Publicación:
Early network properties of the COVID-19 pandemic – The Chinese scenario

Cargando...
Miniatura

Fecha

Director de trabajo de grado

Título de la revista

Abrir versión en línea

ISSN de la revista

Título del volumen

Editor

Science Direct
Documentos PDF

Proyectos de investigación

Unidades organizativas

Número de la revista

Resumen

Objectives: To control epidemics, sites more affected by mortality should be identified. Methods: Defining epidemic nodes as areas that included both most fatalities per time unit and connections, such as highways, geo-temporal Chinese data on the COVID-19 epidemic were investigated with linear, logarithmic, power, growth, exponential, and logistic regression models. A z-test compared the slopes observed. Results: Twenty provinces suspected to act as epidemic nodes were empirically investigated. Five provinces displayed synchronicity, long-distance connections, directionality and assortativity – network properties that helped discriminate epidemic nodes. The rank I node included most fatalities and was activated first. Fewer deaths were reported, later, by rank II and III nodes, while the data from rank I–III nodes exhibited slopes, the data from the remaining provinces did not. The power curve was the best fitting model for all slopes. Because all pairs (rank I vs. rank II, rank I vs. rank III, and rank II vs. rank III) of epidemic nodes differed statistically, rank I–III epidemic nodes were geo-temporally and statistically distinguishable. Conclusions: The geo-temporal progression of epidemics seems to be highly structured. Epidemic network properties can distinguish regions that differ in mortality. This real-time geo-referenced analysis can inform both decision-makers and clinicians.

Descripción

Palabras clave

Network-theory, Smallworld, COVID-19, Interdisciplinary, Geo-referenced

Citación

Aprobación

Revisión

Complementado por

Referenciado por