Show simple item record

dc.contributor.advisorLópez Suarez, Franz Edwin
dc.coverage.spatialBogotá D.C., Colombiaspa
dc.creatorPeña González, Laura Vanessa
dc.creatorVargas Pinto, Heidy Viviana
dc.date.accessioned2019-08-08T15:07:44Z
dc.date.available2019-08-08T15:07:44Z
dc.date.created2019
dc.identifier.urihttp://hdl.handle.net/20.500.12010/6705
dc.description.abstractLa conversión electroquímica de CO2 a hidrocarburos es una de las propuestas más tentadoras actualmente para la reducción de este gas en el medio ambiente (Centi, Perathoner, Wine, & Gangeri, 2007). Sin embargo, es poco eficiente debido al alto costo energético que se necesita. Debido a esto, se investiga la manera de implementar catalizadores que mejoren la eficiencia de la conversión por medio de celdas electroquímicas. En este estudio se sintetizaron electrocatalizadores de cobre y cobalto usando como soporte grafeno reducido (RG), fabricado a partir de grafito electroquímico. En la síntesis de RG se utilizó el método de Hummer modificado para el proceso de oxidación [(Centi, Quadrelli, & Perathoner, 2013)]. Estos soportes se evaluaron a través de voltametría cíclica y se caracterizaron por medio de SEM, TG, DRX y RAMAN. Obteniéndose el comportamiento electroquímico y su conductividad, así como sus características físico – químicas con el objetivo de analizar su viabilidad como soporte de los electrocatalizadores. Posteriormente, se sintetizaron los electrocatalizadores depositando los metales por medio de una impregnación humedad incipiente. Los electro-catalizadores fueron caracterizados a partir de métodos como difracción de rayos X, microscopia electrónica de barrido (SEM), Termogravimetría (TG) y espectroscopia Raman.spa
dc.format.extent27 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaeng
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.subjectConversión electroquímicaspa
dc.subjectElectrocatalizadoresspa
dc.titleValorización de CO2 por conversión electrocatalítica con catalizadores bimetálicos usando como soporte grafeno, nanotubos de carbón, carbón activo y negros de carbón.spa
dc.type.localTrabajo de gradospa
dc.subject.lembElectroconversión de CO2spa
dc.subject.lembQuímicaspa
dc.subject.lembSoluciones (Química)spa
dc.subject.lembEfectos ambientalesspa
dc.subject.lembDioxido de carbonospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.programIngeniería Químicaspa
dc.relation.referencesAljabour, A., Coskun, H., Apaydin, D. H., Ozel, F., Hassel, A. W., Stadler, P., … Kus, M. (2018). Nanofibrous cobalt oxide for electrocatalysis of CO2reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution. Applied Catalysis B: Environmental, 229(August 2017), 163–170. https://doi.org/10.1016/j.apcatb.2018.02.017spa
dc.relation.referencesAnpo, M., Yamashita, H., Ichihashi, Y., & Ehara, S. (1995). Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry, 396(1–2), 21–26. https://doi.org/10.1016/0022-0728(95)04141-Aspa
dc.relation.referencesCastro, A., Sepúlveda, S., & Cruz, R. (2011). Obtención de grafeno mediante la reducción química del óxido de grafito. Ingenierías, 14(17–18), 35–42. https://doi.org/10.1016/j.synthmet.2012.07.016spa
dc.relation.referencesCenti, G., Perathoner, S., Wine, G., & Gangeri, M. (2007). Electrocatalytic conversion of CO 2 to long carbon-chain hydrocarbons {, 671–678. https://doi.org/10.1039/b615275aspa
dc.relation.referencesCenti, G., Quadrelli, E., & Perathoner, S. (2013). Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, (207890). https://doi.org/10.1039/b000000xspa
dc.relation.referencesChang, Z. Y., Huo, S. J., He, J. M., & Fang, J. H. (2017). Facile synthesis of Cu–Ag bimetallic electrocatalyst with prior C2products at lower overpotential for CO2electrochemical reduction. Surfaces and Interfaces, 6, 116–121. https://doi.org/10.1016/j.surfin.2016.12.002spa
dc.relation.referencesDikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., … Diankov, G. (2012). Graphene Oxide Papers Modified by. Carbon, 4(3), 4400–4409. https://doi.org/10.1007/s10853-012-6294-5spa
dc.relation.referencesHuang, J., Guo, X., Wei, Y., Hu, Q., Yu, X., & Wang, L. (2019). A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction. Journal of CO2 Utilization, 33(December 2018), 166–170. https://doi.org/10.1016/j.jcou.2019.05.026spa
dc.relation.referencesLi, Dan; Kaner, R. B. (2008). Graphene-Based Materials as. Science, 320(x).spa
dc.relation.referencesLi, Y., Zhou, W., Wang, H., Xie, L., Liang, Y., Wei, F., … Dai, H. (2012). An oxygen reduction electrocatalyst based on carbon nanotubeĝ€ "graphene complexes. Nature Nanotechnology, 7(6), 394–400. https://doi.org/10.1038/nnano.2012.72spa
dc.relation.referencesLiu, W., Miao, Z., Li, Z., Wu, X., Zhou, P., Zhao, J., … Zhuo, S. (2019). Electroreduction of CO 2 catalyzed by Co@N-C materials. Journal of CO2 Utilization, 32(April), 241–250. https://doi.org/10.1016/j.jcou.2019.04.005spa
dc.relation.referencesMalard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5–6), 51–87. https://doi.org/10.1016/j.physrep.2009.02.003spa
dc.relation.referencesMarcano, D. C., Kosynkin, D. V, Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved Synthesis of Graphene Oxide, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368spa
dc.relation.referencesMistry, H., Reske, R., Strasser, P., & Roldan Cuenya, B. (2017). Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2electroreduction. Catalysis Today, 288, 30–36. https://doi.org/10.1016/j.cattod.2016.09.017spa
dc.relation.referencesPark, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217–224. https://doi.org/10.1038/nnano.2009.58spa
dc.relation.referencesPress, A. I. N. (2007). A comparison of Latin American energy-related CO 2 emissions from 1970 to 2001, 35, 586–596. https://doi.org/10.1016/j.enpol.2006.01.003spa
dc.relation.referencesRyn, G., Ek, D., & Bj, W. (2011). Large scale graphene oxide. Langmuir, 6(1), 35–39.spa
dc.relation.referencesSavitha, M. B., Jayarama, A., & Pinto, R. (2017). Electrocatalytic reduction of CO 2 into useful chemicals-A Brief Review. Sahyadri International Journal of Research, 3(1), 18–36. Retrieved from http://sijr.in/articles/june2017/4.pdfspa
dc.relation.referencesShao, G., Lu, Y., Wu, F., Yang, C., Zeng, F., & Wu, Q. (2012). Graphene oxide: The mechanisms of oxidation and exfoliation. Journal of Materials Science, 47(10), 4400–4409. https://doi.org/10.1007/s10853-012-6294-5spa
dc.relation.referencesSingh, S., Gautam, R. K., Malik, K., & Verma, A. (2017). Ag-Co bimetallic catalyst for electrochemical reduction of CO 2 to value added products. Biochemical Pharmacology, 18, 139–146. https://doi.org/10.1016/j.jcou.2017.01.022spa
dc.relation.referencesStankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034spa
dc.relation.referencesWang, C., Cao, M., Jiang, X., Wang, M., & Shen, Y. (2018). A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2to CO with high faradaic efficiency. Electrochimica Acta, 271, 544–550. https://doi.org/10.1016/j.electacta.2018.03.156spa
dc.relation.referencesXin, Y., Liu, J. G., Zhou, Y., Liu, W., Gao, J., Xie, Y., … Zou, Z. (2011). Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. Journal of Power Sources, 196(3), 1012–1018. https://doi.org/10.1016/j.jpowsour.2010.08.051spa
dc.description.hashtag#ConversiónElectrocatalíticaspa
dc.description.hashtag#DióxidoDeCarbónspa
dc.description.hashtag#ElectroQuímicaspa
dc.description.rdaRequerimientos de sistema: Adobe Acrobat Readerspa
dc.description.abstractenglishThe electrochemical conversion of CO2 to hydrocarbons is one of the most tempting proposals currently for the reduction of this gas in the environment (Centi, Perathoner, Wine, & Gangeri, 2007). However, it is inefficient due to the high energy cost that is needed. Because of this, the way to implement catalysts that improve conversion efficiency through electrochemical cells is investigated. In this study, copper and cobalt electrocatalysts were synthesized using reduced graphene (RG) as support, made from electrochemical graphite. In the synthesis of RG, the modified Hummer method was used for the oxidation process [(Centi, Quadrelli, & Perathoner, 2013)]. These supports were evaluated through cyclic voltammetry and were characterized by SEM, TG, DRX and RAMAN. Obtaining the electrochemical behavior and its conductivity, as well as its physical-chemical characteristics in order to analyze its viability as a support for the electrocatalysts. Subsequently, the electrocatalysts were synthesized by depositing the metals by means of an incipient moisture impregnation. Electrocatalysts were characterized by methods such as X-ray diffraction, scanning electron microscopy (SEM), Thermogravimetry (TG) and Raman spectroscopyspa
dc.description.degreenameIngeniero Químicospa
dc.publisher.facultyFacultad de Ciencias Naturales e Ingenieríaspa
dc.identifier.instnameinstname:Universidad de Bogotá Jorge Tadeo Lozanospa
dc.identifier.reponamereponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo Lozanospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record