Show simple item record

dc.contributor.advisorRodríguez Montana, Alejandra
dc.coverage.spatialBogotá D.C., Colombiaspa
dc.creatorNavarrete López, Stephania
dc.date.accessioned2020-03-27T18:57:31Z
dc.date.available2020-03-27T18:57:31Z
dc.date.created2019
dc.identifier.urihttp://hdl.handle.net/20.500.12010/8417
dc.description.abstractLa radiación solar, principalmente, los rayos UVA y UVB son una de las principales causas de cáncer en la piel, comúnmente, las cremas con protección solar usan moléculas inorgánicas como el TiO2, sin embargo, por su actividad fotocatalítica muestra producción de especies reactivas de hidrogeno (ROS), lo cual puede producir daños en la piel. En este trabajo se planteó estudiar el rendimiento de las nanopartículas de TiO2 en términos de su toxicidad in vitro, siendo sintetizada para aumentar la pureza del compuesto, para establecer una morfología y un tamaño similar al usado dermatológicamente. Para este fin, las partículas de TiO2 se sintetizaron por un método hidrotérmico, caracterizado por microscopía electrónica de barrido (SEM) y espectroscopía de difracción de rayos X (EDS), donde se verificó la pureza de las nanopartículas y su aspecto morfológico. Se realizó un análisis microbiológico in vitro para establecer la actividad antimicrobiana de las nanopartículas de TiO2 sobre Serratia marcescens y Escherichia coli.spa
dc.format.extent12 páginasspa
dc.format.mimetypeimage/jepgspa
dc.language.isospaspa
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.subjectHidrotermalspa
dc.subjectTinción de Gramspa
dc.subjectMicroemulsiónspa
dc.titleActividad antimicrobiana de nanopartículas de TiO2 en Serratia Marcescens y Eschericia Colispa
dc.type.localTrabajo de gradospa
dc.subject.lembQuímica, Ingenieríaspa
dc.subject.lembQuímicaspa
dc.subject.lembSoluciones (Química)spa
dc.subject.lembIngeniería química -- Trabajos de gradospa
dc.subject.lembEmulsionesspa
dc.subject.lembMateriales nanoestructuradosspa
dc.subject.lembNanopartículasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.localAbierto (Texto Completo)spa
dc.subject.keywordNanoparticlesspa
dc.publisher.programIngeniería Químicaspa
dc.relation.referencesAdams, L. K., Lyon, D. Y., McIntosh, A., & Alvarez, P. J. J. (2006). Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Science and Technology, 54(11–12), 327–334. https://doi.org/10.2166/wst.2006.891spa
dc.relation.referencesArora, S., Rajwade, J. M., & Paknikar, K. M. (2012). Nanotoxicology and in vitro studies: The need of the hour. Toxicology and Applied Pharmacology. https://doi.org/10.1016/j.taap.2011.11.010spa
dc.relation.referencesCelorrio, M. C., Méndez, A. L., & Portero, R. V. (2010). Nanotecnología en Medicina. Nanotecnología En Medicina.spa
dc.relation.referencesDíaz, J. (2015). Reglamentación en nanocosmética_ un paso.spa
dc.relation.referencesEmerich, D. F., & Thanos, C. G. (2003). Nanotechnology and medicine. Expert Opinion on Biological Therapy, 3(4), 655–663. https://doi.org/10.1517/14712598.3.4.655spa
dc.relation.referencesHosseinzadeh, S., Baharifar, H., & Amani, A. (2017). Efficacy of a Model Nano-TiO2 Sunscreen Preparation as a Function of Ingredients Concentration and Ultrasonication Treatment. Pharmaceutical Sciences, 23(2), 129–135. https://doi.org/10.15171/ps.2017.19spa
dc.relation.referencesHoudy, P. (2013). Nanoethics and Nanotoxicology.spa
dc.relation.referencesIlyas, H., Qazi, I. A., Asgar, W., Awan, M. A., & Khan, Z. U. D. (2011). Photocatalytic degradation of nitro and chlorophenols using doped and undoped titanium dioxide nanoparticles. Journal of Nanomaterials, 2011(May 2014). https://doi.org/10.1155/2011/589185spa
dc.relation.referencesKomastu, H., & Ogasawara, A. (2005). Applying Nanotechnology to Electronics- Recent Progress in Si-LSIs to Extend Nano-Scale-. Science And Technology Trends, 36–45. Retrieved from http://www.nistep.go.jp/achiev/ftx/eng/stfc/stt016e/qr16pdf/STTqr1603.pdfspa
dc.relation.referencesLi, G. L., & Wang, G. H. (1999). Synthesis of nanometer-sized TiO 2 particles by a microemulsion method. Nanostructured Materials, 11(5), 663–668. https://doi.org/10.1016/S0965-9773(99)00354-2spa
dc.relation.referencesMalato, S. (2004). Propiedades coloidales de partículas de TiO2: Aplicación al tratamiento fotocatalítico solar de aguas. Libro. Editorial CIEMAT, (ISBN: 84- 7834-467-5), 1–293.spa
dc.relation.referencesMicrobiologyInfo.com. (2018). Mueller Hinton Agar (MHA) – Composition, Principle, Uses and Preparation. MicrobiologyInfo.Com. Retrieved from https://microbiologyinfo.com/mueller-hinton-agar-mha-composition-principleuses- and-preparation/spa
dc.relation.referencesMorlando, A., Sencadas, V., Cardillo, D., & Konstantinov, K. (2018). Suppression of the photocatalytic activity of TiO 2 nanoparticles encapsulated by chitosan through a spray-drying method with potential for use in sunblocking applications. Powder Technology, 329, 252–259. https://doi.org/10.1016/j.powtec.2018.01.057spa
dc.relation.referencesPanawala, L. (2017). Difference Between Gram Positive and Gram Negative Bacteria Stunning images of cells Discover how scientists use Main Difference – Gram Positive vs Gram Negative Bacteria. Pediaa, (April), 13.spa
dc.relation.referencesPodporska-carroll, J., Panaitescu, E., Quilty, B., Wang, L., Menon, L., & Pillai, S. C. (2015). Applied Catalysis B : Environmental Antimicrobial properties of highly efficient photocatalytic TiO 2 nanotubes. “Applied Catalysis B, Environmental,” 176–177, 70–75. https://doi.org/10.1016/j.apcatb.2015.03.029spa
dc.relation.referencesPress, D. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens : focus on their safety and effectiveness, 95–112.spa
dc.relation.referencesQuintana, M. J. (2015). Nanomateriales.spa
dc.relation.referencesRen, G., Hu, D., Cheng, E. W. C., Vargas-Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004spa
dc.relation.referencesSozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82–89. https://doi.org/10.1016/j.tibtech.2008.10.010spa
dc.relation.referencesThongpool, V., Phunpueok, A., Jaiyen, S., Thanyaburi, T., Physics, M., & Thanyaburi, T. (2018). PREPARATION , CHARACTERISATION AND PHOTOCATALYTIC where C 0 and C t are MB concentration at initial and anytime respectively and parameters A 0 and A t are absorbance of the MB solutions in the 663 nm wavelength at initial and any time respectively ., 13(2), 499–504.spa
dc.relation.referencesTian, J., Chen, L., Yin, Y., Wang, X., Dai, J., Zhu, Z., … Wu, P. (2009). Surface & Coatings Technology Photocatalyst of TiO 2 / ZnO nano composite fi lm : Preparation , characterization , and photodegradation activity of methyl orange. Surface & Coatings Technology, 204(1–2), 205–214. https://doi.org/10.1016/j.surfcoat.2009.07.008spa
dc.relation.referencesYuenyongsuwan, J., Nithiyakorn, N., & Sabkird, P. (2018). Surfactant effect on phase-controlled synthesis and photocatalyst property of TiO 2 nanoparticles.spa
dc.relation.referencesMaterials Chemistry and Physics, 214, 330–336. https://doi.org/10.1016/j.matchemphys.2018.04.111spa
dc.description.rdaRequerimientos de sistema: Adobe Acrobat Readerspa
dc.description.abstractenglishSolar radiation, mainly, UVA and UVB rays are one of the main causes of cancer in the skin, sunscreen creams commonly use inorganic molecules such as TiO2, however, due to their photocatalytic activity shows production of reactive species of hydrogen (ROS), which can cause skin damage. In this work, it was proposed to study the performance of TiO2 nanoparticles in terms of their in vitro toxicity, being synthesized to increase the purity of the compound, to establish a morphology and size similar to that used dermatologically. For this purpose, the TiO2 particles were synthesized by a hydrothermal method, characterized by scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (EDS), where the purity of the nanoparticles and their morphological appearance were verified. An in vitro microbiological analysis was carried out to establish the antimicrobial activity of the TiO2 nanoparticles on Serratia marcescens and Escherichia coli.spa
dc.description.degreenameIngeniero Químicospa
dc.publisher.facultyFacultad de Ciencias Naturales e Ingenieríaspa
dc.identifier.instnameinstname:Universidad de Bogotá Jorge Tadeo Lozanospa
dc.identifier.reponamereponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo Lozanospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record