Show simple item record

dc.contributor.advisorPataquiva-Mateus, Alis Yovana
dc.coverage.spatialBogotá D.C., Colombiaspa
dc.creatorGómez Mesa, Nikolay Estiven
dc.date.accessioned2020-02-25T14:36:28Z
dc.date.available2020-02-25T14:36:28Z
dc.date.created2019
dc.identifier.urihttp://hdl.handle.net/20.500.12010/7617
dc.description.abstractEl presente trabajo tiene como objetivo desarrollar una película biodegradable a partir de caseinato de calcio y almidón modificado nanoestructurado con bentonita. Las películas se prepararon mediante el método de moldeo en solución con la adición de glicerol como plastificante y PVA para mejorar sus propiedades. Se realizó un análisis estadístico para encontrar la proporción entre la caseína y el almidón. Las caracterizaciones físicas y químicas se realizaron utilizando SEM, EDS y FTIR. Mediante un análisis de permeabilidad al vapor de agua se encontró una disminución en el valor con respecto a las películas de caseína y almidón sin PVA, atribuidas a la adición de arcilla. Las pruebas microbiológicas informaron un número total de bacterias admisibles en las películas de caseína y pocas colonias de levadura atribuidas a su manipulación. La prueba de biodegradabilidad mostró que las películas pueden degradarse en un tiempo de 13 semanas a temperatura ambiente, donde el suelo no se ajustó a ninguna condición de humedad. Se concluyó que la inclusión de PVA y almidón modificado con suspensión de bentonita nanoestructurada en la formulación de la película de caseína mejora las propiedades mecánicas, en comparación con películas similares con hasta un 30% de aumento en la resistencia a la tracción con un valor de 13.083 ± 2.1 MPa.spa
dc.format.extent17 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.subjectBionanocompuestospa
dc.subjectCaseínaspa
dc.subjectAlmidónspa
dc.titleNanostructured biodegradable polymeric films for food packaging applicationsspa
dc.type.localTrabajo de gradospa
dc.subject.lembMateriales para empaquesspa
dc.subject.lembSoluciones (Química)spa
dc.subject.lembIngeniería química -- Trabajos de gradospa
dc.subject.lembCaseína -- Investigacionesspa
dc.subject.lembBiopolímeros -- Investigacionesspa
dc.subject.lembAlmidón -- Investigacionesspa
dc.subject.lembIngeniería químicaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.localAbierto (Texto Completo)spa
dc.subject.keywordBionanocompositespa
dc.subject.keywordCaseinatespa
dc.publisher.programIngeniería Químicaspa
dc.relation.referencesJ. D. Wicochea-Rodríguez, P. Chalier, T. Ruiz, and E. Gastaldi, “Active Food Packaging Based on Biopolymers and Aroma Compounds: How to Design and Control the Release,” Front. Chem., vol. 7, Jun. 2019.spa
dc.relation.referencesH. Ritchie and M. Roser, “Plastic Pollution,” Our World Data, no. August, p. 1, 2018.spa
dc.relation.referencesS. Rajmohan K., R. C, and S. Varjani, “Plastic pollutants: Waste management for pollution control and abatement,” Curr. Opin. Environ. Sci. Heal., 2019.spa
dc.relation.referencesY. Pan, M. Farmahini-Farahani, P. O’Hearn, H. Xiao, and H. Ocampo, “An overview of bio-based polymers for packaging materials,” J. Bioresour. Bioprod., vol. 1, no. 3, pp. 106–113, 2016.spa
dc.relation.referencesB. Ucpinar Durmaz and A. Aytac, “Poly (vinyl alcohol) and casein films: The effects of glycerol amount on the properties of films,” Res. Eng. Struct. Mater., 2019.spa
dc.relation.referencesJ. Gómez-Estaca, R. Gavara, R. Catalá, and P. Hernández-Muñoz, “The Potential of Proteins for Producing Food Packaging Materials: A Review,” Packag. Technol. Sci., vol. 29, no. 4–5, pp. 203–224, Apr. 2016.spa
dc.relation.referencesS. A. Bhawani, H. Hussain, O. Bojo, and S. S. Fong, “Proteins as Agricultural Polymers for Packaging Production,” in Bionanocomposites for Packaging Applications, Cham: Springer International Publishing, 2018, pp. 243–267.spa
dc.relation.referencesM. L. Picchio, Y. G. Linck, G. A. Monti, L. M. Gugliotta, R. J. Minari, and C. I. Alvarez Igarzabal, “Casein films crosslinked by tannic acid for food packaging applications,” Food Hydrocoll., vol. 84, pp. 424–434, Nov. 2018.spa
dc.relation.referencesH. P. S. Abdul Khalil et al., “Biodegradable Films for Fruits and Vegetables Packaging Application: Preparation and Properties,” Food Eng. Rev., vol. 10, no. 3, pp. 139–153, Sep. 2018.spa
dc.relation.referencesM. L. Picchio, L. I. Ronco, M. C. G. Passeggi, R. J. Minari, and L. M. Gugliotta, “Poly(n-butyl acrylate)–Casein Nanocomposites as Promising Candidates for Packaging Films,” J. Polym. Environ., vol. 26, no. 6, pp. 2579–2587, 2018.spa
dc.relation.referencesA. Shendurse, “Milk protein based edible films and coatings–preparation, properties and food applications,” J. Nutr. Heal. Food Eng., vol. 8, no. 2, 2018.spa
dc.relation.referencesC. L. Murrieta-Martínez, H. Soto-Valdez, R. Pacheco-Aguilar, W. Torres-Arreola, F. Rodríguez-Felix, and E. Márquez Ríos, “Edible protein films: Sources and behavior,” Packag. Technol. Sci., vol. 31, no. 3, pp. 113–122, 2018.spa
dc.relation.referencesP. F. Fox and A. Brodkorb, “The casein micelle: Historical aspects, current concepts and significance,” Int. Dairy J., vol. 18, no. 7, pp. 677–684, 2008.spa
dc.relation.referencesS. Jafari, Biopolymer Nanostructures for Food Encapsulation Purposes. Charlote Cockle, 2019.spa
dc.relation.referencesM. L. Picchio et al., “pH-responsive casein-based films and their application as functional coatings in solid dosage formulations,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 541, pp. 1–9, 2018.spa
dc.relation.referencesS. Saez-Orviz, A. Laca, and M. R. M. Díaz, “Approaches for casein film uses in food stuff packaging,” Afinidad, vol. 74, no. 577, pp. 26–29, 2016.spa
dc.relation.referencesO. Abu Diak, A. Bani-Jaber, B. Amro, D. Jones, and G. P. Andrews, “The manufacture and characterization of casein films as novel tablet coatings,” Food Bioprod. Process., vol. 85, no. 3 C, pp. 284–290, 2007.spa
dc.relation.referencesF. Minaei, S. A. H. Ravandi, S. M. Hejazi, and F. Alihosseini, “The fabrication and characterization of casein/PEO nanofibrous yarn via electrospinning,” E-Polymers, vol. 19, no. 1, pp. 154–167, 2019.spa
dc.relation.referencesS. Selvaraj, R. Thangam, and N. N. Fathima, “Electrospinning of casein nanofibers with silver nanoparticles for potential biomedical applications,” Int. J. Biol. Macromol., vol. 120, no. Pt B, pp. 1674–1681, Dec. 2018.spa
dc.relation.referencesM. C. G. Pellá et al., “Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating,” Food Chem., p. 125764, Oct. 2019.spa
dc.relation.referencesY. R. Wagh, H. A. Pushpadass, F. M. E. Emerald, and B. S. Nath, “Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese.,” J. Food Sci. Technol., vol. 51, no. 12, pp. 3767–75, Dec. 2014.spa
dc.relation.referencesL. M. Bonnaillie, H. Zhang, S. Akkurt, K. L. Yam, and P. M. Tomasula, “Casein films: The effects of formulation, environmental conditions and the addition of citric pectin on the structure and mechanical properties,” Polymers (Basel)., vol. 6, no. 7, pp. 2018–2036, 2014.spa
dc.relation.referencesG. Hu, Y. Zheng, Z. Liu, Y. Xiao, Y. Deng, and Y. Zhao, “Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein,” Food Chem., vol. 221, pp. 1860–1866, 2017.spa
dc.relation.referencesD. Domene-López, J. J. Delgado-Marín, I. Martin-Gullon, J. C. García-Quesada, and M. G. Montalbán, “Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer,” Int. J. Biol. Macromol., vol. 135, pp. 845–854, 2019.spa
dc.relation.referencesB. Imre and B. Pukánszky, “Compatibilization in bio-based and biodegradable polymer blends,” Eur. Polym. J., vol. 49, no. 6, pp. 1215–1233, 2013.spa
dc.relation.referencesC. A. Gómez-Aldapa, G. Velazquez, M. C. Gutierrez, E. Rangel-Vargas, J. Castro-Rosas, and R. Y. Aguirre-Loredo, “Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films,” Mater. Chem. Phys., vol. 239, p. 122027, 2020.spa
dc.relation.referencesL. Huang et al., “Properties of thermoplastic starch films reinforced with modified cellulose nanocrystals obtained from cassava residues,” New J. Chem., vol. 43, no. 37, pp. 14883–14891, 2019.spa
dc.relation.referencesR. Fattahi and A. Bahrami, “Application of edible and biodegradable starch films in food packaging: A review,” J. Babol Univ. Med. Sci., vol. 20, 2018.spa
dc.relation.referencesF. Parvin, M. A. Rahman, J. M. M. Islam, M. A. Khan, and A. H. M. Saadat, “Preparation and characterization of starch/PVA blend for biodegradable packaging material,” Adv. Mater. Res., vol. 123–125, pp. 351–354, 2010.spa
dc.relation.referencesE. Karaogul, E. Altuntas, T. Salan, and M. Hakki Alma, “The Effects of Novel Additives Used in PVA/Starch Biohybrid Films,” Fill. - Synth. Charact. Ind. Appl., 2019.spa
dc.description.rdaRequerimientos de sistema: Adobe Acrobat Readerspa
dc.description.abstractenglishThe present work aims to develop a bionanocomposite film from calcium caseinate and starch modified nanostructured with bentonite. The films were prepared by the solution casting method with the addition of glycerol as a plasticizer and PVA to improve their properties. A statistical analysis was performed to find the proportion to be used between casein and starch. Physical and chemical characterizations were performed using SEM, EDS and FTIR. From water vapor permeability analysis, a decrease in value was found with respect to casein and starch films without PVA, attributed to the addition of clay. Microbiological tests reported a total number of admissible bacteria in casein films and few yeast colonies due to their manipulation. The biodegradability test showed that films can be degraded at a rate of 13 weeks under ambient temperature and soil was not adjusted for any humidity conditions. It was concluded that the inclusion of PVA and modified starch with nanostructured bentonite suspension in the casein film formulation improves mechanical properties, compared to similar films with up to 30% increase in tensile strength with a value of 13.083± 2.1 MPa.spa
dc.description.degreenameIngeniero Químicospa
dc.publisher.facultyFacultad de Ciencias Naturales e Ingenieríaspa
dc.identifier.instnameinstname:Universidad de Bogotá Jorge Tadeo Lozanospa
dc.identifier.reponamereponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo Lozanospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record