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Antibody drug conjugates (ADCs), normally composed of a humanized antibody and
small molecular drugs via chemical linkers, represent arapidly growing field for
cancer therapy. In thisreview, we provide an overview of ADCs in preclinical and
clinical development, as well as future directions of ADCs.
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Abstract Antibody drug conjugates (ADCs) normally compode ao humanized
antibody and small molecular druga a chemical linker. After decades of preclinical
and clinical studies, a series of ADCs have beettelyi used for treating specific
tumor types in the clinic such as brentuximab viedgAdcetris’) for relapsed
Hodgkin’s lymphoma and systemic anaplastic largk lgenphoma, gemtuzumab
ozogamicin (Mylotar§) for acute myeloid leukemia, ado-trastuzumab esit&n

(Kadcyld®) for HER2-positive metastatic breast cancer, imotnab ozogamicin



(Besponsd) and most recently polatuzumab vedotin-piiq (Rdljv for B cell
malignancies. More than eighty ADCs have been inyated in different clinical
stages from approximately six hundred clinicall$ri@ date. This review summarizes
the key elements of ADCs and highlights recent adea of ADCs, as well as
important lessons learned from clinical data, arndre directions.

KEY WORDS Antibody drug conjugates; Antibody; Cytotoxic atgnLinker;
Clinical application

1. Introduction
Chemotherapy is one of the major treatment optfonsancer theragy Although a
number of chemotherapy drugs have been widely usélde clinic, serious hurdles
still remain such as adverse effects and drugtessi€. Extensive efforts have been
made to increase the efficacy of cytotoxic drugschsas combining different
chemotherapeutic drugs and using highly potent tageach as auristatin and
maytansin&>. However, systemic toxicity and narrow therapeutiodow limit their
clinical usé. The advances of monoclonal antibody provide opities to use their
specific binding property for targeted drug delifeBased on this concept, antibody
drug conjugates (ADCs) are designed and developedugh conjugation of
antibodies and cytotoxic drugs in the past decadss illustrated in Fig. 1, ADCs
selectively bind to the receptors of tumor celldfter that, the receptor—ADC
complex is usually internalized through the endosy pathway. The linker is
cleaved, and cytotoxic drugs are released. Consdlgjuthese drugs induce cytotoxic
effects through various mechanisms of action schirding to the minor groove of
deoxyribonucleic acid (DNA) or interacting with wim?®,
Insert Fig. 1

In the firstigeneration ADCs such as BR96-doxorubicin and KS1/4—
methotrexate, chemotherapy drugs are usually catgdgto murine antibodiesa a
non-cleavable linkér®>. However, these ADCs are generally less potem fhee
drugs®. Then, researchers developed gemtuzumab ozogaf@EM with improved
efficacy, because GO is consisted of a potent luedimicin derivative and a
humanized antibody to reduce immunogentféityet, GO has several disadvantages,
including an instable linker, high percentage otamjugated antibody, poor CMC
(chemistry, manufacturing, and control) properties, well as high toxicif*>
Limitations of the first-generation ADCs lead toetidevelopment of the secand



generation ADCs. The monoclonal antibody (mAb) metbgy has been established
with high tumor cell targetirig Furthermore, many potent chemotherapy drugs have
been discoveréd” Therefore, compared with the firsjeneration ADCs, the
second/generation ADCs showed better CMC characteristidSor instance,
brentuximab vedotin, addrastuzumab emtansine and inotuzumab ozogamicin are
typical secondgeneration ADCs on the mark®t Drawbacks of the second
generation ADCs include offtarget toxicity, fast clearance, and competitiorthwi
unconjugated antibodigs The lessons learned from the previous ADCs expetie
development of the thirdgeneration ADCs. Sitespecific conjugation has been
created in the design of ADCs, which could resulhdmogeneous ADCs with drug—
antibody ratio (DAR) of 2 or 4, as well as improyatarmacokinetics.

In this review article, we will discuss the keyrakents of ADCs, overview their
preclinical and clinical development, as well asifa directions of ADCs.
2. Key dementsin antibody drug conjugates
21. Antigen selection
The selection of an appropriate antigen is one hef major challenges in the
development of ADCs. Three aspects should be cereidin antigen selection. (i)
High-level expression in tumors while low-level eggsion in healthy tissues. For
example, ado-trastuzumab emtansine targets humdereyal growth factor receptor
2 (HER2), whose expression reaches the level 062iiltumor cells compared with
2x10% in healthy cell¥. (i) Target antigens express on the tumor ceflase, so that
they can be accessible to the antibddgiii) The rate of internalization and route of
intracellular trafficking®>*"*® It is worth mentioning that non-internalized AD€Easn
also display therapeutic effects through a strofyystander effect”, that is,
membrane-permeable drugs are able to induce cat de the neighboring celfs
2.2.  Antibody selection
ADCs are composed of three parts, including angbablug and linker. To design
effective ADCs, all three components are esseatidlimportant (Fig. %).
Insert Fig. 2

Among them, antibodies with a molecular weight imfusnd 150 kDa are a major
component on ADCS. Besides target specificity, antibodies also neetind with
suitable affinity, thereby increasing accumulataond retention in tumor sitésMost

ADCs have binding affinities witKp values ranging from 0.1 to 1.0 nmol/L. Of note,



previous studies reported that if the binding aiffins too high, the delivery of the
antibody in solid tumors may be affected, whicha#ied the binding-site barrfér®
Most antibodies used in the clinic are selectedhffuman immunoglobulin G
(IgG), about 150 kDa consisted of two heavy and light chaing*?> Nowadays,
there are many ongoing studies for the use of adilderived from 1gGS. Generally,
antibody derivatives can be classified as antigedibg fragments (Fab), single-
chain variable fragments (scFv) and variable domafWHH, also named as
nanobodiegf*® Fab and scFv include both the heavy and lightalorof the parental
lgGs, and retain the size and affinity of the armling the antigett. Because of the
smaller size compared with regular 19gGs, they siowroved pharmacokinetics for
tumor penetratioff. The nanobodies do not have CH1 domain but possdesg
complementary determining region 3 (CDE3which display high stability because
of their resistance to denaturing fact8réloreover, the nanobodies are smaller than
the filtration size of kidney, thereby they are eted through the kidneys with a
higher clearance and relatively lower toxi6i§’. For example, Ploegh and co-
workers conjugated a nanobody with oligoglycine-ified cytotoxic payloads,
which exhibited higher specificity and cytotoxicitpwards tumor cells compared
with traditional ADC&".
2.3.  Chemotherapy drugs
Several criteria are important for choosing sugatthemotherapy drugs. First, these
drugs display high cytotoxicity to tumor cells (nally half maximal inhibitory
concentration (1) in the nanomolar and picomolar rarmj€)*” Because only nearly
2% of the injected ADCs will distribute into tumaoafter intravenous administration,
thereby resulting in low intracellular concentras¥. Second, these drugs have a
functional group or can be derived to be conjugatéti the antibody. Third, these
drugs are stable in physiological conditi&hdherefore, a relatively small number of
cytotoxic drug families are used in current climicals. Most of them are derivatives
of auristatins or maytansine, which are both midvate inhibitord**® Others are
DNA damaging drugs including: (i) drugs inducingubite-strand DNA breake(g.,
calicheamiciny® (i) drugs alkylating DNA €.g., duocarmyciny; and (i) drugs
crosslinking with DNA €.g., pyrrolobenzodiazepine dimet$)Several representative
cytotoxic drugs are discussed in this section.
2.3.1. Aurigtatin



Auristatin derivatives, including monomethyl anaogionomethyl auristatin E/F
(MMAE and MMAF), are the largest class of ADCs ifinical developmerit.
MMAE and MMAF are both derived from dolastatin M@hich is isolated from sea
hare®* Dolastatin 10 is highly toxic to both tumors amehlthy tissues, which leads
to its failure in clinical trials’. However, its derivatives MMAE and MMAF are
presently used as cytotoxic drugs in ADCs. MMAE gmammeate cell membranes,
thereby displaying the bystander effect. In contreBVIAF is more hydrophilic and
cannot permeate cell membranes. The lack of bystagftect makes MMAF derived
ADCs less efficient compared with MMAE derived ADCBleanwhile, MMAF
derived ADCs are relatively less to¥ic In 2015, the U.S. Food and Drug
Administration (FDA) approved brentuximab vedotnMMAE conjugate, to treat
Hodgkin lymphoma and anaplastic large cell lymphBimia 2019, another MMAE
derived ADC, polatuzumab vedotin-piig, was approtedreat relapsed or refractory
diffuse large B-cell lymphonfa

2.3.2. Maytansionids

Other kinds of ADCs in clinical development are idatives of maytansine
(maytansinoids, DMs). Maytansine is a natural pobdsolated from African shrub
Maytenus ovatus, whose mechanism is to disrupt microtubule polyragior.
Meanwhile, maytansine is one of the first cytotoadfags that have a picomolarsiC
value to tumor celfS. However, due to its systemic toxicity, maytansiaéso failed
in clinical trials'®. Incorporation of maytansine derivatives into AD§lgnificantly
improved its therapeutic ind&x In 2013, ado-trastuzumab emtansine, a DM1 derived
ADC, was approved by FDA to treat HER-2-positive taséatic breast cancer.
Additionally, two more maytansine derivatives, DMihd DM4-based ADCs are
presently in clinical triaf&.

2.3.3. Calicheamicins

Calicheamicins that are isolated from the actinasbgvlicromonospora echinospora
can induce DNA double-strand cleavage through bopdo the minor groove of
DNA*®. Calicheamicins were among the first DNA damagiinggs incorporated in
ADCs, but their narrow therapeutic windows and @aesiside effects limited their
clinical application¥. These shortcomings have now been largely overdmmoause
of the advances of ADCs technologies especially ltheer chemistry and the
optimization of dosing approaches. Two of the fMBCs on market, gemtuzumab

ozogamicin (GO) and inotuzumab ozogamicin (InO, @alicheamicin derived ADCs.



GO is the first ADC drug on market to treat acutgehoid leukemia. However, GO
was withdrawn from the US and European markets usecaf its adverse effeéts
After dose fractionation, in which patients receilieee doses of 3 mgin®O instead
of one dose of 9 mg/MGO, FDA re-approved GO in 2017 In addition, InO was
approved by FDA in 2017 to treat B cell acute lymwiplastic leukemia and other B
cell malignancie¥.
24. Linkers
An effective linker needs to be stable during dmtion because the release of drugs
in the blood stream will affect ADCs’ pharmacokiost thus leading to toxicity and
lower therapeutic indé%>> Once the ADCs are internalized into tumor cefte
linker needs to be cleaved, rapidly releasing drtfy©ne critical factor that should
be taken into consideration is the DAR. Too fewgdmolecules on each antibody
result in decreased efficacy, while excessive DARIead to poor pharmacokinetics
of ADCs because of higher hydrophobicity and lowetubility***® It has been
reported that the DAR of most clinical trials AD& in the range of 2.0-4%0

Linkers used in typical ADCs can be dividedoimoncleavable and cleavable
linkers'. Noncleavable linkers usually rely on the lysosbdegradation to release the
cytotoxic drugs which are attached to the linked @m amino acid residue of the
antibody>® For example, brentuximab vedotin was designegstoa noncleavable
linker (succinimidyltrans-4-(maleimidylmethyl) cyclohexane-1-carboxylate, G®I)
to crosslink the maytansinoid to the HER2 antibddy

The structure of cleavable linkers includepasition of cleavage between the
antibody and the drdgUsually, based on the cleavage mechanisms, déaiiakers
can be classified into three groups. (i) Acid sevesj such as hydrazone linkers, that
are cleaved in the lysosome because of low pH enwient. For example, the
hydrazone linker is used in both GO and InO. Initald although acid cleavable
linkers are designed for maintaining stability dgricirculation and release drugs in
the acidic environment, it has been reported tltad aleavable linkers could be
associated with nonspecific release of the dfligs) Lysosomal protease sensitive,
such as valine—alanine and valine—citrulline peptithkers, that are designed to
release drugs after cleavage by intracellular ps®s. For example, cathepsin B, a
lysosomal protease, cleaves the dipeptide bondhéntamor cells. In addition, a
cathepsin B-sensitive dipeptide linkage (valingudline) is used in brentuximab

vedotin. (iii) Redox sensitive, such as disulfideeérs, that takes advantage of higher



glutathione concentration in tumor microenvironnéit Optimizing the steric
hindrance of disulfide bridges can decrease premattug releasé For example,
this method is applied in the case of anetumalarsute and coltuximab ravtansine
using a disulfide linkeN-hydroxysuccinimidyl-4-(2-pyridyldithio) butanoa(S§PDB)

to crosslink DM4.

3. Site-specific conjugation

As previously described, a suitable DAR is impotrtemthe design of ADCs. Site
specific conjugation can produce consistent geroeratf relatively homogeneous
ADCs products without altering the antigen bindiaffinity. Three strategies are
mainly used for sitespecific conjugation on the antibody: (i) enginekecgsteine®”

%2 (ii) enzymatic conjugatiofi§ and (iii) incorporation of unnatural amino aéit®.

3.1. Engineered cysteine

The thiol group in the cysteine side chain can $eduor site-specific modification,
because of its high nucleophilicity. Companies sashGenentech, Seattle Genetics,
Pfizer have developed different ADCs with engindecgsteine¥®”. These ADCs
have a uniform DAR of 2 or 4. Furthermore, ADCs stomcted by this method
showed encouragintp vivo results, including higher efficacy and better tatem
compared with conventional AD&s For example, vadastuximab talirine which
consists of anti-CD33 antibodies with  engineered st@pes and
pyrrolobenzodiazepine (PBD) dimer through a clebatipeptide linker (valine-
alanine), is the first ADC with site-specific cogtiort®.

3.2. Enzymatic conjugations

Several enzymes such as the bacterial derived foghygine generating enzyme
(FGE), transglutaminases, glycotransferases andasss have been used for
conjugating the antibodi&s The reaction sites of antibodies are designeteat
specifically to the corresponding functional groupbherefore, the enzymatic
conjugation method leads to site-specific conjugatnd homogeneous DARs. For
example, SMARTag is a technology that uses FGE. FGE can inseratfifbody
after a sequence of specific amino acid is recaghiZhen, the cysteine is converted
into formylglycin€®. Finally, the engineered antibody can be selelstiseacted with
aldehyde-specific drugsia the reaction based on the hydrazino-Pictet—Spengler
ligation’®.

3.3. Incorporation of unnatural amino acid



Incorporation of unnatural amino acids (UAAs) whifoorthogonal groups are also
used on site-specific conjugation. The most commethod of UAAS incorporation
is to engineer transfer RNA (tRNA) synthetases maabgnize UAAS, thus resulting
the genetic coding of the UAAS For instance, Tian et &l.reported a site-specific
ADC using UAAs. Compared to traditional cystein@jogated ADCs, this ADC may
possess better selectivity and efficacy bithitro andin vivo™. Yet, the UAAs-
based methodology needs special techniques ancentsador preparation and
manufacturing’.

4. Preclinical development of antibody drug conjugates

In current clinical trials, calicheamicins, auristaand maytansinoid are the most
commonly used cytotoxic drugs in ADCs. Meanwhikyeral other types of drugs are
in the stage of preclinical development, such ascranibule inhibitor§’,
anthracyclineS and amatoxir’§.

4.1. Microtubule inhibitors

The approval of ADCs based on auristatin and maytaid accelerates the
development of new microtubule inhibitors drugsbilysins, a series of peptidic
compounds, are representative examples. Tubulyasiaesoriginally isolated from
myxobacteria and show potent inhibition throughulirb polymerizatiod’. Among
different types of tubulysins, tubulysin D is theosh effective one with cytotoxic
activity in the range of picomolar in various tunueil lines®. In 2014, Cohen et &'.
developed ADCs that are consisted of trastuzumabtlaa stable tubulysin analogs
TubJOH or Tub JOMOM. Both**!-labeled and unlabeled versions of the tubulysins
are conjugated to the surface lysines through @laamableN[hydroxysuccinimide
linker. These ADCs showed favorable therapeutieatfhothin vitro andin vivo’.

4.2. Anthracyclines

Recent studies on anthracyclines such as nemomnulaicd its major metabolite,
PNU[1159682, indicate that these agents might overcohe limitations of
doxorubicin such as drug resistance and cardiaicitpX. Furthermore, compared
with doxorubicin, PNUI159682 showed 3 orders of magnitude more cytotoxic
activity against different tumor cell lines incladi doxorubicin resistant celfs These
features are associated with tight and stable bgedof PNU-159682 to DNA Yu et
al.”® conjugated PNU-159682 to anti-CD22 antibody thiowgmaleimidocaproyl-
valine-citrullinep-aminobenzoyloxycarbonyl (mc-vc-PAB) and diethylamilinker.

This ADC is 2-20 folds more effective than pinatoab vedotinin vitro and



displays therapeutic effects in four types of xemafigtumors. Furthermore, it may
overcome the drug resistance induced by the p-ghpteirf?.

4.3. Amatoxins

Amatoxins are a class of peptide toxins!Amanitin, a representative example was
originally isolated from the amanita phalloides tma®m and was found to be an
inhibitor of the eukaryotic RNA polymeraséeflinducing transcriptional arrest and
leading to tumor cells dedth Moldenhauer et & conjugatedalamanitin to
chiHEA125 (a chimerized anti-human epithelial callhesion molecule monoclonal
antibody)via a glutarate linker. This ADC has a picomolagd@alue in Colo205 and
MCF[17 tumor cell&*. Moreover, it also displayed tumor inhibition in BxPc-3
pancreatic xenograft modél

5. Antibody drug conjugatesin clinical trials

ADCs have become an important class of anti-cadcegs, with a dramatically
increasing number of ADCs in clinical studies fating hematologic malignancies
and solid tumors over the past 5 yéard Table 1 lists the approved ADCs. Four of
these ADCs are designed to treat hematologic meliges, in which the target
antigens are more accessible for circulating AD@wsared to solid tumots Table

2 lists the ADCs presently in phase Il or phaseclitical studies. A mass of ADCs
are in phase | clinical trials, which are not ltsteere. The clinical results of ADCs
that are approved or in phase Il clinical triate &urther discussed in this section.
Insert Tables1 and 2

5.1. Gemtuzumab ozogamicin

Gemtuzumab ozogamicin (GO; Mylot&rdrig. 3A) is the first ADC approved by the
FDA®. GOis consisted of a CD33 monoclonal antibody andchatimicinvia a
cleavable hydrazone [ink&r In 2000, Based on three phase Il trials, GO vetki
accelerated approval for treating patients agedréDolder with CD33-positive acute
myeloid leukemia (AML) who are unable to use othgtotoxic chemotherafy’.
The overall response rates (ORR) of GO were 26%—320f the side effects
contained hepatic veno-occlusive disease and d&lagenatopoietic recovety?®
Meanwhile, one phase Il trial (NCT00085709) testhd addition of GO during
induction therapy in patients under the age 61 ramdignificant benefit of GO was
observelf’. Moreover, toxic effects were observed includirpatotoxicity, infusion
reactions and pulmonary toxicity These clinical results lead to Pfizer's voluntary

withdrawal of GO in 2010 After dose optimization (patients receive threse$ of 3



mg/nm? GO instead of one dose of 9 m§/BO before), FDA re-approved GO in
2017,

Insert Fig. 3

5.2. Brentuximab vedotin

The second ADC approved by the FDA is brentuximediotin (BV; Adcetri§, Fig.
3B)*, which is made by conjugation of MMAE and an a&@B30 antibody through a
proteaselcleavable dipeptide link&: Because of the results of phase Il trials, 75%
ORR in relapsed Hodgkin’s lymphofiaand 86% ORR in systemic anaplastic large
cell lymphom&*, BV received accelerated approval in 2011. Adversents mainly
contained neuropathy, neutropenia, anemia and thwoptopenid>® Among them,
neuropathy was the most frequent adverse eventhwiappened in patients treated
with BV>’. According to the encouraging results of the phéistial (AETHERA,
NCT01100502) that investigated the utilization of Bs consolidation treatment in
Hodgkin’s lymphoma, BV received the full approvald0152,

5.3. Ado-trastuzumab emtansine

Ado-trastuzumab emtansine (T-DM1; Kad&l&ig. 3C) is the third ADC on market
introduced in 201%. T-DM1 is consisted of maytansinoid DM1 and théi-&fER2
antibody*. T-DM1 received approval according to the phadetrial (EMILIA,
NCT00829166}** In T-DM1 arm, the median duration of progressie survival
(PFS) was 9.6 months and in active comparatorptééian duration of PFS was 6.4
months P<0.001%*. The overall survival (OS), which is 30.9 montesus 25.1
months P<0.001), and the ORR, which is 43.6%érsus 30.8% P<0.001) also
supported the T-DM1 over comparaforFurthermore, the overall rate of adverse
events was lower in the T-DM1 arm (40.8%) thanhi@a tomparator arm (57.0%), as
well as the rate of serious adverse events (1565%0s 18.0%§*.

5.4. Inotuzumab ozogamicin

Inotuzumab ozogamicin (InO; Bespofis&ig. 3D) is the fourth approved ADC drug
introduced in 201%. InO is composed of calicheamicin derivative amel anti-CD22
antibody through a cleavable hydrazone linkemO received the FDA approval
according to the results of phase IlI trial (INO-VB, NCT015647845. In this trial,
acute lymphocytic leukemia patients were randomiaad treated with InO or a
defined investigator’s choit® The complete remission was 80.7% in the InO esm
29.4% in the comparator arrP<0.001). In the InO arm, the PFS was 5.0 months,

while only 1.7 months in the comparator arfx0.001>°® Several other phase I



studies are currently ongoing including the comtiama with frontline therapy
(NCT03150693) and post-induction chemotherapy (NE9B3085).

5.5. Polatuzumab vedotin-piiq

The most recent ADC on market (in June 2019) ispaLimab vedotin-piiq (Poliy
Fig. 3E), prepared by conjugation of MMAE to ani&@iD79b antibody through a
protease/cleavable dipeptide link&t According to the results of the phase Ib/II
G029365 study (NCT02257567), polatuzumab vedotigEceived the accelerated
approvai®. In this trial, large B-cell lymphoma patients weandomized and treated
with polatuzumab vedotin plus bendamustine andiritab (BR) or BR alon®. The
complete response rate was 40% in polatuzumab iveglis BR arm, compared to
18% in BR alone arffi. Objective response rate was 45% in the polatuburadotin
plus BR arm, compared to 18% in the BR alone®arm

5.6. Roval pituzumab tesirine

Rovalpituzumab tesirine (Rova-T) is an ADC thatizes a cleavable dipeptide linker
for conjugating PBD dimer to the anti-delta-likeof@in 3 (DLL3) antibody’. In a
phase | trial (NCT01901653), dose escalation tégptharmacokinetics, safety and
preliminary efficacy of Rova-T were evaluated icugent small cell lung cancer
patient$®®°* The maximum tolerated dose (MTD) was 0.4 mg/kg ORR was
17%, the duration of response (DOR) was 2.89 motthiesclinical benefit rate (CBR)
was 58%, the PFS was 2.79 months and the OS wasnbiiths®. Until now, two
phase Il studies about Rova-T are active includihg comparison study with
topotecan (NCT03061812) and a maintenance treatfoergmall cell lung cancer
(NCT03033511).

5.7. Mirvetuximab soravtansine

Mirvetuximab soravtansine comprises an anti-foleeeptor alpha (F&) antibody
conjugating to DM4 through a cleavable disulfidekér® In a phase | trial, activity
and safety of mirvetuximab soravtansine were eveatian ovarian or peritoneal
cancer patient§® The confirmed ORR was 26%, the median PFS wamdrghs and
the median DOR was 19.1 weé&Ks Especially, for the patients who received 3 or
fewer prior lines of treatment, the ORR, PFS andRDfere 39%, 6.7 months and
19.6 weeks respectivefli. Furthermore, the adverse events including fati@ds),
nausea (37%), blurred vision (41%) and diarrhe&yere mainly grade 1 or'%.
Currently, one phase Il study is active to compatith investigator’s choice of
chemotherapy (NCT02631876).



5.8. Depatuxizumab mafodotin

Depatuxizumab mafodotin is prepared by conjugabbRMAF to an anti-epidermal
growth factor receptor (EGFR) antibody through a-oteavable linkéf*. In a phase

| study (NCT01800695), pharmacokinetics, effect asafety of depatuxizumab
mafodotin plus temozolomide were evaluated in péiewith glioblastoma
multiforme'®. The most frequent adverse events were photoph@5i%), fatigue
(38%) and blurred vision (6398f. The 6-month OS rate was 69.1%, the 6-month
PFS rate was 25.2% and the ORR was 1#3%ased on the encouraging results, a
phase Il trial (NCT02343406) and a phase Il flCT02573324) are ongoing to test
the therapeutic effect in newly diagnosed or resnirglioblastoma.

5.9. Sacituzumab govitecan

Sacituzumab govitecan is consisted of an anti-tuasspciated calcium signal
transducer 2 (Trop-2) antibody and the SNv&8 an acid-labile ester link&f. A
phase I/l trial (NCT01631552) showed that the raadPFS was 5.5 months, the
response rate was 33.3%, the CBR was 45.4%, themBdDR was 7.7 months, and
the OS was 13.0 mont?s Besides, frequent grade3 adverse events included
anemia and neutropenfa Furthermore, two phase IlI trial are currentlytiae to
cure triple-negative breast cancer (NCT02574458) AR /HERZ2 metastatic breast
cancer (NCT03901339).

6. Challengesfor clinical applications of ADCs

The approval of GO, BV, T-DM1, InO and polatuzumadmotin-piiq have boosted
the quantity of ADCs in clinical trials. Up to nownore than 80 ADCs were
examined in a wide variety of clinical tridf& However, the clinical trials for
approximately 55 ADCs have been termin&t&drhere are many challenges for the
clinical applications of ADCs, among which toxidesfts are most formidabfe'®®
The toxicity of ADCs is mainly caused by the chehasapeutic druds For example,
MMAE conjugated drugs induces neutropenia and pergd neuropathy, MMAF
causes ocular toxicities and thrombocytopenia; D&associated with neutropenia,
gastrointestinal effects and thrombocytopenia, DiMdinly causes ocular toxicity;
calicheamicin conjugated drugs suggest thromboeytiapand hepatic dysfunction as
frequent toxicity”. There are several approaches to decrease tdeitteefThe most
practical method is to tune the dosing regifférFor instance, after a phase Ill trial

with fractionated dosing, the FDA re-approved &G @\nother way to maximize the



therapeutic index is to use biomarkers to seleetrtght patient populatidf**°

monitor response signals in early stig&" or guide the combination therdp¥y**3

Another challenge is the specificity of antibodtésBased on the rationale,
target antigens need to express high levels in tsnand minimal expression in
healthy tissues, thus making the target antigerotespecifi¢>. However, most tumor
antigens also express in normal tissues, which smmakégens tumor-associated rather
than tumor-specifit”. For example, the major toxicity of SGN-15 (alswown as
BR-96 doxorubicin), which is consisted of doxorubiand anti-Lewis Yantibody, is
hemorrhagic gastritl$®. The primary cause of hemorrhagic gastritis isekpression
of Lewis Y antigen in the gastric mucosa cefls Another example is the
bivatuzumab mertansine, which target the CD44v6gant® In a phase | trial
(NCT02254018), fatal exfoliate of skin toxicity wasbserved because the target
antigen was also expressed in the deep layersmof-Sk

Lastly, current preclinical models cannot predidD@s’ activity in human
patient$'® Although a large number of ADCs show therapebgaefits in rodent
tumor models, many of them are not effective in thaic. One reason is the
difference between rodent and human antiféngo solve this challenge, it is
essential to comprehensively characterize humaigeantand carefully select its
corresponding antibod¥;
7. Futuredirections of antibody drug conjugates
ADCs represent a rapidly increasing field in candkerapy. Various ADCs
technologies developed over the past decade hawatedr a large variety of
possibilities for designing new ADEs For instance, promising antigen targets are
uncovered for both solid and hematologic tumdr® Plenty of highly potent drugs
have been discovered including microtubule inhisitanthracyclines and amatoxins,
which may become important complements of aurissagind maytansinoifs’®2°:
New generation linkers have been characterizedrderoto improve therapeutic
window of ADCg3*°%119121 putyre directions include bispecific ADCs thae ar
designed to increase both potency and select¢it§” or deliver multiple classes of
payload$®. Furthermore, the combination strategies are ntlgrexplored in many
clinical trials, such as combining with checkpoimthibitors (NCT02605915,
NCT01896999, NCT02581631, NCT02684292, and NCT0267p and traditional
chemotherapies (NCT03959085, NCT03187210, NCT01406d4nd NCT01771107).



Although there remain many obstacles to overconexeldpment of new ADCs

provides tremendous opportunities for future cat@&atment.
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Figure captions
Figure 1 lllustration of action mechanism of antibody drug conjugates (ADCs).

Figure 2 Rational design of ADCs components™.
Figure 3 Structures of (A) gemtuzumab ozogamicin, (B) brentuximab vedotin, (C)
ado-trastuzumab emtansine, (D) inotuzumab ozogamicin, and (E) polatuzumab

vedotin-piig.



Tables

Table 1 Marketed antibody drug conjugates (ADCSs).

ADC Target Linker Cytotoxin Developer  Indication(s) Phase
antigen

Gemtuzumab CD33 Cleavable Calicheamicin Pfizer Acute myeloid leukemia FDA  approved in

0zogamicin hydrazone 2000; withdrawn in
2010; reapproved in
2017

Brentuximab CD30 Cleavable MMAE Sedttle Hodgkin lymphoma, FDA accelerated

vedotin dipeptide Geneticy systemic  anaplastic approva in 2011,

Takeda large cell lymphoma full approval in 2015

o-Trastuzumab HER?2 Noncleavable DM1 Genentech/ HER2-positive  breast FDA approved in 2013

emtansine (SMCC) Roche cancer

Inotuzumab CD22 Cleavable Calicheamicin Pfizer Acute lymphoblastic FDA approved in 2017

ozogamicin hydrazone leukemia

Polatuzumab CD7% Cleavable MMAE Genentech/ Relapsed or refractory FDA accelerated

vedotin-piiq dipeptide Roche diffuse large B-cell approval in 2019

lymphoma




Table 2 Antibody drug conjugates (ADCs) in phase |11 and phase |1 development.

ADC Target Linker Cytotoxin Developer Indication(s) Phase NCT number
antigen
Roval pituzumab DLL3 Cleavable PBD AbbVie Small-cell lung cancer 1 NCT03061812
tesirine dipeptide dimer (Stemcentrx) (ongoing)
NCT03033511
(ongoing)
Mirvetuximab FOLR1 Cleavable DM4 ImmunoGen Ovarian, endometrial, Il NCT02631876
soravtansine disulfide non-small cell lung (ongoing)
cancer
Depatuxizumab EGFR Noncleavable  MMAF  AbbVie Glioblastoma and other Il NCT02573324
mafodotin (mc) EGFR-positive tumors (ongoing)
Sacituzumab Trop-2 Acid-labile SN-38 Immunomedics Triple-negative breast Il NCT02574455
govitecan ester cancer, urothelia and (ongoing)
other cancers NCT03901339

(ongoing)



Naratuximab

emtansine

Lorvotuzumab

mertansine

Coltuximab

ravtansine

Indatuximab

ravtansine

Anetumab

ravtansine

CD37

CD56

CD19

CD138

Mesothelin

Noncleavable
(SMCC)

Cleavable
disulfide

Cleavable
disulfide

Cleavable
disulfide

Cleavable
disulfide

DM1

DM1

DM4

DM4

DM4

ImmunoGen

ImmunoGen

ImmunoGen

Biotest

Bayer Health Care

Diffuse

lymphoma and

large B cell

follicular lymphoma

Leukemia
Diffuse large B cell
lymphoma, acute

lymphocytic leukaemia

Multiple myeloma

Mesothelioma and other

solid tumors

NCT01534715
(ongoing)

NCT01237678
(compl eted)

NCT01472887
(completed)
NCT01440179
(terminated)
NCT01470456
(completed)

NCT01638936
(compl eted)
NCT01001442
(completed)

NCT03926143

(ongoing)
NCT03023722



SARS566658

Glembatumumab
vedotin

PSMA ADC

Pinatuzumab
vedotin

CAG6

gpNMB

PSMA

CD22

Cleavable
disulfide

Cleavable
dipeptide

Cleavable
dipeptide

Cleavable
dipeptide

DM4

MMAE

MMAE

MMAE

Sanofi

Celldex

Progenics/Seattle
Genetics

Genentech/Roche

Triple-negative breast

cancer

Metastatic breast cancer

and melanoma

Prostate cancer

Diffuse  large  B-cell
lymphoma,  follicular
non-Hodgkin

lymphoma

(ongoing)
NCT02839681
(terminated)

NCT02984683
(compl eted)

NCT01997333
(completed)
NCT02302339
(terminated)

NCT02020135
(completed)
NCT01695044
(compl eted)

NCT01691898
(completed)



Telisotuzumab
vedotin

SGN-LIV1A

AGS-16C3F

ABT-700

LIV-1

ENPP3

Cleavable
dipeptide

Cleavable
dipeptide

Noncleavable

(me)

MMAE

MMAE

MMAF

AbbVie/Piere
Fabre

Seattle Genetics

Agensys/Astellas

Advanced solid tumors |l
cancer and non-small

cell lung cancer

Breast cancer, lung cancer |1

Renal cell carcinoma [

NCT02099058
(ongoing)

NCT01042379

(ongoing)
NCT03310957

(ongoing)
NCT04032704

(ongoing)
NCT02639182
(ongoing)




Antibody drug
conjugates

Cytotoxic
drugs

6]
OOO DNA strand breakage or

microtubule disruption



Site-specific conjugation Non-specific conjugation
1. Engineered cysteine through lysine or cysteine
2. Enzymatic conjugations residues

. Incorporation of UAAs

(Antibody |

Target microtubules
Noncleavable 1. Auristatin derivatives
Lysosomal degradation 2. Maytansinoids
to release drugs 3. Tubulysins
Linker\ - Drugs
Cleavable Q Q
1. Acid sensitive Target DNA
2. Lysosome protease 1. Calicheamicins analogs
sensitive Q Q 2. Duocarmycin analogs

3. Redox sensitive
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Gemtuzumab ozogamicin (GO; Mylotarg®) Brentuximab vedotin (BV; Adcetris®)

Ado-trastuzumab emtansine (T-DM1, Kadcyla®) Inotuzumab ozogamicin (InO, Besponsa®)
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Polatuzumab vedotin-piiq (Polivy®)



