biosensor contains an ssDNA sequence coupled to a graphene resistor instrument through π–

π stacking interplays combined with an ssDNA functionalized AuNP. The ssDNA has 

complemental sequences that produce the graphene-AuNP hybrid biosensor via 

hybridization[93]. The HCV genotype dispersal varies by region[94]. The asymmetrical and 

heterogeneous virion has a buoyant property and protein content to the same level as low-

density lipoparticles. The core protein is amorphous and consists of the two envelope 

glycoproteins, E1 and E2[95]. Valipour et al. discovered a simple green method to 

apply silver nanoparticle (AgNPs) and thiol GQD (GQD-SH) as the nanomaterial to detect 

the HCV core antigen. The AgNPs/GQD-SH was applied as a substratum to load antibodies 

for detecting the HCV core antigen. AgNPs were subjected to immobilization on SH groups 

of GQDs through the forming of the Ag-S and anti-HCV bond and were laden on 

the electrode surface by the interplay between the –NH2 group of the antibody and 

AgNPs. Riboflavin was utilized as a biologic molecule with intrinsic features as the redox 

probe for developing a HCV core antigen electrochemical immunosensor. This 

immunosensor was utilized for the analysis of a serum sample[96].  

  

Fig.6 a) Functionalization schematic representation of the fabrication of the chemiresistor used for 
detection of Dengue virus. Reprinted with the permission of Ref  [87]. b) Schematic illustration of Raman 
immunoassay based on GO-GNRs. Reprinted with the permission of Ref [91]. 

Yeh et al. described an exclusive CNT size-tunable enriched microdevice (CNT-STEM) that 

can effectively enrich and concentrate viruses sampled from field strains. The channel 

sidewall in the microdevice was prepared by mounting orders of vertical alignments of 
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nitrogen-doped multiwalled CNTs, in which the intertubular distance between CNTs could be 

designed in the scope of 17-325 nm for accurate matching the size of various viruses. The 

CNT-STEM led to a significant improvement of LODs and virus isolation rates by at least 

hundred times. They used this device for identification of an emergent fowl influenza virus 

and a new virus strain[97]. Veerapandian et al. described the design of an electrochemical-

based dual-sensor platform consisting of methylene blue-electroadsorbed GO nanostructures 

modified with monoclonal antibodies towards the HA proteins of H5N1 and H1N1. Bio-

functional layers composed of chitosan and protein-A molecules were executed at the 

interface of the sensor element and the antibodies, which synergistically promoted the bio-

activity of the immobilized antibodies to form the immune complex[98]. Graphene-FET 

detects the targets electrically with high sensitivity due to the high carrier mobility of 

graphene. A report by Ono et al. indicates that the sialoglycan-functionalized G-FET can 

selectively detect the possible pandemic virus. Initially, sialoglycan underwent modification 

on the graphene channel by a π-stacking cross-linker. Subsequently, the sialoglycan-

functionalized G-FET was utilized to discover the target. Two lectins obtained from 

Sambucus sieboldiana (SSA) and Maackia amurensis (MAM) were applied as targets in 

place of the human and fowl influenza virus, respectively(Figure 7(a)). Finally, G-FETs were 

used to selectively detect the targets, one is modified by the human type sialoglycan and the 

other by the avian-type sialoglycan[99]. Singh et al. offered a microfluidic chip incorporated 

with an RGO-based electrochemical immunosensor for label-free detecting an influenza 

virus, H1N1. Three microelectrodes were manufactured on a glass substrate by the 

photolithographic method, whereas the working electrode was subjected to functionalization 

with RGO and monoclonal antibodies specific to the virus. These chips were incorporated 

with polydimethylsiloxane microchannels[100]. An effective electrochemical influenza A 

biosensor was designed based on a graphene–gold (Au) hybrid nanocomposite modified Au-screen 

printed electrode, which principally works in dependence of the measured neuraminidase activity. 

The experimental factors, including the impacts of the bovine serum albumin inclusion and the 

immobilization times of fetuin A and PNA lectin, were optimized to investigate the analytical 

characteristics of the influenza A biosensor. The invented biosensor was utilized for detecting the 

actual influenza virus A (H9N2)[101]. A magnetic/plasmonic-assisted fluoro-immunoassay 

system is designed to detect the influenza virus by magnetic-derivatized plasmonic 

molybdenum trioxide quantum dots (MP-MoO3 QDs) as the plasmonic/magnetic agent and 

fluorescent graphitic carbon nitride quantum dots (gCNQDs) as the monitoring probe. A 

specific antibody towards the influenza A virus was coupled onto the surface of the MP-
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MoO3 QDs and gCNQDs in respective order. When influenza A virus is present, a core-

satellite immunocomplex forms between the antibody-coupled nanomaterials and their 

interplay modulates which enhances gradually the fluorescence strength of the detecting 

probe with an elevation depending on the influenza virus concentrations[102]. A 

photoelectrochemical immunosensor with sensitivity and specificity was manufactured to 

analyze subgroup J avian leukosis viruses (ALV-J) according to a dual signal-on approach. 

Gold nanoparticles (AuNPs) decorated graphitic carbon nitride (AuNPs/g-C3N4) as 

photoelectrochemical species and primary antibody against ALV-J underwent successive 

immobilization on the ITO electrode. An ALP-CdTe-Ab2 bio-conjugant was made by the 

assembly of a second antibody and alkaline phosphatase (ALP) to the CdTe quantum dots 

surface. The photoelectrochemical immunosensor was produced by attaching the target ALV-

J and ALP-CdTe-Ab2 bio-conjugants on the electrode surface through the immune 

detection[103]. An electrochemical immunosensor for ALV-J was assembled on the basis of 

mesoporous graphitic carbon nitride (mpg-C3N4) (Figure 7(b)). Mpg-C3N4 was utilized as the 

sensor scaffold to bind to the primary antibodies (Ab1). The complex of thionine and mpg-

C3N4 (Th-mpg-C3N4) was manufactured to function as the electroactive probe and the carrier 

of secondary antibodies (Ab2). Mpg-C3N4 holds a greater specific surface area, less 

electrochemical resistance and plentiful active positions relative to bulk g-C3N4. Thus, the 

introduced electrochemical immunosensor displayed augmented detecting signals that could 

sensitively detect ALVs-J[104].  
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Fig.7 a) Schematics of the immobilization method for SGPs on graphene surface using PBASE linker. 
Reprinted with the permission of Ref [99]. b) Schematic representation of the fabrication of the 
iElectrochemical Immunosensor Based on Mesoporous Graphitic Carbon Nitride for Detection of 
Subgroup J of Avian Leukosis Viruses. Reprinted with the permission of Ref [104].  

The Zika virus (ZIKV) is defined as an arthropod-borne virus belonging to the Flaviviridae 

family comprising the Flavivirus and Hepacivirus genera. It is a positive, single-stranded 

ribonucleic acid (RNA) virus with a casing, rendering it a close relation to the Spondweni 

virus. Fast and severe detection platforms are urgently needed for the Zika virus[105-107]. 

Afsahi et al. fabricaed an economical and movable graphene-enabled biosensor to 

recognize the Zika virus with a specific immobilized monoclonal antibody (Figure8(a)). Field 

Effect Biosensing with monoclonal antibodies and covalent linkage to graphene allows the 

detection of local Zika viral antigens quantitatively and in real-time. Measurement of the Zika 

antigen in a simulated human serum revealed a promising diagnostic applicability. Validation 

of its selectivity was achieved by the Japanese Encephalitis NS1, a homologue viral antigen 

with potential cross-reactivity[108]. 

Human adenoviruses (HAdVs) are grouped in the genus Mastadenovirus. Adenoviruses are 

non-encased double-stranded DNA viruses infecting various human tissues[109]. The 

adenoviral structure consists of two main components, the exterior capsid and the interior 

core, where the viral dsDNA genome is enveloped together with a plethora of histone-like 

proteins. Viral proteases have a key contribution to the maturation by cleaving progenitor 

proteins for the capsid and the core. Adenoviruses are oftentimes linked to pediatric disorders 

of the upper respiratory tract, such as the common cold[110].  Jin et al. proposed a procedure 

for detecting the HAdV hexon antigen by CNT sensors. An anti-HAdV antibody was exposed 

to immobilization on the reverse surface of a CNT sensor. As a control, non-specific mouse 

IgG was subjected to immobilization on another CNT sensor. I-V(gate) curves were 

determined after various concentrations of recombinant HAdVs hexon antigen (were? 

subject) incubated with anti-HAdVs antibody-immobilised or non-specific mouse IgG-

immobilised sensors. The curves revealed a positive shift that depended upon the hexon 

antigen concentrations in the anti-HAdV antibody-immobilised sensor, while no such a shift 
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was noticed in the non-specific mouse IgG-immobilised sensor[111]. Template-free In 

situ gold nanobundles (Au NBs) were produced on an electrode for optoelectronic sensing of 

fowl adenoviruses (FAdVs). A Au NB film was manufatured on a carbon electrodes 

working area by L(+) ascorbic acid, gold chroloauric acid, and poly-L-lysine (PLL) via a 

modified layer-by-layer (LbL) technique. Both Au NBs and GQDs underwent conjugation 

with the target FAdVs specific antibodies bringing them near to one another with the adding 

target FAdVs via an antibody–antigen interplay(Figure 8(b)). At close proximity, the light–

matter interplay between Au NBs and QDs yields a local electric signal improvement under 

ultraviolet–visible light radiation  allowing the recognition of extremely small concentrations 

of a target virus even in complicated biologic media[112].  

Some of the carbon nanomaterial-based biosensors reported in the literature to detect Human 

Viruses are summarised in Table 1. 

 

 

Fig.8 a)Diagram of the movable graphene-enabled biosensor to recognize Zika virus with a specific 
immobilized monoclonal antibody. Reprinted with the permission of Ref [108]. b) Schematic presentation 
of optoelectronic Fowl Based on Local Electric Field Enhancement on Graphene Quantum Dots and Gold 
Nanobundle Hybrid for Adenovirus Detection. Reprinted with the permission of Ref [112]. 

 
Table1. Carbon nanomaterial-based biosensor for human virus detections. 

Carbon 

Nanoma

terial 

Virus Target Assay 
Detection 

limit 

Detection 

range 

Detection 

platform 
Ref 

GQD Hepatits B DNA Electrical 1 nM (10– 500) nM Smart [73] 
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electrochemical 

Hepatits C Antigen Electrochemical 3 fg mL−1 (0.05- 60) ng mL−1  Electrodes [96] 

Fowl 

adenoviru

ses 

Antigen Optoelectronic 
8.75 

PFU/mL 

(10 - 10000) 

PFU/mL 
Electrode [112] 

CNT 

Dengue 
NS1 

protein 
Amperometrical 12 ng mL-1 - 

Screen printed 

electrodes 
[46] 

Dengue 
NS1 

protein 
Electrochemical 

0.035 µg 

mL-1 
(0.1 - 2.5) µg mL‐1 Electrodes [47] 

Dengue 
NS1 

protein 
Chemiresistive - - - [48] 

Dengue 
NS1 

protein 
- - - - [49] 

Dengue 
NS1 

antibody 
Impedimetric - (10−13–10−5) g mL−1 Electrodes [50] 

HIV 

Capsid 

protein 

p24 

Electrochemical 2 pM 10 pM - 1 nM 
screen-printed 

electrodes 
[55]  

HIV Protein optical - - - [81]  

Dengue Virus 
Chemiresistive 

transducer 
- - - [87] 

Influenza DNA 

electrical 

conductivity 

change 

8.4 pM (1- 10) nM Electrodes [84] 

avian 

Influenza 
- - - - - [97] 

human 

adenoviru

s 

Antigen - - - - [111] 

Graphene 

Influenza 

H7 
Antibody electrochemical 1.6 pg/mL 

1.6 × 10−3
∼16 ng/m

L 
Electrodes [60] 

HIV DNA Electrochemical 30 aM - Electrodes [79] 

HIV Gene Impedimetric 
1.0 × 10−16

 

M 

(5.0 × 10−16
 - 

1.0 × 10−10)
 M 

Electrodes [80] 

Hepatits B Antigen 
Resistance 

change 
50 pg ml−1  - - [93] 

Human 

and Avian 

influenza  

Sialoglyca

n 
Electrical - - - [99] 

Influenza 

A H9N2 

Neuramini

dase 
electrochemical 10−8 U mL−1 10−8 - 10−1 U mL−1 

screen printed 

electrode 
[101] 

Zika Antigen 
Capacitance 

change 
450 pM - - [107] 
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GO 

HIV Antibody FRET - - - [53] 

HIV Protease Fluorometric 1.18 ng/ mL - - [54] 

Dengue 
DNA and 

RNA 
Impedimetric 1 fM - Electrodes [62] 

Ebola Gene Fluorometric 1.4 pM - 
Rolling circle 

amplification 
[68] 

Hepatits C DNA Electrochemical 
160.4 

pmol/L 
(0.2–10) nmol/L Electrodes [77] 

influenza Gene Fluorometric - - Multi well plate [83] 

Dengue 
Virus II E 

proteins 
- 1 pM - 

Tapered optical 

fiber 
[85] 

Dengue 
DENV-2 

E-proteins 
SPR 0.08 pM (0.08 - 0.5) pM - [86] 

Dengue Virus  

Electrochemical 

impedance 

spectroscopy 

0.12 pfu/mL (1 - 2 × 103) pfu/mL Electrodes [88] 

Hepatits B Antigen 

Surface 

enhanced 

Raman 

spectroscopy 

0.05 

pg·mL−1 
(1–1000) pg·mL−1  

Surface enhanced 

Raman 

spectroscopy 

[91] 

Hepatits B Antigen Electrochemical 0.01 ng/mL (0.05- 150) ng/mL Electrodes [92] 

Influenza 

Virus 

H1N1, 

H5N1 

HA 

proteins 
electrochemical - 25–500 pM Electrodes [98] 

RGO 

Hepatits C RNA 

hybridization 

chain reaction 

amplification 

10 fM - - [75] 

Hepatits C DNA electrochemical 405.0 pM 0.5–10 nM Electrodes [76] 

HIV DNA Electrochemical 3.0 × 10−13 M 
(1.0 × 10−12 - 1.0 × 

10−9) M 
Electrodes [78] 

influenza 

virus 

H5N1  

Gene - - - Microfluidic Chip [82] 

Ebola 
Glycoprot

ein 

Electronic-

resonance-

frequency 

modulation 

- (0.001–3.401) mg/L Bio-FET sensing [89] 

Ebola 
Glycoprot

ein 

Shift of Dirac 

voltage 
2.4 pg·mL−1 

(2.4 × 10−12  - 

1.2 × 10−7 )g·mL−1  
FET [90] 

influenza 

virus 

H1N1 

Virus electrochemical 
0.5 PFU 

mL−1 
(1-104) PFU mL−1 Microfluidic chip [100] 
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g-C3N4 

Influenza 

(H1N1) 
Virus 

photoluminesce

nce 
0.25  pg/mL (0.001– 100) ng/mL Probe [102] 

Influenza 

(H3N2) 
RNA 

photoluminesce

nce 
45 PFU/mL 

(45 -25,000) 

PFU/mL 
Probe [102] 

J avian 

leukosis 
Virus 

photoelectroche

mical 

85 

TCID50/mL 
- Electrode [103] 

J avian 

leukosis 
Virus Electrochemical 

120 

TCID50/mL 
- Electrode [104] 

 

4. Conclusion and Future Perspective 

Infective diseases continue to be a ubiquitous risk to universal and public health, particularly 

in numerous countries and rural areas of cities. Basic causes of such severe diseases can be 

outlined as the scarcity of suitable analytic techniques and consequent therapeutic approaches 

resulting from the inadequate accessibility of consolidated and fortified healthcare 

equipments for diagnostics. Biosensors greatly influence, in turn, our existing analytic 

techniques into diagnostic approaches by rearrangement of their sensing modules for 

detecting viruses. Indisputably, the existing sensing equipment needs continual updating for 

addressing the rising challenging issues in the identification of viruses as viruses undergo 

quick changes and disseminate mainly from individual-to-individual, suggesting the need for 

urgent diagnosis in the first place. A number of such challenges can fall into biologic 

barricades, technological limits, and economic facets limiting their application to resource-

scarce situations. Biologic barricades include specificity, low number of targets, and biologic 

media. Detection limit, linear dynamic range, stability, and reliability are technological limits. 

Although, carbon nanomaterial-based sensor technologies are highly promising, they present 

many challenges in order to move from the bench to their use in the point of care. 

Nanotechnologies are offering new means to ease the process of diagnosis based on different 

platforms by performing direct detection of molecular targets in real time. Different varieties 

of carbon nanomaterials provide delicate and accurate platforms in this field. Considering  all 

above mentioned benefits, we shall take some more steps to make carbon nano-sensors 

profitable by the appropriate selection of nanomaterials. The Critical issues are the 

immobilization methods of the nanomaterials and biological elements to mitigate the risk of 

accuracy and correctness in virus detection. Another important issue is the economic aspect 

of the procedure. Carbon nanomaterials are cheaper than the current in use nano-biosensors 

such as gold. So, it seems pretty handful for investors to think about this field. And the last 

item we may consider is the lifetime of the assay, which may be considerable. Human beings 

Jo
urn

al 
Pre-

pro
of



27 

 

have no choice to provide accessible, accurate, real-time, portable and reusable instruments to 

study viruses in high sensitivity and selectivity levels. In conclusion, developing the 

nanotechnologies is a scorecard in the health sector that let us to think about it more seriously 

in order to provide a better life. At editing my article, the world faces the COVID-19 

pandemic and it is obvious that the in-vitro diagnosis virus kit’s market will face an inflection 

in 2020-2021. 
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