Mostrar el registro sencillo del documento

dc.contributor.advisorRodríguez, Jorge Enrique
dc.coverage.spatialColombiaspa
dc.creatorRodríguez Páez, Mauricio
dc.date.accessioned2020-03-24T15:57:37Z
dc.date.available2020-03-24T15:57:37Z
dc.date.created2018
dc.identifier.urihttp://hdl.handle.net/20.500.12010/8239
dc.description.abstractAunque aún no hay un criterio unificado sobre el carácter tóxico del glifosato y dado el interés que existe en su remoción de las fuentes hídricas, en este trabajo se utilizó la natotecnología con este objetivo. Para ello se sintetizaron de manera controlada nanopartículas de óxido de cinc (ZnO-NPs) usando una ruta química. Los polvos de ZnO obtenidos se caracterizaron utilizando las espectroscopías infrarroja y absorción UV-Vis, Difracción de Rayos X y Microscopia Electrónica de Barrido. Para evaluar la capacidad de remoción, se conformaron soluciones acuosas del producto Roundup 747 SG de la casa comercial Monsanto de 679 gr/Kg de Glifosato, para obtener suspensiones glifosato – ZnO-NPs de: 250 ppm - 250 ppm, 700 ppm - 700 ppm, 1000 ppm - 1000 ppm ZnO, 1000 ppm - 250 ppm y 1000 ppm - 700 ppm que se utilizaron para realizar los ensayos. Las curvas de % de Remoción obtenidas indican que las ZnO-NPs removieron entre un 70 y 90% del herbicida del sistema, dependiendo de la relación de concentraciones. Aunque los espectros de absorción UV-Vis mostraron pequeños desplazamientos del máximo de absorción y la aparición de otras pequeñas bandas, dando indicios de degradación del herbicida, fue la adsorción el mecanismo más importante de remoción. La cinética de este proceso fue descrita adecuadamente por una ecuación pseudo de segundo orden aunque no se puede despreciar, para algunas relaciones de concentración glifosato – ZnO-NPs, la importancia de la difusión intrapartícula. Estos resultados indican que las nanopartículas de ZnO sintetizadas fueron eficientes para remover glifosato en soluciones acuosas a nivel de laboratorio.spa
dc.format.extent34 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.subjectRoundupspa
dc.subjectAdsorción; ZnO-NPsspa
dc.subjectSíntesisspa
dc.titleUso de Nanoparticulas de ZnO (ZnO NPs) en la Remoción del Herbicida Glifosatospa
dc.type.localTrabajo de grado de maestríaspa
dc.subject.lembCiencias medioambientales -- Trabajos de gradospa
dc.subject.lembNanopartículasspa
dc.subject.lembPlaguicidasspa
dc.subject.lembFungicidasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.localAbierto (Texto Completo)spa
dc.subject.keywordZnO-NPsspa
dc.identifier.repourlhttp://expeditio.utadeo.edu.cospa
dc.publisher.programMaestría en ciencias ambientalesspa
dc.relation.referencesAssalin M. R., De Moraes S. G., Queiroz S. C. N., Feracini V. L., Duran N. (2010). Studies on degradation of glyphosate by several oxidative chemical process: ozonation, photolosys and heterogeneous photocatalysis, Journal of Environmental Science and Health, Part B, 45: 89-94.spa
dc.relation.referencesBenbrook, C.M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28:3.spa
dc.relation.referencesBernal M. H., Salomon K. R., Carrasquilla G. (2009a). Toxicity of formulated Glyphosate (Glyphos) and cosmo-flux to larval Colombian frogs 1. Laboratory acuate toxicity. Journal of Toxicology and Environmental Health, Part A, 72: 961-965.spa
dc.relation.referencesBernal M. H., Solomon K. R., Carrasquilla G. (2009b). Toxicity of formulated Glyphosate (Glyphos) and cosmo-flux to larval and Juvenile Colombian frogs 2. Field and Laboratory Microcosm acute toxicity. Journal of Toxicology and Environmental Health, Part A, 72: 966-973.spa
dc.relation.referencesBott, S., Tesfamariam, T., Kania, A., Eman, B., Aslan, N., Römheld, V., Neumann, G. (2011). Phytotoxicity of glyphosate soil residues re-mobilised by phosphate fertilisation. Plant and Soil. 342(1):249-263.spa
dc.relation.referencesCamacho A., Mejía D. (2017). The health consequences of aerial spraying illicit crops; The case of Colombia. Journal of Health Economics 54: 147-160.spa
dc.relation.referencesCampuzano Cortina C., Feijoó Fonnegra M. J. et al. (2017). Efectos de la intoxicación por glifosato en la población agrícola: revisión del tema. Salud Pública 8(1): 121 - 133.spa
dc.relation.referencesConrad A., Schoroter-Kermani C., Hoppee H.-W., Ruther M., Pieper S., Kolossa M. (2017). Glyphosate in German adults − Time trend (2001 to 2015) of human exposure to a widely used herbicide. International Journal of Hygiene and Environmental Health 220(1):8-16.spa
dc.relation.referencesDai P., Hu P., Tang J., Li Y., Li C. (2016). Effect of glyphosate on reproductive organs in male rat. Acta Histochemica. 118: 519 - 526.spa
dc.relation.referencesDallegrave E., Mantese F., Oliveira R., Andrade A., Dalsenter P., Langeloh, A. (2007). Pre- and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Archivesof Toxicology. 81(9):665-673.spa
dc.relation.referencesGoldsborough L. G., Beck A. E. (1989). Rapid dissipation of glyphosate in small forest ponds. Archives of Environmental Contamination and Toxicology. 18:537-544.spa
dc.relation.referencesLi J., Smeda R.J., Sellers B.A., Johnson W.G. (2005). Influence of formulation and glyphosatesalt on absorption and translocation in three annual weeds. Weed Sci. 53:153–159.spa
dc.relation.referencesManassero C., Passalia C., Negro A. C., Cassaro A. E., Zalazar C. S. (2010). Glyphosate degradation in water employing the H2O2/UVC process. Water Research 44:3375 – 3882.spa
dc.relation.referencesMann R. M., Bidwell J. R. (1999). The Toxicity of Glyphosate and Several Glyphosate Formulations to Four Species of Southwestern Australian Frogs. Arch Environ Contam Toxicol. 36(2):193–199.spa
dc.relation.referencesMéndez –Villaquiran A. F. (2015). Aislamiento e identificación de bacterias capaces de degradar glifosato. Universidad ICESI, Facultad de Ciencias Naturales, Departamento Ciencias Química - Programa Química Farmacéutica, Santiago de Cali – Colombia.spa
dc.relation.referencesRamesh K., Rajappa A., Roopa V., Nandhakumar V. (2014). Kinetics of adsorption of vinyl sulphone red dye from aqueous solution onto commercial activated carbon. International Journal of Current Research in Chemistry and Pharmaceutical Sciences 1(1): 28-36.spa
dc.relation.referencesReyes L. C. (2014). Estimating the causal effect of forced eradication on coca cultivation in Colombian Municipalities. World Development 61:70-84.spa
dc.relation.referencesRissol R. Z., Abdalla F. C., Costa M. J., Rantin F. T., Mackenzi D. J.. Kalinin A. L. (2016). Effects of glyphosate and the glyphosate based herbicides Roundup Original® and Roundup Transorb® on respiratory morphophysiology of bullfrog tadpoles. Chemosphere. 156:37-44.spa
dc.relation.referencesRodríguez-Páez J. E. (2013).Síntesis de óxidos de interés industrial, SAMAVA, Popayán-Colombia.spa
dc.relation.referencesRomano R. M., Romano M. A., Bernardi M. M., Furtado P. V., Oliveira C. A. (2010) Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology, Arch. Toxicol. 84(4):309-317.spa
dc.relation.referencesRueppel M. L., Brightwell B. B., Schaefer J., Marvel J. T. (1977). Metabolism and degradation of glyphosate in soil and water. J. Agric. Food Chem. 25(3):517–528.spa
dc.relation.referencesShifu C., Yunzhang L. (2007). Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere 67:1010-1017.spa
dc.relation.referencesSocrates G. (2001). Infrared and Raman characteristic group frequencies. Third Edition, John Wiley & Sons Ltd., New York.spa
dc.relation.referencesSolomon K. R., Marshall E. J. P., Carrasquilla G. (2009). Human health and environmental risks from the use of Gyphosate formulations to control the production of coca in Colombia: Overview and conclusions. Journal of Toxicology and Environmental Health, Part A, 72: 914-920.spa
dc.relation.referencesWang T., Ren J., Qu G., Liang D., Hu S. (2016). Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation. Journal of Hazardous Materials 320:539-546.spa
dc.relation.referencesUmar K., Aris A., Ahmad H., Parveen T., Jaafar J., Majid Z. A., Reddy A. V. B., Talib J. (2016). Synthesis of visible light active doped for the TiO2 for the degradation of organic pollunts-methylene blue and glyphosate. J. Anal. Sci. Techn. 7:29.spa
dc.relation.referencesVan Bruggen A. H. C., He M. M., Shin K., Mai V., Jeong K. C., Finckh M. R., Morris J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment 616-617: 255-268.spa
dc.relation.referencesWang M., Zhang G., Qiu G., Cai D., Wu Z. (2016). Degradation of herbicide (glyphosate) using sunlight-sensitive MnO2/C catalyst immediately fabricated by high energy electron beam. Chemical Engineering Journal 306:693,703.spa
dc.relation.referencesWest R. (1984). Solid state chemistry and its applications, John Wiley & Sons Ltd., New York.spa
dc.relation.referencesXue W., Zhang G., Xu X., Yang X., Liu C., Xu Y. (2011). Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate. Chemical Engineering Journal 167:397–402.spa
dc.format.rda1 recurso en línea (archivo de texto)spa
dc.description.rdaRequerimientos de sistema: Adobe Acrobat Readerspa
dc.description.abstractenglishAlthough there is still no unified criterion on the toxicity of glyphosate and given the interest that exists in its removal from water sources, in this work, natotechnology was used for this purpose. For this, zinc oxide nanoparticles (ZnO-NPs) were synthesized in a controlled and reproducible manner. The ZnO powders obtained were characterized using infrared and UV-Vis absorption spectroscopy, X-ray diffraction and Scanning Electron Microscopy. To evaluate the removal capacity of organic molecules by ZnO-NPs, aqueous solutions of the product Roundup 747 SG of the Monsanto commercial house of 679 gr / Kg of glyphosate were formed to obtained glyphosate-ZnO-NPs suspensions of: 250 ppm - 250 ppm, 700 ppm - 700 ppm, 1000 ppm - 1000 ppm ZnO, 1000 ppm - 250 ppm and 1000 ppm - 700 ppm. The % Removal curves indicate that the ZnO nanoparticles removed between 70 and 90% of the system's herbicide, depending on the concentration ratio. Although the UV-Vis absorption spectra showed small displacements of the absorption maximum and the appearance of other small absorption bands giving indications of herbicide degradation, adsorption was the most important mechanism of removal. Mainly this process presented a pseudo-second order kinetic although it can not be disregarded, for some glyphosate - ZnO-NPs concentrations, the importance of intraparticle diffusion. These results show that the ZnO nanoparticles synthesized were efficient to remove glyphosate in aqueous solutions at the laboratory level.spa
dc.description.degreenameMagister en Ciencias Ambientalesspa
dc.publisher.facultyFacultad de Ciencias Naturales e Ingenieríaspa
dc.identifier.instnameinstname:Universidad de Bogotá Jorge Tadeo Lozanospa
dc.identifier.reponamereponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo Lozanospa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento