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Summary 
Rapid spread of coronavirus disease 2019 (COVID-19) is ravaging the globe. Since its first report in 
December 2019, COVID-19 cases have exploded to over 14 million as of July 2020, claiming more than 
600,000 lives. Implementing fast and widespread diagnostic tests is paramount to contain COVID-19, 
given the current lack of an effective therapeutic or vaccine. This review focuses on a broad description 
of currently available diagnostic tests to detect either the virus (SARS-CoV-2) or virus-induced immune 
responses. We specifically explain the working mechanisms of these tests and compare their analytical 
performance. These analyses will assist in selecting most effective tests for a given application, for 
example, epidemiology or global pandemic research, population screening, hospital-based testing, 
home-based and point-of-care testing, and therapeutic trials. Finally, we lay out the shortcomings of 
certain tests and future needs. 
 
Subject areas 
COVID-19, diagnostics, molecular tests, serologic tests 
  



 

 3 

I. Introduction 
The importance of diagnostic tests for population management is nowhere clearer than with the current 
Coronavirus disease 2019 (COVID-19) pandemic. South Korea, for example, rapidly validated and 
deployed test kits by private companies (Lee and Lee, 2020), examining over 200,000 individuals within 
the first 7 weeks of COVID-19 (Shim et al., 2020). Ensuing isolation and contact tracing enabled the 
country to slow down disease spread without imposing severe social and economic lockdown. A similar 
success was observed in Germany which performed nearly 120,000 tests a day. The United States 
(US) in contrast lagged behind considerably, performing about 5000 tests in the first 7 weeks in the 
entire country, and likely missed the critical window to contain the outbreak (Bialek et al., 2020). 
Centralized testing by the US Center for Disease Control and Prevention (US-CDC) and other health 
care organizations has given way to automated testing using commercial platforms. As of May 2020, 
over 60 commercial molecular tests have received the Emergency Use Authorization (EUA) from US 
Food and Drug Administration (FDA), while over 300 antibody-based tests, which do not require FDA 
clearance, flooded the market (FDA, 2020; FIND, 2020). The diagnostic performance of available tests 
varies widely, which could lead to confusing results (Maxmen, 2020) and sometimes ill-advised policies.  
 
This technical review aims to evaluate key diagnostic technologies for COVID-19 disease. We focus on 
i) explaining underlying working principles of major tests, ii) comparing their analytical parameters and 
potential limitations; and iii) surveying initial performance with clinical samples. We envision that this 
comparative report will help clinicians, researchers, and healthcare agencies to evaluate the standards 
of existing tests as well as further improve them for the future.  
 
II. COVID-19 etiology 
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; Figure 1a ). It 
is a single-strand RNA virus belonging to the beta-family of coronaviruses which also include SARS-
CoV, middle east respiratory syndrome coronavirus (MERS-CoV), human coronavirus OC43 (HCoV-
OC43) and human coronavirus HKU1 (HCoV-HKU1). The viral envelope of SARS-CoV-2 consists of a 
lipid bilayer. Petal-shaped spikes are composed of a heavily glycosylated type I glycoproteins (S 
protein) are anchored on the envelope along with membrane (M) and envelop (E) proteins. Inside the 
envelope resides a ribonucleoprotein (RNP) core, which comprises the RNA genome and a single 
species of nucleocapsid (N) protein. SARS-CoV-2 genome (29.8 kb) codes for 10 genes to produce 26 
proteins (Figure 1b ) (Chen et al., 2020). The genes are arranged in the order of 5’-replicase-S-E-M-N-
3’, with genes for accessory proteins interspersed among structural ones (S, E, M, N). About two-thirds 
of the entire RNA is occupied by the polymerase gene, which comprises two overlapping open reading 
frames (ORFs), 1a and 1b. The entry of the virus to host cells is mediated by S protein upon recognition 
of the peptidase domain of angiotensin-converting enzyme 2 (ACE2) by S1 subunit (Wrapp et al., 
2020), followed by viral and cellular membrane fusion through S2 subunit (Yan et al., 2020b; Lai et al., 
2020). It has been reported that SARS-CoV-2 S protein binds ACE2 with higher affinity than that of 
SARS-CoV (Wrapp et al., 2020).  
 
SARS-CoV-2 can infect humans and a small number of animals (Zhou et al., 2020). Human-to-human 
transmission is through droplets or direct contact (Andersen et al., 2020). Molecular tests are critical for 
COVID-19 diagnosis, as its symptoms (e.g., fever, fatigue, dry cough, breathing difficulties) overlaps 
with those of common cold and influenza (Figure 1c ). Like other viral tests, different molecular targets 
are available. Viral nucleic acids or proteins can be used to detect the presence of virus in patients to 
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diagnose acute infection. Detecting antibodies that are generated by hosts against the virus can tell the 
history of a past infection and gained immunity to the disease. Selecting specific targets would 
determine the proper assay formats and technologies (Table 1 ) that are detailed in the following 
sections. Up-to-date information on FDA-cleared commercial tests is available at 
https://csb.mgh.harvard.edu/covid. 
 
III.Nucleic acid amplification tests (NAATs) 
NAATs for COVID-19 diagnostics are designed to detect unique viral RNA sequences in N, E, S or 
RNA-dependent RNA polymerase (RdRp) genes. The viral genome of original SARS-CoV-2 was 
sequenced (Chen et al., 2020) and released in January 2020 (Wuhan-Hu-1, GenBank: MN908947.3), 
enabling fast development of COVID-19 NAATs. Since then different strains have been sequenced 
many times providing i) a clearer picture of mutations and conserved sites and ii) global evolution of 
different strains. Current NAAT primers and reagents are developed based on this information. NAATs 
offer a high accuracy; after taking samples and transporting them to laboratories, results are typically 
obtained within a couple of hours with a limit of detection down to 0.02 copy/µL (Suo et al., 2020). As 
such, NAATs are recommended for acute disease detection even when the patients have mild or non-
specific symptoms (e.g., fever, cough). A number of different NAATs are available for COVID-19 
diagnosis.  
 
III.A. Sample collection and transport 
Sample collection and storage is an important pre-analytical factor affecting the overall assay 
performance. The US-CDC guidelines list upper and lower respiratory specimens, such as 
nasopharyngeal (NP) or oropharyngeal (OP) swabs, sputum, lower respiratory tract aspirates, 
bronchoalveolar lavage, and nasopharyngeal wash/aspirate or nasal aspirate (CDC, 2020a). Alternative 
sources include saliva (To et al., 2020), anal swabs (Zhang et al., 2020a), urine and stool (Xie et al., 
2020a), tears and conjunctival secretions (Xia et al., 2020). For initial diagnostics, the US-CDC 
recommends collecting an upper respiratory specimen, prioritizing the NP swab, although OP swabs 
remain an acceptable specimen type (CDC, 2020b).  
 
Swabs are the most widely used tools for sample collection and considered as FDA Class I exempt 
medical devices. As for materials, synthetic fiber (e.g., nylon, polyester filaments) swabs with plastic 
shafts should be used. Calcium alginate swabs or swabs with wooden shafts should be avoided 
because they may contain substances that inactivate some viruses and can inhibit PCR testing (CDC, 
2020b). For high viral yields, sample collection with a flocked swab is preferred (Daley et al., 2006). The 
rapid spread of COVID-19, however, has resulted in shortages of NP swabs due to unprecedented high 
demands. Responding this bottleneck, an open-development consortium set to develop 3D-printed NP 
swabs that can be mass-produced (Callahan et al., 2020). The team tested different designs and 
materials and validated promising candidates in clinical trials. These efforts led to FDA registered test 
swabs with superior or equivalent efficacy to flocked swabs (Callahan et al., 2020).  
 
For specimen transport and storage, the swab material should be placed into a sterile tube filled with 
viral transport medium (VTM) and kept refrigerated (2 – 8°C) for up to 72 hours after collection. If a 
delay in testing or shipping is expected, specimens should be stored at -70°C or below. The US-CDC 
and World Health Organization (WHO) recommended VTM is based on Hanks-balanced salt solution 
(HBSS) and contains heat-inactivated fetal bovine serum and antibiotics (gentamycin and amphotericin 
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B). VTM shortage has also been experienced during the COVID-19 pandemic, impairing local and 
regional capacity for diagnosis (Radbel et al., 2020). Radel et al. tested phosphate-buffered saline 
(PBS) as a potential alternative to VTM (Radbel et al., 2020). Using clinical endotracheal secretion 
samples (n = 16), the authors evaluated the stability of the PCR signal from three viral targets (N, 
ORF1ab, and S genes) when samples were stored in these media at room temperature for up to 18 
hours. The test results were similar between PBS and VTM-based storages, that may establish PBS as 
a cost-effective media for short-term preservation of specimens. However, further validations with NS 
swabs are needed.  
 
III.B. COVID-19 RT-PCR test 
Reverse transcription polymerase chain reaction (RT-PCR) was the first method developed for COVID-
19 detection and is the current gold standard (Corman et al., 2020). WHO adopted its version of RT-
PCR test and implemented it in different countries (Sohrabi et al., 2020). In the US, the CDC developed 
its own standards (CDC, 2020a). 
 
RT-PCR assay starts with extracting RNA from clinical specimens. Several commercial kits are 
recommended by US-CDC for this process (Table 3 ). These kits are based on solid-phase extraction 
using silica substrates; negatively charged nucleic acids selectively bind to positively charged silica 
surface in the presence of chaotropic ions. Following wash steps, adsorbed nucleic acids are eluted 
with low salt solution. To remove DNA contamination, the eluate is treated with DNase, followed by 
heat treatment (15 min, 70°C) to inactivate the DNase. Using magnetic beads coated with silica can 
facilitate sample handling, eliminating the need for centrifugation. Several extraction platforms indeed 
employ magnetic actuation for automation of high throughput sample processing (Ali et al., 2017). Next, 
extracted viral RNA is mixed with reagents containing target gene primers, probes, and RT-PCR master 
mix, and amplified. Depending on the probe design, PCR products can be detected during the 
amplification process (quantitative PCR, qPCR) or after its completion.  
 
Analytical accuracy of COVID-19 RT-PCR relies primarily on the primer design. Due to high genomic 
similarity among different coronavirus species, identifying unique gene sequences is important to 
eliminate cross-reactivity. Viral targets are selected from E, N, S, and Orf1ab regions of SARS-CoV-2 
genome (Figure 1b ), and human RNAse P (RP) is used for internal positive control (Jung et al., 2020). 
Table 2  shows selected primer-probe sets announced by WHO. According to the initial comparison of 
these probes, US-CDC 2019-nCoV_N2, 2019-nCoV_N3, and Japanese NIID_2019-nCOV_N primer 
sets were highly sensitive for the N gene and the Chinese-CDC ORF1ab-panel for the ORF1ab gene 
(Jung et al., 2020). The N3 assay manufactured by the US-CDC, however, encountered false positive 
issues and was removed from the US-CDC diagnostic panel in March 2020 (CDC, 2020a). A study by 
the US-CDC showed that removing the N3 assay had negligible effects on sensitivity to detect SARS-
CoV-2 (Lu et al., 2020c). Targeting only N1 and N2 also simplified the overall test, increasing 
throughput and reducing cost (Lu et al., 2020c).  As more commercial and laboratory-developed RT-
PCR tests become available, it is increasingly critical to evaluate their performance using a common 
standard. Foundation for Innovative New Diagnostics (FIND), in partnership with WHO, is now 
conducting independent evaluations of SARS-CoV-2 molecular tests (FIND, 2020).  
 
RT-PCR offers both high accuracy and throughput. The limit of detection (LOD) was reportedly down to 
4-8 copy of virus upon amplification of Orf1ab, E, and N genes at 95% confidence intervals (Xia et al., 
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2020; Han et al., 2020; Zou et al., 2020), and multiple assays can be carried out in a parallel format 
(e.g., 384 well plate). Specificity of a test is enhanced by targeting multiple loci. Indeed, US-CDC 
diagnostic recommends the use of two targets (N1, N2) in N gene and RP as a control; WHO 
recommends E gene assay for first line screening and further confirming positive cases with RdRp 
gene assay. The metric for COVID-19 diagnosis is the cycle threshold (Ct). A Ct value less than 40 is 
clinically reported as PCR positive. Viral RNA loads become detectable as early as day 1 of symptom 
onset and peak within a week. The positivity declines by week 3 and subsequently becomes 
undetectable (Sethuraman et al., 2020). RT-PCR tests are usually performed in centralized laboratories 
due to the requirement of dedicated equipment, trained personnel, and stringent contamination control. 
Establishing efficient logistics for sample transfer and securing reagents are critical to minimize delays 
in assay turnaround. Proper sample preprocessing (e.g., sample collection, RNA extraction) is also key 
to reduce false negatives (Ai et al., 2020; Xie et al., 2020b). 
 
III.C. Digital PCR based SARS-CoV-2 detection 
Digital PCR (dPCR) enables the absolute quantification of target nucleic acids. The method partitions 
samples into large numbers of small (~nanoliters) reaction volumes, ensuring that each partition 
contains a few or no target sequence per Poisson’s statistics (Baker, 2012). Following PCR, 
amplification-positive partitions are counted for quantification. Among various partitioning methods 
(e.g., microwell plates, capillaries, oil emulsion, miniaturized chambers), droplet digital PCR (ddPCR) is 
the most widely used method with commercial systems available (Hindson et al., 2013). ddPCR has 
higher sensitivity (~10-2 copy/µL) than that of conventional PCR, which makes it possible to detect very 
low viral loads. For example, when pharyngeal swab samples from convalescent COVID-19 patients 
were compared, dd-PCR detected viral RNA (Chinese CDC sequences) in 9 out of 14 (64.2%) RT-PCR 
negative samples (Dong et al., 2020). In another ddPCR application, researchers tracked treatment 
progress by analyzing clinical samples collected at different dates. ddPCR reported decrease in viral 
load as treatment proceed, whereas RT-PCR showed sporadic appearance of positive results. Viral 
loads of specimens collected from different locations of the same patient were compared as well: the 
load was the highest in pharyngeal samples, lower in stool samples, and the lowest in serum (Lu et al., 
2020a).  
 
III.D. COVID19-NAATs based on isothermal amplificat ion 
Applying isothermal amplification enabled the development of point-of-care (POC) COVID-19-NAATs. 
This amplification technique uses specialized DNA polymerases with the capacity of strand 
displacement; the polymerases can push their way in and unzip a double-strand DNA as they 
synthesize a complementary strand. Importantly, the reaction takes place at a fixed temperature, 
removing thermal cycling steps and thereby simplifying device design. Various isothermal amplification 
methods have been adapted to detect SARS-CoV-2 RNA targets (Zhang et al., 2020b; Yu et al., 2020; 
Lu et al., 2020b; Zhu et al., 2020). Analytical sensitivities of those isothermal amplification methods 
were shown to be comparable to that of RT-PCR, but with shorter assay time (<1 hour).  
 
Isothermal NAATs have unique applications in point-of-care COVID-19 diagnostics, providing fast 
results without need for specialized equipment (Foo et al., 2020; Yan et al., 2020a). Practical 
considerations however, still position RT-PCR as the principal method: i) RT-PCR has been a gold 
standard over decades and has a well-developed supply chain for reagents and equipment; ii) RT-PCR 
is simpler in the primer design and requires fewer additives, which brings down the cost per test;  iii) in 
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clinical laboratories where large batches of samples are processed, RT-PCR easily makes up for the 
speed advantage of isothermal NAATs; and iv) RT-PCR is license-free with most patents expired, 
whereas major isothermal NAATs are proprietary products. 
 
Loop-mediated isothermal amplification (LAMP)  
LAMP uses 4 or 6 primers, targeting 6-8 regions in the genome, and Bsm DNA polymerase (Notomi et 
al., 2015). As the reaction starts, pairs of primers generate a dumbbell-shaped DNA structure which 
subsequently functions as the LAMP initiator (Figure 2a ). The method can generate ~109 DNA copy 
within an hour and the reaction takes place at constant temperature between 60–65 °C (Ménová et al., 
2013). The enzyme is resistant to inhibitors in complex samples, making it possible to use native 
samples (blood, urine, or saliva) with minimal processing. LAMP reaction produces magnesium 
pyrophosphate as a by-product, which can be exploited for visual readout of the assay using metal-
sensitive indicators or pH-sensitive dyes. FDA-approved LAMP tests are already available for 
Salmonella and Cytomegalovirus detection (Yang et al., 2018; Schnepf et al., 2013). 
 
Designing primer sets is a key challenge when developing COVID19-LAMP assays, as multiple pairs of 
primers are required for a given target sequence and the melting temperature of these primers should 
match with the optimum working temperature of the DNA polymerase (Notomi et al., 2000). Fortunately, 
online software (Primer Explorer V5) is available to facilitate the process (Chemical, 2020). 
 
Most studies reported primer sets targeting regions of SARS-CoV-2 ORF1a and N genes (Yu et al., 
2020; Lu et al., 2020b; Park et al., 2020; Yan et al., 2020a). Using these sets, the typical assay run-time 
was ~1 hour and the limit of detection in the order of 10 copy/µL (Figure 2b ). Zhu et al. reported 
analytical sensitivity of 100% for 33 SARS-CoV-2 positive oropharynx swab samples and 96 SARS-
CoV-2 negative samples (Zhu et al., 2020). Importantly, the entire reaction could be performed in one 
pot (RT-LAMP) by using a master mix containing reverse transcriptase (e.g., NEB WarmStart 
Colorimetric LAMP 2X Master Mix). The total assay time, however, could be >1 hour (90 to 150 min) 
when manual sample handling steps are included (e.g., RNA extraction). Another drawback is the 
difficulty in multiplexing. With each target requiring 4 to 6 primers, increasing target numbers could 
easily complicate the primer design and the chance of primer-primer interactions. 
 
Nicking endonuclease amplification reaction (NEAR) 
NEAR uses both strand-displacement DNA polymerase (e.g., Bst polymerase) and nicking 
endonuclease enzymes to exponentially amplify short oligonucleotides (Wang et al., 2018b). Figure3a  
shows the two-step working mechanism. First, nicking primers (P1, P2), each containing a restriction or 
nicking site, a stabilizing region, and a binding sequence, are mixed with a sample. Primer binding, 
displacement extension, and nicking action produce double-stranded DNA with restriction sites at both 
ends (NEAR amplification duplex; Figure 3a, left ). Next, nicking enzymes cleave the restriction sites of 
the duplex, making two free-ended templates (T1, T2; Figure 3a, right ) that are not stable due to 
elevated temperature (55 °C) and ready to dissociate (Ménová et al., 2013). Each template undergoes 
repeated polymerization and single-strand cleavage, which results in the amplification of products (A1, 
A2). These products also hybridize with primers (A1-P2; A2-P1) and contribute to successive 
amplification in a bidirectional manner until the depletion of reaction mixture components. In this way, 
thousands of copies could be produced from one restriction side, which makes NEAR a unique 
technique with the highest amplification efficiency. However, NEAR is used less frequently than any 
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other isothermal amplification methods mainly due to the formation of non-specific products. These 
products could be extended by polymerase as well and competes with the target sequence (Wang et 
al., 2018b). 
 
Abbott Laboratories adopted the NEAR technique and rolled out a compact, integrated diagnostic 
system, ID NOW (Figure 3b ). The system comes with a convenient cartridge for sample processing. 
Total hands-on time is 2 min and the total assay time <15 min. The company already have ID NOW 
tests for Group A Streptococcus and influenza on the market (Wang et al., 2018a; Nie et al., 2014), 
which helped the rapid introduction of ID NOW COVID-19. The test was designed to detect a sequence 
in RdRp regions of SARS-CoV-2 genome, and the reported limit of detection was 0.125 copy/µL. The 
assay received FDA-EUA for COVID-19 diagnostics. 
 
Recombinase polymerase amplification (RPA) 
RPA borrows its concept from homologous DNA recombination to amplify double-stranded DNA 
(Lobato and O'Sullivan, 2018; Li et al., 2018). In this process (Figure 4a ), primers first bind to 
recombinase to form nucleoprotein filaments. These complexes search for homologous sequences in 
the target DNA and invade the cognate sites. Subsequently, the recombinase disassembles 
nucleoprotein bonded strand and DNA polymerase executes the strand-displacing extension. During 
this process, the displaced strand is stabilized by single-stranded binding proteins, and the released 
recombinases become available to form new nucleoprotein filaments that will be used for further cycles. 
At the end of this process, double-stranded DNA target is exponentially duplicated.  
 
RPA has been widely used for point-of-care infection diagnostics. RPA requires only a pair of primers 
like NEAR but can be carried out at lower temperature (37 – 42 °C) and therefore more suitable for 
one-spot assay design (Ménová et al., 2013). All RPA reagents are commercially available through 
TwistDx™ (a subsidiary of Abbott), even in a lyophilized pellet format. The company also supplies 
probe kits for different detection methods (e.g., gel electrophoresis, real-time fluorescent detection, 
lateral flow strip). Compared to LAMP, RPA is much faster (20 min) but might produce non-specific 
amplification due to simpler primer design. 
 
For COVID-19 detection, Xia et al. designed RPA primers targeting regions of N gene (Xia and Chen, 
2020). Typical RPA reagents were mixed with transcriptase and RNase inhibitor to enable one-spot 
RNA reverse transcription (Figure 4b ). Amplified targets were then detected using commercial 
fluorescent or lateral flow probe kits. The reaction time was about 30 min and the LOD was 0.2 
copy/µL. The results, however, were limited to using synthetic RNA rather than analyzing extracted viral 
RNA samples.  
 
III.E. CRISPR-based detection 
Clustered regularly interspaced short palindromic repeats (CRISPR) systems offer new ways to amplify 
analytical signal with the precision down to single nucleotide variants (Kellner et al., 2019; Gootenberg 
et al., 2017; Aman et al., 2020). Most advanced form of these assays use Cas12a (CRISPR-associated 
protein 12a) or Cas13a (CRISPR-associated protein 13a) enzymes, exploiting collateral cleavage of 
single stranded DNA (Cas12a) or RNA (Cas13a) by these nucleases. In one method, termed 
SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) (Gootenberg et al., 2017), RNA 
targets are first amplified via RT-RPA; and the amplified DNAs are transcribed to target RNA. CRISPR 
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RNA (crRNA)-Cas13a complex then binds and cleaves target RNA. Non-target RNA probes conjugated 
with a fluorescent dye (F) and quencher (Q) pair are also cleaved by the complex to provide a 
fluorescent signal. Similarly, the DETECTR (DNA endonuclease-targeted CRISPR trans reporter) 
method uses a crRNA-Cas12a complex to recognize amplified DNA targets (Chen et al., 2018). Binding 
of the crRNA-Cas12a complex to target DNA induces indiscriminate cleaving of non-target FQ-DNA 
reporters. 
 
Broughton et al. applied the Cas12a method for COVID-19 detection (Figure 5a ). The assay was 
designed to detect regions in E and N genes of SARS-CoV-2, and human RNase P gene as a control. 
Target genes were amplified via RT-LAMP and recognized by crRNA-LbCas12a complex, which cut 
DNA reporter probes (Figure 5b ). Using synthetic in-vitro transcribed (IVT) SARS-CoV-2 RNA gene 
targets, the authors reported the limit of detection of 10 copy/µL. The assay was complete in 45 min 
and the analytical signal was read out with lateral flow strips (Broughton et al., 2020). Metsky et al. 
designed a Cas13-based COVID-19 test (Metsky et al., 2020). The study used machine learning 
algorithms to generate multiplex panels (67 assays) to identify SARS-related coronavirus species. The 
assay amplified target RNA via RT-RPA, which was then transcribed to RNA for recognition by crRNA-
LwaCas13 conjugates.  
 
Several drawbacks, however, limit practical use of these assays. The reported methods still require 
nucleic acid amplification to achieve high sensitivity; CRISPR techniques offer a signal transduction 
mechanism after such amplification. The assays also involve extra hands-on processes. crRNA-Cas 
complexes need to be mixed separately and incubated (30 min, 37 °C) before each test, and amplified 
nucleic acids should be mixed with these complexes. In comparison, most isothermal NAATs for 
COVID-19 already offer one-pot amplification and detection. Overcoming these issues, Joung et al. 
introduced a one-step approach, SHERLOCK Testing in One Pot (STOP), which integrated LAMP 
amplification with CRISPR-mediated detection (Figure 5c ) (Joung et al., 2020). The authors found that 
Cas12b from Alicyclobacillus acidiphilus (AapCas12b) retained sufficient activity in the same 
temperature range of LAMP. They further identified the optimal combination of primers and guide 
sequence, and screened 94 additives to improve thermal stability of the one pot reaction. After the 
assay, the signal was detected with lateral flow reporter devices. The reported LOD was about 2 
copy/µL (N gene) using SARS-CoV-2 genome standards spiked into pooled healthy saliva or 
nasopharyngeal swabs. The assay was validated with clinical nasopharyngeal swab samples (Figure 
5d); STOP correctly diagnosed 12 COVID-19 positive and 5 negative patients out of 3 replicates. The 
assay time was about 70 min using lateral flow readout.  
 
IV. COVID-19 Immunoassays 
Immunoassays detect the presence of virus-specific antigens or antibodies against virus (Figure 6a ). 
While NAATs are ideally suited to diagnose viral infection during its initial phase, immunoassays, 
particularly antibody tests can allow for the detection of ongoing or past infection, promoting the better 
understanding of the transmission dynamics. Immunoassays can also augment NAATs to reduce false-
negative results (Racine and Winslow, 2009; Louie et al., 2004); antigens and antibodies are more 
stable than RNA, therefore less susceptible to degradation during transport and storage.  
 
IV.A. Serologic tests 
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These are typically blood-based tests to detect host-derived antibodies against virus. Previous SARS 
epidemics showed that viral-specific immunoglobulin M (IgM) appear within a week of infection, 
followed by the production of IgG for long-term (~2 years) immunity (Wu et al., 2007). Immunological 
data for COVID-19 have yet to emerge, but a recent study on 214 patients (Hubei, China) indicated a 
similar early pattern: IgM positivity was higher than that of IgG during initial days of disease onset, and 
then dropped in about one month (Liu et al., 2020b). Another study on 238 patients (Hubei, China) 
compared the positive rates of RT-PCR and serologic tests (Figure 6b ) (Liu et al., 2020a). Antibody 
positive rates (IgG, IgM, or both) were 29.4% (5/17) in the first five days of symptom onset, and then 
increased to 81% (17/21) after day 10. Conversely, RT-PCR test had the initial positive rate of 75.9% 
(41/54), which dropped to 64.3% after day 11. These results point to the potential utility of serologic 
tests, not for diagnosing acute COVID-19, but rather as a wide screening tool. For example, by testing 
antibodies among the general public through random sampling (i.e., serosurvey), public health 
agencies can estimate the true size of infection (prevalence) and its fatality rate. Serologic tests could 
also be an assessment tool to decide whether individuals can return to social contacts. 
 
Developing serologic tests critically relies on producing suitable viral antigens or recombinant proteins 
to capture host antibodies. Based on previous data on SARS-CoV, it is likely that S and N proteins 
would be the main immunogens among the four structural proteins (i.e., S, E, M, N proteins) (Okba et 
al., 2020; Meyer et al., 2014), but SARS-CoV-2 antigenic candidates should be evaluated for their 
specificity against most common human coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV-229E, 
HCoV-NL63) and zoonotic ones (SARS-CoV, MERS-CoV). Okba et al. analyzed the similarity of S and 
N proteins among these coronaviruses, and found that S1 subunit in the SARS-CoV-2 S protein has the 
least overlap with other coronaviruses (Figure 6c ) (Okba et al., 2020). The authors further assessed N 
and S1 ELISA using serum samples from healthy donors as well as from patients infected with non-
CoV, HCoV, MERS-CoV, SARS-CoV, or SARS-CoV-2 (Figure 6d ). S1 ELISA showed high specificity 
against healthy, non-CoV, HCoV, and MERS-CoV cohorts, whereas N ELISA was more sensitive in 
detecting antibodies from mild COVID-19 patients. Differentiating SARS-CoV-2 and SARS-CoV 
samples were not possible due to cross-reactivity. However, it was noted that the human population 
with SARS-CoV antibodies is expected to be small: SARS-CoV has not circulated since 2003, and a 
previous study reported the waning of SARS-CoV antibodies to an undetectable level (21 out of 23 
samples) in 6 years after infection (Tang et al., 2011). Considering these results, S1 and N proteins are 
likely the most suitable antigens for COVID-19 serologic tests.  
 
Rapid diagnostic tests (RDTs) 
RDTs are based on host antibody detection on a nitrocellulose membrane. Easy-to-operate and 
portable, these tests are suited for POC analyses of fingerprick blood, saliva, or nasal swab fluids. 
Samples are dropped on a loading pad and transferred via capillary motion. During this flow, antibodies 
in the sample bind to nanoparticles, and the whole complex are captured downstream at designated 
spots on the membrane by anti-human antibodies (Figure 7a ). The final results are usually displayed 
as colored lines for naked eye detection: a control line confirming test reliability, and test line(s) 
indicating the presence of target antibodies. Most assays use gold nanoparticles for signal generation, 
while carbon or colored latex nanoparticles are alternative labelling candidates. 
 
Initial studies reported high analytical sensitivity (86 – 89%) and specificity (84.2 – 98.6%) of RDTs (Liu 
et al., 2020c; Li et al., 2020). Test accuracies, however, vary significantly among different commercial 
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vendors. As more companies are racing to develop serologic RDTs (>100 companies as of May, 2020), 
the need for rigorous vetting is increasing. FDA and FIND are currently conducting independent 
evaluation on selected products (FIND, 2020). 
 
Enzyme-linked immunosorbent assay (ELISA) 
ELISA is a lab-based test with high sensitivity and throughput. It typically uses a multi-well plate coated 
with viral proteins. Blood, plasma or serum samples from patients are introduced to these wells for 
antibody capture and then washed. Subsequently, secondary antibodies labeled with enzymes are 
added, which catalyzes signal generation. The assay format can be adapted for different detection 
modalities, including colorimetric, fluorescent, and electrochemical methods (Figure 6a ). The analytical 
sensitivity is down to picomolar (pM) ranges, and the typical assay time is 2-5 hours (Weissleder et al., 
2020; Younes et al., 2020).  
 
Like COVID-19 RDTs, identifying effective viral antigens is an important factor in ELISA development. 
One study compared three ELISA sets, each using N protein, S1 subunit (S protein), or receptor 
binding domain (RBD; S protein) as a viral antigen (Okba et al., 2020). The RBD and N ELISA tests 
were shown to be more sensitive than S1 ELISA (Okba et al., 2020), but the cohort (n = 3 for COVID-
19 infection) was too limited to draw conclusions. In another study, sera from 214 COVID-19 patients 
were subjected to N and S ELISAs to detect IgG and IgM (Liu et al., 2020a). In this study, S-based 
ELISA showed higher sensitivity than N-based ELISA (Figure 7b ).  
 
Virus neutralization test (VNT) 
VNT is a gold standard to assess whether an individual has active antibodies against a target virus. In 
this assay, serial dilutions of test serum (or plasma) are prepared, typically in a 96 well plate, and 
incubated with a set amount of infectious virus. The mixture is then inoculated on to susceptible cells 
(e.g., VeroE6) and cultured for 2-3 days. The test results are typically read out via microscopy for 
evidence of viral cytopathic effect (CPE); neutralizing antibodies would block virus replication to let cells 
grow. Plaque reduction neutralization test (PRNT) as a type of VNT is used for counting of plaque 
forming units on the agar or carboxymethyl cellulose coated cell layer, while focus reduction 
neutralization test (FRNT) relies on immunocolourimetric-based analysis for calculating neutralizing 
antibody titers. Mehul et al. compared the efficiency of PRNT and FRNT assays for RBD-specific IgG 
responses that COVID-19 patients developed 6 days after the PCR diagnosis and found a strong 
correlation between those tests (Suthar et al., 2020). In another study, Wang et al. used PRNT to 
evaluate the human monoclonal antibody, 47D11, that binds to S-RBD and can neutralize both SARS-
CoV-2 and SARS-CoV (Wang et al., 2020). Although highly specific, VNT is time-intensive and require 
specialty laboratories (e.g., biosafety level 3 facilities for COVID-19). As such, these tests are primarily 
used for vaccine and therapeutic developments.  
 
Several groups have developed pseudovirus-based neutralization assays (PBNAs) via pseudovirus 
(PSV) as a safer (biosafety level 2) surrogate to SARS-CoV-2 virus (Nie et al., 2020; Wu et al., 2020). 
Wu et al. generated PSV by incorporating SARS-CoV-2 S protein into the envelop of vesicular 
stomatitis virus pseudotypes. These PSVs were used for VNTs with plasma samples from recovered 
COVID-19 patients (Wu et al., 2020). Convalescent plasma from COVID-19 patients inhibited SARS-
CoV-2 infection (Figure 7c ) and did not cross-react with SARS-CoV pseudovirus. The study also 
showed that titers of neutralizing antibodies reached their peak at 10 to 15 days after disease onset and 
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remained stable thereafter. Interestingly, about 30% of recovered patients (n = 175) showed low levels 
of neutralizing antibodies; this observation may have implications when applying and interpreting 
serologic tests to detect past COVID-19 infection.  
 
IV.B. Antigen detection assay 
This assay detects the presence of viral proteins (antigens) through a conventional immuno-capture 
format (Figure 6a ). Viral antigens can be detected when the virus is actively replicating, which makes 
this assay type highly specific. The assay, however, has a suboptimal sensitivity, generally requiring 
sufficient antigen concentrations in samples. Data from influenza antigen tests (Bruning et al., 2017) 
showed the sensitivity of 61% and the specificity 98%. Potential use of antigen assays thus could be a 
triage test to rapidly identify patients who are likely to have COVID-19, reducing or eliminating the need 
for lengthy molecular confirmatory tests. Monoclonal antibodies against the N protein of SARS-CoV-2 
have been generated, and several rapid test kits are under development (Cheng et al., 2020). 
 
 
V. Future developments 
Aggressive testing and isolation measures have started blunting the first wave of COVID-19. From 
these experiences, lessons are emerging for new diagnostics and surveillance policies that will better 
prepare us for the potential next waves (Fineberg, 2020). For the diagnostic aspect, we identify the 
following needs to be addressed. 
 
Reducing sampling errors. Most current NAATs have analytical sensitivities and specificities around 
95% or higher under ideal circumstances and when performed by skilled operators. Yet, in clinical 
practice, the sensitivity drops precipitously to 60–70% (Ai et al., 2020; Lassaunière et al., 2020), 
necessitating re-testing that cause loss of valuable time in symptomatic patients (Weissleder et al., 
2020). The likely reason for this discrepancy is swabbing efficiency of nasopharyngeal, oral, sputum 
and bronchial samples. Some countries have instituted dual testing of nasopharyngeal and 
sputum/throat samples to increase the accuracy. Systematic research is needed to evaluate the 
efficacy of the swab material and RNA yields.  
 
Developing fast, cost-effective antigen tests. There is a need to develop rapid, antigen-based 
COVID-19 tests for a number of reasons, one of them being to reduce the complexities of lengthy RT-
PCR. The development of NAATs was a reasonable emergency decision, considering NAATs’ high 
analytical sensitivity and the short lead-time in assay development. But NAATs are generally process-
intensive, susceptible to contamination, and expensive. Antigen-based tests, on the other hand, could 
be a niche tool for cost-effective POC diagnosis at primary care settings. Such systems have already 
been developed for influenza (CDC, 2020c). For example, the rapid influenza diagnostic tests (RIDTs), 
which detect the presence of influenza A and B viral nucleoprotein antigens, can identify flu patients 
with high specificity. RIDT-positive patients can receive necessary care after this quick (<20 min) test, 
and only negative samples need to be routed for laboratory molecular analyses. With effective COVID-
19 antigen tests, a similar triaging strategy can be implemented to ease the demand for molecular 
tests.      
 
Establishing effective serologic tests. As we transition to the flattening phase of COVID-19, the need 
for serologic tests will increase. Individuals, who have recovered from the disease or been 
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asymptomatic, can use these tests to make informed decision on social activities; population-wide 
serologic screening will allow governments to learn the true extent of infections. A major issue with 
current serological tests is their high variability (Lassaunière et al., 2020), and often low sensitivity and 
specificity. Comparison of different test kits, virtually all based on lateral flow assay format, has shown 
that some perform much better (Whitman et al., 2020), which is presumably due to affinity reagents 
used. Identifying and synthesizing most immunogenic, high-affinity viral antigens is a critical step to 
improve diagnostic accuracy. Equally important is to conduct interference challenges to check how 
drugs, medications, and coagulation status affect serological testing outcomes. 
 
Serial tracking with digital health. Infection with SARS-CoV-2 is highly dynamic with viral titers and 
antibody levels changing over time in asymptomatic and symptomatic patients. Serial testing is 
necessary to identify patients before irreversible complications occur as well as to confirm full recovery. 
Accumulated data will further inform the duration of SARS-CoV-2 immunity as well as help us setting 
cutoffs for antibody positivity. We envision that integrating POC tests with digital networks will facilitate 
implementing such tasks. Patients at home, for example, can log in their test results and symptoms, 
and receive telemedicine feedback, which would be a cost-effective, safer caring model for stable or 
recovering patients. Digital services will also allow public health agencies to gather data from large 
population to track disease transmission in realtime.  
 
Setting up global standards. New COVID-19 tests are approved based on their analytical validity, 
with sensitivity and specificity measured on manufacturers’ own artificial samples. However, significant 
performance deviations have been reported from independent testings (FIND, 2020). This situation 
demands developing global reference standards (e.g., pseudovirus, viral nucleic acids, viral antigen, 
antibodies)to enable objective inter-test comparison. Also necessary is to establish guidelines (e.g., 
sensor specifications, cost, accuracy) per different test purpose, for example, diagnosing acute 
infections in hospitals or long-term care facilities, at-home monitoring, and population survey. These 
efforts will provide benefits to both clinical and research communities, motivating technical innovations. 
 
New biosensors. We should accelerate the development of new diagnostic methods. In particular, 
novel transducer technologies, such as nanoplasmonics, ion-gate transistors, and optical resonators, 
have exquisite sensitivities and potentially enable direct viral detection. Several exciting systems have 
already been reported; a graphene-based transistor with the LOD of 2.4 × 102 viruses/mL (Seo et al., 
2020); and a plasmonic photothermal sensor that detected the RdRp target down to 0.22 pM (Qiu et al., 
2020). Pursuing these approaches would be critical to transcending current NAATs and realizing rapid, 
on-site diagnostics.     
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Figure captions 

Figure 1. SARS-CoV-2 virus and COVID-19. (a) The virus is enveloped and spherical (~120 nm in diameter), 
with petal-shaped surface spikes (~20 nm long). Key structural proteins, spike (S), envelope (E), and membrane 
(M), are anchored on the viral envelop. The nucleocapsid (N) protein, together with the genomic RNA, forms a 
helical nucleocapsid inside the envelop. The virus enters host cells through the binding of S protein to 
angiotensin-converting enzyme 2 (ACE2) on the cell surface. (b) SARS-CoV-2 virus contains a positive-sense, 
single-stranded RNA genome. The organization of genome is 5′-leader-UTR (untranslated region)-replicase-S-E-
M-N-3′-UTR-poly (A) tail. The open reading frame (ORF) 1a and 1b encode the replicase. Location of target 
genes for select COVID-19 RT-PCR tests are shown. Many tests target N gene, because sequence conservation 
of this gene within the coronavirus genus is low. (c) COVID-19 patients display symptoms similar to those of 
common cold and influenza, and in some cases are asymptomatic. Diagnostics must be confirmed through highly 
specific molecular tests. US-CDC, United States Center for Disease Control and Prevention; C-CDC, Chinese 
Center for Disease Control and Prevention; HKU, Hong Kong University; NIID, National Institute of Infectious 
Diseases (Japan). (a) Adapted with permission from Ref. (Graham et al., 2013). Copyright 2013 Nature Publishing 
Group. (b) Adapted with permission from Ref. (Jung et al., 2020). 

Figure 2. LAMP-based COVID-19 test. (a) LAMP mechanism. (i) The reaction mix contains dNTPs, DNA 
polymerase with high‐ displacement activity, and pairs of primers (F1-F1c; F2-F2c; F3-F3c; B1-B1c; B2-B2c; B3-
B3c). Forward inner primer (FIP) binds to the F2c region in the target and is extended. F3 primer also hybridizes 
to the F3c region and is extended, displacing the FIP-linked complementary strand. (ii) The displaced single-
stranded DNA serves as a template for extension reactions by backward inner primer (BIP) and B3 primer. (iii) 
The BIP-linked DNA self-anneals and forms a dumbbell-like structure that initiates subsequent rounds of 
amplification. FIP binds and opens up the loop at the 3’-end converting the dumbbell shape into a stem-loop 
structure through its extension towards 5’ end. (iv) The extended strand from (iii) forms a new loop and serves as 
a template for BIP binding and extension. Both of these products become the seed for the exponential 
amplification. (b) RT-LAMP based detection of ORF1ab gene. The amplification process monitored via 
turbidimeter readings at 650 nm or visual observation of calcein-mediated color change from orange to green. The 
target concentration is inversely proportional to detection time and the color change. Reproduced with permission 
from Ref. (Yan et al., 2020a). Copyright 2020 European Society of Clinical Microbiology and Infectious Diseases. 

Figure 3. NEAR-based COVID-19 test. (a) Left, NEAR duplex formation. (i) The reverse primer (P1) binds to the 
target region and is extended. (ii) A second P1 binds to the same target and is extended, displacing the first 
extended strand. (iii) Primer P2 binds to the released strand and is extended, creating a double-stranded nicking 
enzyme recognition site. (iv) Nicking enzyme (indicated by scissors) binds and nicks the downstream of the 
recognition sequence. (v) Polymerase synthesizes complementary sequence off the cleaved site. (vi) The final 
product is a double-stranded DNA with restriction sites at both ends. Right, exponential amplification. (vii) Nicking 
enzyme binds and nicks the NEAR duplex at both restriction sides, making two templates (T1, T2). (viii) Free ends 
of templates are extended. (ix) Repeated nicking and polymerization steps start. (x) Cleaved complexes are 
regenerated while amplified products (A1, A2) anneal to primers (P2, P1), resulting in bidirectional extension and 
creating duplexes. (b) ID NOW™ COVID-19 system by Abbott. Disposable tools (left) minimize hands-on 
processes. Patient swap (nasal, nasopharyngeal or throat) is eluted in the sample receiver containing elution/lysis 
buffer. After 10 sec mixing, the mixture is manually transferred to the test base holder (via transfer cartridge) that 
contains lyophilized NEAR agents. Heating, agitation, and detection by fluorescence are performed automatically 
by the instrument. The assay detects SARS-CoV-2 RdRp gene. Adapted with permission from Ref. (Nie et al., 
2014). Copyright 2014, American Society for Microbiology.  

Figure 4. RPA-based COVID-19 test. (a) RPA mechanism. RPA reaction mix contains recombinase, primers, 
loading factors, and single-stranded binding proteins. (i) The recombinase binds to primers in the presence of 
loading factors, forming nucleoprotein filaments. (ii) This complex binds to complementary sequences in the target 
DNA, forming D-loop structure, and initiates strand exchange. Single stranded binding proteins stabilize the 
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displaced DNA stands. (iii) Recombinase disassembles from the nucleoprotein filament to be re-used for 
subsequent amplification cycles. (iv) DNA polymerase extend primers, separating parallel strands to form 
duplexes. Repeated cycle of this process enables exponential amplification. (b) RT-RPA assay developed for 
COVID-19 diagnostics. Extracted RNA sample is mixed with RT-RPA reaction mixture. RPA activator (Mg2+) is 
loaded inside the lid of the vial. RT is performed at 37 °C (1 min) and then the vial is spun to introduce Mg2+ into 
the reaction mixture. The reaction vial is heated to 40 °C (4 min) for initial RPA activation. After shake and spin, 
the reaction is let to proceed for additional 26 min at 40 °C. The reaction product is then detected via green 
fluorescence excited by blue light. Reproduced with permission from Ref. (Xia and Chen, 2020) 

Figure 5. CRISPR-based COVID-19 test.  (a) Schematic of DETECTR coupled with lateral flow readout. RNA 
targets extracted from nasopharyngeal swabs are amplified by RT-LAMP. Cas12a complexes, pre-incubated with 
guide RNAs (gRNAs), recognize target DNA and cleave single-stranded DNA (ssDNA) probes for signal 
generation. (b) The intact ddDNA reporters are captured on the control line, whereas the cleaved reporter on the 
test line. Lateral flow results for the DETECTR are shown for N gene at 0 and 10 copy/µL. (c) Schematic of 
SHERLOCK Testing in One Pot (STOP) test. A nasopharyngeal swab or saliva is transferred to the lysis buffer. 
Lysate is then added to SHERLOCK master mix, and the mixture is heated for 60 min at 60 °C. Test results are 
read out using lateral flow strips (2 min). (d) Nasopharyngeal swab samples from COVID-19 patients and controls 
were analyzed by STOP. The assay made correct diagnosis of these samples. (a, b) Adapted with permission 
from Ref. (Broughton et al., 2020). Copyright 2020 Nature Publishing Group. (c, d) Adapted with permission from 
Ref. (Joung et al., 2020). 

Figure 6. Immunoassay design for COVID-19 detection . (a) Principles of different types of immunoassays. 
Antigen tests directly capture viral proteins or the whole virus, whereas in antibody tests, viral antibodies (e.g., 
IgG, IgM) generated from host immune response are captured by synthetic viral antigens or anti-human 
antibodies. Both tests use a reporter probe for signal generation. Virus neutralization tests check whether a 
specimen contain effective antibodies that can prevent viral infection on cells. (b) Positive rates of viral RNA and 
antibodies (IgG or IgM) were detected in 238 COVID-19 patients who were at different disease stages. Note that 
the antibody positive rates were low in the first five days after initial onset of symptoms, and then rapidly 
increased as the disease progressed. Adapted with permission from Ref. (Liu et al., 2020a). (c) Similarity of 
coronavirus S and N proteins. Protein domains from different coronaviruses were compared to those of SARS-
CoV-2 (top row, 100% concordance). S1 and S2 are subunits of S. Note that S1 has the least degree of similarity. 
(d) Evaluation of S1 ELISA. SARS-CoV-2 S1 protein was used as a capture agent. Serum samples from healthy 
donors and patients either with non-CoV respiratory, HCoV, MERS-CoV, SARS-CoV, or SARS-CoV-2 infections 
were analyzed. S1ELISA showed no cross-reactivity with non-SARS serum samples. The dotted horizontal line 
indicates ELISA cutoff values, and the sample numbers are inside shaded rectangles. OD, optical density. (c, d) 
Adapted from Ref. (Okba et al., 2020). 

Figure 7. Examples of COVID-19 immunoassays.  (a) Schematic of a rapid detection test (RDT) device. The 
sample, dropped on a loading pad, flows through the device via capillary effect and wet colloidal gold 
nanoparticles (AuNPs) loaded in the conjugation pad. AuNPs tagged with viral antigen bind to IgM and IgG 
antibodies, and the complexes are captured in the downstream by pre-spotted anti-human IgM and IgG 
antibodies. AuNP conjugated with non-human IgG antibodies are captured by appropriate antibodies to generate 
a control signal. (b) Two types of ELISA were compared. One used recombinant SARS-CoV-2 N protein as a 
capture antigen (N-ELISA) and the other recombinant SARS-CoV-2 S protein (S-ELISA). Serum samples from 
214 COVID-19 were tested. Overall, S-ELISA showed higher detection rate than N-ELISA. (c) Plasma samples 
from patients (n = 5) who recovered from COVID-19 were used for virus neutralization tests. In a concentration-
dependent manner, all five plasma inhibited the infection of 293T/ACE2 cells by SARS-CoV-2 pseudo virus. 
Plasma from a healthy donor was used as a negative control. The median percentage of neutralization is shown 
from duplicate measurements. (b) Adapted with permission from Ref. (Liu et al., 2020b). Copyright 2020 American 
Society for Microbiology. (c) Reproduced with permission from Ref. (Wu et al., 2020).  
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Table 1. Comparison of diagnostic tests of COVID-19 . 

Intended use  Methods  Description  Operating 
temperature  

Analytical 
sensitivity  Specificity  Assay  

time  Ref. 

 • Detecting viral 
RNA (N, E, 
Orf1ab) 

 • COVID-19 
molecular 
diagnostics, 
particularly at 
early stage 

RT-qPCR  • Regular PCR 

 • Gold standard 
Thermal cycling: 0.14 copy/µL 96 – 100% 2-4 hrs  (Corman et al., 

2020) 

dd-PCR 
 • Droplet digital 

PCR 

 • Highest sensitivity 

Thermal cycling: 0.02 copy/µL 94.9% 1 hr (Suo et al., 
2020) 

RT-LAMP 
 • Isothermal 

 • >4 pairs of 
primers 

60 – 65 °C 4.8 copy/µL 99% 15-60 
min 

 (Zhang et al., 
2020b) 

RT-RPA 
 • Isothermal 

 • Using 
recombinase 

37 – 42 °C 0.2 copy/µL NA 30 min  (Xia and Chen, 
2020) 

RT-NEAR 
 • Isothermal 

 • Using nicking 
endonuclease  

55 – 59 °C 0.13 copy/µL 100% <15 min  (Abbott, 2020) 

DETECTR 
 • RT-LAMP 

(amplification) 

 • CRISPR/Cas12 
(detection) 

62 °C for RT-
LAMP 

37 °C for 
LbCas12a  

10 copy/μL PPV: 95% 
NPV: 100% 30 min (Broughton et 

al., 2020) 

STOP 
 • RT-LAMP 

(amplification) 

 • CRISPR/Cas12 
(detection) 

60 °C for RT-
LAMP 

60 °C for 
AapCas12b 

2 copy/μL 100% 70 min (Joung et al., 
2020) 

 • Detecting viral 
antigens 

 • Potential for 
patient 
triaging 

ELISA 

 • Immunoassay 
for virus 

 • Lower 
sensitivity than 
PCR 

Ambient 100 pg/mL 99.3% 3-5 hrs (Freeman et al., 
2020) 

 • Detecting 
antibodies 
developed by 
hosts 

 • Applications in 
immunity 
check and 
serosurvey 

RDT 
 • Immunoassay 

for IgG and IgM 

 • Lateral flow 
device 

Ambient Qualitative 84.2 – 100% <15 min  (Liu et al., 
2020c) 

ELISA 
 • Micro-well plate 

 • Fluorescent or 
chromogenic 

Ambient 100 pg/mL 67 – 98.6% 3-5 hrs (SinoBiological, 
2020) 

Neutralization 
test 

 • Detecting active 
antibodies 

 • Checking 
seroconversion 

Ambient 0.22 copy/µL 100%  2-3 
days 

(Tan et al., 
2020) 

 

RT, reverse transcription; PCR, polymerase chain reaction; qPCR, quantitative PCR; dd-PCR, digital droplet PCR; 
LAMP, loop mediated isothermal amplification; RPA, recombinase polymerase amplification; NEAR, nicking 
endonuclease amplification reaction; DETECTR, DNA endonuclease-targeted CRISPR transreporter; STOP, ; 
NA, not available for clinical samples; PPV, positive predictive value; NPV, negative predictive value; ELISA, 
enzyme linked immunoabsorbent assay; RDT, rapid diagnostic test.   
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Table 2. Primers and probes for RT-PCR COVID-19 dia gnostics. 

Target  Country  Name Type Sequence  (5’ → 3’) 
N US-CDC 2019-nCoV_N1-F F GAC CCC AAA ATC AGC GAA AT 

2019-nCoV_N1-R R TCT GGT TAC TGC CAG TTG AAT CTG 
2019-nCoV_N1-P  P ACC CCG CAT TAC GTT TGG TGG ACC 
2019-nCoV_N2-F F TTA CAA ACA TTG GCC GCA AA 
2019-nCoV_N2-R R GCG CGA CAT TCC GAA GAA 
2019-nCoV_N2-P P ACA ATT TGC CCC CAG CGC TTC AG 
2019-nCoV_N3-F F GGG AGC CTT GAA TAC ACC AAA A 
2019-nCoV_N3-R R TGT AGC ACG ATT GCA GCA TTG 
2019-nCoV_N3-P P AYC ACA TTG GCA CCC GCA ATC CTG 

Charité 
Germany 

N_Sarbeco_F F CAC ATT GGC ACC CGC AAT C 
N_Sarbeco_R R GAG GAA CGA GAA GAG GCT TG 
N_Sarbeco_P P ACT TCC TCA AGG AAC AAC ATT GCC A 

Chinese-CDC CCDC-N-F F GGG GAA CTT CTC CTG CTA GAA T 
CCDC-N-R R CAG ACA TTT TGC TCT CAA GCT G 
CCDC-N-P P TTG CTG CTG CTT GAC AGA TT 

Hong Kong 
University 

HKU-N-F F TAA TCA GAC AAG GAA CTG ATT A 
HKU-N-R R CGA AGG TGT GAC TTC CAT G 
HKU-N-P P GCA AAT TGT GCA ATT TGC GG 

NIID Japan NIID_2019-nCOV_N_F2 F AAA TTT TGG GGA CCA GGA AC 
NIID_2019-nCOV_N_R2 R TGG CAG CTG TGT AGG TCA AC 
NIID_2019-nCOV_N_P2 P ATG TCG CGC ATT GGC ATG GA 

E Charité 
Germany 

E_Sarbeco_F1 F ACA GGT ACG TTA ATA GTT AAT AGC GT 
E_Sarbeco_R2 R ATA TTG CAG CAG TAC GCA CAC A 
E_Sarbeco_P1 P ACA CTA GCC ATC CTT ACT GCG CTT CG 

RdRp Charité 
Germany 

RdRp_SARSr-F F GTG ARA TGG TCA TGT GTG GCG G 
RdRp_SARSr-R R CAR ATG TTA AAS ACA CTA TTA GCA TA 
RdRp_SARSr-P2 P CAG GTG GAA CCT CAT CAG GAG ATG C 

ORF1 Chinese-CDC CCDC-ORF1-F F CCC TGT GGG TTT TAC ACT TAA 
CCDC-ORF1-R R ACG ATT GTG CAT CAG CTG A 
CCDC-ORF1-P P CCG TCT GCG GTA TGT GGA AAG GTT ATG G 

Hong Kong 
University 

HKU-ORF1-F F TGG GGY TTT ACR GGT AAC CT 
HKU-ORF1-R R AAC RCG CTT AAC AAA GCA CTC  
HKU-ORF1-P P TAG TTG TGA TGC WAT CAT GAC TAG 

RNAse P 
(control) 

US-CDC RP-F F AGA TTT GGA CCT GCG AGC G 
RP-R R GAG CGG CTG TCT CCA CAA GT 
RP-P P TTC TGA CCT GAA GGC TCT GCG CG 
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Table 3. Commercial RNA extraction kits.  

Manufacturer and kit name  Catalog No.  

QIAGEN 

QIAmp DSP Viral RNA Mini Kit 50 extractions (61904) 

QIAamp Viral RNA Mini Kit 50 extractions (52904); 250 extractions (52906) 

EZ1 Advanced XL DSP Virus Kit 
48 extractions (62724) 
Buffer AVL (19073) 
EZ1 Advanced XL DSP Virus Card (9018703) 

EZ1 Advanced XL Virus Mini Kit v2.0 
48 extractions (955134) 
Buffer AVL (19073) 
EZ1 Advanced XL Virus Card v2.0 (9018708) 

QIAcube QIAamp DSP Viral RNA Mini Kit 50 extractions (61904) 

QIAcube QIAamp Viral RNA Mini Kit 50 extractions (52904); 250 extractions (52906) 

Roche 

MagNA Pure LC  
Total Nucleic Acid Kit 192 extractions (03 038 505 001) 

MagNA Pure Compact  
Nucleic Acid Isolation Kit I 32 extractions (03 730 964 001) 

MagNA Pure 96  
DNA and Viral NA Small Volume Kit 

576 extractions (06 543 588 001) 
External Lysis Buffer (06 374 913 001) 

bioMérieux  

NucliSENS easyMAG Instrument 
EMAG Instrument  
 
Automated magnetic extraction system 
Reagents sold separately. Both instruments 
use the same reagents and disposables, with 
the exception of tips. 

EasyMAG Magnetic Silica (280133)  
EasyMAG Lysis Buffer (280134)  
EasyMAG Lysis Buffer, 2 mL (200292)  
EasyMAG Wash Buffers 1, 2, 3 (280130, 280131, 280132) 
EasyMAG Disposables (280135)  
Biohit Pipette Tips (easyMAG only) (280146) 
EMAG1000μL Tips (418922) 
EasyMAG Disposables (280135)  
Biohit Pipette Tips (easyMAG only) (280146) 
EMAG1000μL Tips (418922) 

 

 

 

















 

 

Highlights 
 

 • COVID-19 pandemic highlights the importance of fast, accurate diagnostics.   

 • Molecular test are gold standard for initial COVID-19 confirmation.  

 • Immunoassays provide complementary information on ongoing and past infection. 

 • New innovations are emerging for faster, point-of-care COVID-19 detection. 


