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Vaccination has contributed greatly to the control of infectious diseases; however, regional and individ-
ual differences are occasionally observed in the efficacy of vaccination. As one explanation for these dif-
ferences, much attention has focused on the intestinal environment constructed by the interaction of diet
and the gut microbiota. The intestinal environment has several physiological effects on the host immune
system, both locally and systemically, and consequently influences the efficacy of vaccination. In this
review, we discuss the impact of the gut microbiota and dietary nutrients on systemic and oral vaccina-
tion as well as their applications in various strategies for immunoregulation, including use as vaccine
adjuvants. This information could contribute to establishing methods of personalized vaccination that
would optimize host immunity by changing the gut environment to maximize vaccine effects.

� 2020 Published by Elsevier Ltd.
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1. Introduction

Although various types of vaccines have contributed greatly to
the control of infectious diseases, infectious diseases are still a seri-
ous public health problem, and the development of additional
effective vaccines is required. When considering the development
of new vaccines, the identification or design of good antigens is
essential. Several approaches have been established to increase
the immunogenicity of antigens, such as bioinformatics-based
searches for epitopes and protein engineering technology [1,2].
Adjuvants have also been developed to promote and/or modulate
immune responses to vaccine antigens [3]. Adjuvants mainly target
the activation and modulation of innate immunity as a bridge to
the acquired immunity conferred by antibody production and T
cell responses against vaccines.

As is important to the design of vaccine antigens and develop-
ment of adjuvants, host environmental factors, such as the gut
microbiota and dietary nutrition, are considered to be involved in
the efficacy of vaccination. Indeed, regional and individual differ-
ences are occasionally observed in the efficacy of vaccination. For
instance, the efficacy of the oral rotavirus vaccines is lower in
low-income countries than in higher income countries, including
the United States, European nations, and Japan, where efficacy
exceeds 90% [4–8]. Although the reasons for the differences in vac-
cine efficacy are not fully understood, nutrition, intestinal micro-
biota, environmental enteropathy, gastrointestinal infections, and
genetic backgrounds have been suggested as determinants of
vaccine-induced protection [9].

The intestine contains many microorganisms, including bacte-
ria, archaea, and viruses. Accumulating evidence has revealed that
their diverse functions contribute to the development, mainte-
nance, and regulation of the host immune system [10]. In regard
to activation of immune responses, segmented filamentous bacte-
ria (SFB) induce the production of intestinal IgA antibodies and
Th17 cell differentiation through the activation of macrophages
[11,12]. A consortium of 11 bacterial strains isolated from human
faeces is capable of robustly inducing interferon-c-producing
CD8 T cells in the intestine [13]. In contrast, some Clostridium spe-
cies and lactate-producing bacteria such as Lactobacillus show anti-
inflammatory properties through the induction of interleukin 10
(IL-10) and transforming growth factor b (TGF-b) and the differen-
tiation of regulatory T cells [14–16]. Thus, the gut microbiota is
involved in both activation and suppression of immune responses
and could contribute to vaccine effects.

In addition to the microbiota, nutrients are essential for the
induction and maintenance of a suitable host immune system,
and deficient or inappropriate intake of nutrients is therefore fre-
quently associated with increased risk of infection [17,18]. For
instance, micronutrients, often referred to as vitamins and miner-
als, are vital to healthy development and disease prevention.
Indeed, several human trials reported that supplementation with
vitamin A reduces mortality due to diarrhoea [19]. The World
Health Organization recommends routine vitamin A supplementa-
tion in infants and children 6–59months of age for the reduction of
morbidity and mortality, as well as combining the administration
of vitamin A supplements with vaccination [19].

These facts collectively suggest that components of the intesti-
nal environment could be manipulated to maximize the efficacy of
vaccination, provide biomarkers for personalized vaccination
strategies, or act as vaccine adjuvants. In this review, we discuss
recent findings on the molecular and holistic aspects of the intesti-
nal environment in the context of vaccine development.
Please cite this article as: K. Hosomi and J. Kunisawa, Impact of the intestinal e
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2. Role of gut commensal bacteria and probiotics in systemic
vaccination

The gut microbiota is involved in the development and regula-
tion of the host immune system and affects responses to vaccina-
tion. Antibody production against the seasonal influenza vaccine
is attenuated in germ-free (GF) mice and mice treated with antibi-
otics, indicating that commensal bacteria are necessary for appro-
priate immune responses to vaccination [20]. Similarly, decreased
antibody production in response to seasonal influenza vaccination
was observed in Toll-like receptor 5 (TLR5)-deficient mice, and the
administration of TLR5 ligand to antibiotic-treated mice restored
the antibody production to the same level as in wild-type mice,
indicating that commensal bacteria–initiated stimulation of innate
immunity by TLR5 influences the effects of the seasonal influenza
vaccine [20]. Several possibilities can be considered as mechanisms
underlying TLR5-mediated activation of systemic immunity. First,
since TLR5 is expressed on the basolateral surfaces of the gut
epithelial cells [21], translocation of flagellin into the basolateral
sites of the intestinal epithelium may result in the activation of
epithelial cells and the consequent production of several cytokines
[e.g., APRIL (A Proliferation-Inducing Ligand) and IL-6] to activate
both local and systemic immune system [22]. As the other possibil-
ity, it was reported that macrophages and B cells also express TLR5
in the peripheral lymph nodes, translocated flagellin may enhance
the production of similar cytokines (e.g., APRIL and IL-6) and the
expression of CD86 from macrophages and also directly promotes
the plasma cell differentiation [20]. Furthermore, some kinds of
immune cells can traffic from the intestine into the lymph nodes
[23], it is also possible that locally activated cells may move to
the draining lymph nodes from the intestine and affected systemic
immunity.

Because commensal bacteria enhance vaccine effects, the
potential for probiotics and prebiotics to modulate vaccine
responses is attracting attention. For example, probiotics such as
Lactobacillus and Bifidobacterium and prebiotics such as oligosac-
charides modulate innate and adaptive immunity. A systematic
review summarized the effects of several probiotics and prebiotics
in influenza vaccination [24]. In clinical trials, both probiotics and
prebiotics enhanced immune responses against seasonal influenza
vaccines (e.g., H1N1, H3N2, and B strains), resulting in reductions
in the incidence of influenza-like symptoms and severe illness
[24]. For instance, a combination of long-chain inulin and
oligofructose enhanced serum antibody titres in healthy middle-
aged humans after seasonal influenza vaccination [25]. In enterally
fed elderly Japanese persons, supplementation with lactic acid bac-
teria–fermented milk products affected the gut microbial composi-
tion and maintained the enhanced immune responses against the
H1N1, H3N2, and B antigens for a longer period after vaccination
[26]. Thus, supplementation with probiotics or prebiotics enhances
the immune responses to systemic vaccination through the alter-
ation of gut microbial composition, function, or both.
3. Gut commensal bacteria and oral vaccination

Although many currently available vaccines are administrated
by injection, many pathogens invade through mucosal tissues,
such as the respiratory and gastrointestinal tracts. Therefore,
mucosal immune responses are needed to effectively prevent the
invasion of pathogens at mucosal tissues [27]. Oral and nasal vac-
cines are attracting attention as prospective mucosal vaccines. For
nvironment on the immune responses to vaccination, Vaccine, https://doi.
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Fig. 1. Regulation of the intestinal immune system by Alcaligenes through the unique properties of its LPS. Alcaligenes is the predominant symbiotic bacterial genus residing in
the dendritic cells (DCs) in the Peyer’s patches (PPs) and shows unique properties in modulating the intestinal immune system. Alcaligenes organisms activate DCs to promote
the production of IL-6, TGF-b, and B-cell activating factor, key cytokines in the differentiation of IgA-positive B cells and the enhancement of IgA production. Alcaligenes-
derived LPS can activate DCs to produce IL-6 without causing excessive inflammation, making it a good candidate for a vaccine adjuvant.
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example, oral vaccines for rotavirus are clinically used worldwide
and protect against rotavirus gastroenteritis [28,29].

The efficacy of intestinal immune responses to oral vaccination
is attenuated in GF mice and antibiotic-treated mice in comparison
with the efficacy in specific-pathogen-free mice [30,31]. Several
human studies have also shown an association between response
to oral vaccination and the gut microbiota [32]. For example, a
cohort study of children in Ghana determined that the composition
of the gut microbiota, and in particular the proportion of Strepto-
coccus bovis, differed between high and low responders to the oral
rotavirus vaccine [33]. Thus, the bacterial composition in the gut
could affect the efficacy of vaccination with oral vaccines.
4. Lymphoid-tissue-resident commensal bacteria in the
regulation of host immunity

The induction of antigen-specific IgA antibody responses is
important for intestinal defence by oral vaccination. Gut-
associated lymphoid tissues such as Peyer’s patches (PPs) play a
pivotal role in the induction of antigen-specific IgA antibody
responses [27]. Several lines of evidence have indicated that mat-
uration of PPs requires microbial stimulation. Indeed, PPs in GF
mice are abnormally small and lack germinal centres, resulting in
impaired induction of antigen-specific IgA responses. Recent stud-
ies have shown the specific functions of several bacteria in the acti-
vation of PPs. For example, SFB, which are present in the epithelial
cell layer of the intestine that includes PPs, induce germinal centre
formation in the PPs and promote IgA antibody production in the
intestine [11,34]. Several species of Lactobacillus were reported to
promote IgA antibody production and host defence against patho-
gens, leading to their use as probiotics. Lactobacillus crispatus acti-
vates innate immune cells such as CD11b+ dendritic cells (DCs) in
the PPs, leading to increased IL-6 and IgA antibody production in
the intestine [35]. L. pentosus and L. plantarum also activate DCs
in the PPs through TLR2, promoting IgA antibody production
[36,37].

Although many studies have focused on the gut microbiota pre-
sent in the intestinal lumen or associated with the intestinal
Please cite this article as: K. Hosomi and J. Kunisawa, Impact of the intestinal e
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epithelium, we previously identified Alcaligenes spp., including A.
faecalis, as a dominant genus within the PPs of mice and humans,
and termed them lymphoid-tissue-resident commensal bacteria
(LRCs) [38,39]. A subsequent study showed that A. faecalis is cap-
tured by DCs in the PPs after being taken up by M cells, which
are epithelial cells specialized for antigen uptake [40] (Fig. 1). A.
faecalis activates DCs to promote the production of IL-6, TGF-b,
and B-cell activating factor, key cytokines in the enhancement of
IgA production [38]. An additional study showed that A. faecalis–
produced lipopolysaccharide (LPS) appropriately mediates produc-
tion of IL-6 from DCs through its weak agonistic activity against
TLR4, allowing Alcaligenes spp. to maintain their homeostatic rela-
tionship with host immunity without inducing excessive inflam-
mation [41]. Collectively, the evidence highlights that LRCs,
including A. faecalis, interact with DCs in the PPs and regulate host
immune functions, including IgA antibody production.

We further investigated bacteria that persistently colonize colo-
nic macrophages and revealed the presence of Stenotrophomonas
maltophilia in murine colonic macrophages [42]. S. maltophilia
induces IL-10 production from macrophages through a 25-kDa
hypothetical protein encoded by the smlt2713 gene and annotated
as a bacterial protein exported by the type II secretion machinery
[42].

Collectively, specific bacteria such as A. faecalis and S. maltophil-
ia establish a symbiotic relationship within the intestinal immune
cells and modulate their functions, including production of IgA
antibodies and dampening of inflammatory conditions, possibly
affecting host immune responses to oral vaccination.
5. Application of Alcaligenes as a vaccine adjuvant

Adjuvants activate innate immunity, thus providing stronger
vaccine responses. Therefore, microbial components such as LPS,
which can activate innate immunity, likely can be used as adju-
vants. LPS activates innate immunity through TLR4. The structure
of LPS, which varies among bacterial species, determines its ligand
activity. Because A. faecalis has a unique function as an LRC, we
focused on its LPS activity and found that A. faecalis–derived LPS
nvironment on the immune responses to vaccination, Vaccine, https://doi.
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has weaker TLR4 agonistic activity than Escherichia coli–derived
LPS [41]. Of note, as with A. faecalis itself, the activity of A. fae-
calis–derived LPS can activate DCs sufficiently to produce IL-6
without causing excessive inflammation, leading us to hypothesize
that the unique activity of A. faecalis–derived LPS makes it suitable
as a vaccine adjuvant (Fig. 1). Indeed, A. faecalis–derived LPS
enhances antigen-specific immune responses without excessive
inflammation when it is used as an adjuvant in a murine model
[41]. For instance, mice subcutaneously immunized with ovalbu-
min (OVA) together with A. faecalis LPS showed increased levels
of OVA-specific antibody production compared with mice immu-
nized with OVA alone. In addition, A. faecalis LPS induced OVA-
specific T cells, especially ones producing IL-17 [41].

LPS consists of an O antigen, core, and lipid A, and the activity of
LPS at least partly depends on the lipid A structure, such as the
number of phosphate groups and the number of acyl groups
[43,44]. For example, monophosphoryl lipid A, which is chemically
modified from lipid A of Salmonella by removing one phosphate
group, has lower activity than the parent lipid A containing two
phosphate groups [45]. Also, the structure of lipid A differs among
bacterial species. For example, lipid A of E. coli has six acyl groups,
but lipid A of Bacteroides dorei, a commensal bacterial species of
the gut, has four acyl groups [46]. B. dorei–derived lipid A acts as
an antagonist of TLR4 and inhibits the activation of innate immu-
nity by E. coli–derived lipid A [46]. Thus, the unique immunoregu-
latory functions of intestinal bacteria, including those of
Alcaligenes, can be artificially modified and applied to the develop-
ment of safe and effective vaccine adjuvants.
6. Roles of vitamins in intestinal immune responses to oral
vaccination

Another important factor involved in the control of intestinal
immune responses is the nutritional condition. Mice in a fasting
state show decreased numbers of B cells in the PPs, which conse-
quently reduces production of antigen-specific IgA antibodies
Fig. 2. Roles of vitamin B1 in intestinal immune responses to oral vaccination through
especially maintenance of the TCA cycle, and therefore is associated with maintenanc
Consequently, vitamin B1 is involved in intestinal IgA production and immune response

Please cite this article as: K. Hosomi and J. Kunisawa, Impact of the intestinal e
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against oral vaccine antigens [47]. The underlying mechanism is
an increase in the expression of CXCL13 in bone marrow stromal
cells through metabolic reprogramming in response to fasting,
leading to the recruitment of naive B cells from the PPs to the bone
marrow. In addition, the numbers of activated germinal-centre B
cells in the PPs are reduced by the apoptosis induced by starvation
[47].

With regard to specific dietary nutrients, dietary vitamin A defi-
ciency increases the risk of gastrointestinal infection and reduces
the efficacy of oral vaccination. Several lines of evidence indicate
that the molecular mechanism includes intestinal DCs expressing
retinaldehyde dehydrogenase (RALDH), which can convert vitamin
A into retinoic acid (RA) [48,49]. RA induces class-switching
recombination of immunoglobulin from IgM to IgA and coincident
differentiation of naive B cells to IgA-positive B cells via RA recep-
tors in the PPs [48]. Moreover, RA induces the expression of the
gut-homing receptors a4b7 integrin and chemokine receptor
CCR9, promoting the migration of IgA-positive B cells into the
intestinal lamina propria (iLP) [48]. Therefore, vitamin A deficiency
reduces IgA-producing plasma cells in the iLP, which leads to the
attenuation of the intestinal immune response, including IgA anti-
body production.

In addition to vitamin A–mediated immune regulation, we
reported that the immune response to oral vaccination is attenu-
ated by a deficiency of dietary vitamin B1 [50]. Mice deficient in
dietary vitamin B1 showed smaller PPs, with reduced numbers of
naive B cells [50]. Consequently, the mice exhibited impaired IgA
antibody responses to oral vaccination. We focused on energy
metabolism as an underlying mechanism because vitamin B1 acts
as an essential cofactor in TCA cycles for energy generation, and we
noted that B cells depend on vitamin B1 most during their early
differentiation in the intestine [50] (Fig. 2). In the intestine, naive
B cells differentiate into IgA-positive B cells in the PPs and then
migrate into the iLP and become IgA-producing plasma cells. A
metabolomics analysis revealed that naive B cells depend on TCA
cycles for energy generation, whereas IgA-producing plasma cells
show low dependence on TCA cycles and increased dependence
regulation of energy metabolism. Vitamin B1 is essential for energy metabolism,
e of naive B cells, which predominantly use the TCA cycle for energy generation.
s to oral vaccination.

nvironment on the immune responses to vaccination, Vaccine, https://doi.
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Fig. 3. Enhancement of IgA antibody production by palmitic acid, arachidonic acid, and their metabolites. Palmitic acid enhances IgA antibody production in the intestine
through two pathways. One is a direct effect of palmitic acid on IgA-producing cells to enhance IgA production. The other is the endogenous generation of sphingolipids from
palmitic acid, which promotes the trafficking of IgA-positive B cells. Arachidonic acid is converted to leukotriene B4 in vivo and its receptor, BLT1, is expressed on IgA-positive
B cells and IgA-producing cells. The leukotriene B4–BLT1 axis promotes the proliferation of these cells through the enhancement of gut microbiota–derived stimuli that
increase the sexpression of MyD88.
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on glycolysis. Vitamin B1 deficiency leads to impaired TCA-
dependent energy metabolism and thus results in reduced num-
bers of naive B cells and consequent regression of PPs and attenu-
ated intestinal IgA responses to oral vaccines [50].
7. Roles of dietary lipids in the intestinal IgA production and
oral vaccination

We reported that dietary fatty acids also affect intestinal
immune functions, including antigen-specific IgA antibody produc-
tion in response to oral vaccines. For example, we previously
reported that dietary palmitic acid can promote intestinal IgA anti-
body production [51]. The amount of faecal IgA antibody was
increased in mice fed with palm oil containing abundant amounts
of palmitic acid, a saturated fatty acid, and the palmitic-acid-rich
diet was associated with increased numbers of IgA-producing
plasma cells in the intestine [51]. We found two pathways by
which dietary palm oil promotes IgA antibody production
(Fig. 3). In a direct effect, palmitic acid stimulates IgA-producing
plasma cells to enhance IgA antibody production. In an indirect
effect, palmitic acid is converted into sphingolipids, which may
promote cell trafficking and proliferation. Indeed, we previously
reported that sphingosine-1-phosphate, one metabolite of sphin-
golipids, regulated trafficking of IgA-positive B cells from the PPs
into the iLP [52].

Our recent findings indicate that dietary fatty acids and the gut
microbiota cooperatively control the intestinal immune system
[53]. Leukotriene B4 is a metabolite of arachidonic acid, which
originates from dietary omega-6 linoleic acid and acts as a ligand
of leukotriene B4 receptor 1 (BLT1). During B-cell differentiation
in the intestine, B cells start to express BLT1 upon class switching
to IgA from IgM and maintain its expression after their differenti-
ation into IgA-producing plasma cells. Consistent with these find-
ings, leukotriene B4 enhances antigen-specific IgA antibody
production in response to oral vaccines, which promotes the prolif-
eration of IgA-producing plasma cells [53].

The mechanisms of how dietary fatty acids control the intesti-
nal immune system include harmonized communication with
Please cite this article as: K. Hosomi and J. Kunisawa, Impact of the intestinal e
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commensal bacteria. Stimulation by commensal bacteria through
TLRs activates MyD88 signalling in immune cells, which enhances
immune responses to vaccines [53]. We found that the leukotriene
B4–BLT1 signal induces the expression of MyD88 in B cells and
thereby promotes the proliferation of IgA-producing plasma cells
(Fig. 3) and consequently antigen-specific IgA antibody production
in response to oral vaccines [53]. Thus, metabolites derived from
dietary oils control immunological signalling from gut microbiota,
affecting oral vaccine efficacy.

8. Conclusion

Vaccination has contributed greatly to the control of infectious
diseases since Edward Jenner developed the smallpox vaccine.
However, emerging and re-emerging infectious diseases including
influenza, Ebola, and Covid-19 are still big issues in public health
worldwide, and new vaccines need to be developed. Even when
vaccines are available, regional and individual differences may be
observed in the efficacy of vaccination. This review article
describes the involvement of the intestinal environment as a key
factor influencing the efficacy of vaccination. In the future, a per-
son’s intestinal environment might be modified through nutri-
tional guidance as well as the application of gut microbes, to
maximize vaccine efficacy. We hope that the fundamental research
we describe herein will help the field progress and will contribute
to saving people worldwide from infectious diseases.
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