Show simple item record

dc.rights.licenseEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DE BOGOTA JORGE TADEO LOZANO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DE BOGOTÁ JORGE TADEO LOZANO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo protecciondatos@utadeo.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datosspa
dc.contributor.advisorHernández Fernández, Javier Adolfo
dc.coverage.spatialColombiaspa
dc.creatorRivera Forero, Catalina
dc.date.accessioned2023-03-08T20:23:05Z
dc.date.available2023-03-08T20:23:05Z
dc.date.created2023
dc.identifier.urihttp://hdl.handle.net/20.500.12010/31047
dc.description.abstractLas diferentes condiciones que experimenta Caretta caretta durante su ciclo de vida, dada su longevidad y capacidad de migrar grandes distancias, se refleja en cambios cualitativos y cuantitativos en la expresión de genes en las diferentes etapas de vida de la especie que pueden revelarse a través del análisis del transcriptoma. En este estudio se realizó un análisis de expresión diferencial de genes, comparando transcriptomas de tortugas adultas (Adul) y tortugas juveniles (Juv), y se relacionaron con hipoxia y respuesta inmune. Las secuencias usadas corresponden a tortugas en cautiverio anidantes del Caribe colombiano, disponibles en GenBank, las cuales se filtraron (Trimmomatic), alinearon, mapearon (HISAT2) y ensamblaron (StringTie) contra un transcriptoma de referencia. El nivel de expresión de las lecturas de cada transcriptoma se cuantificó (featureCounts) para el análisis de expresión diferencial (DESeq2) y los genes se anotaron funcionalmente (Blast2GO-OmicsBox). Se mapearon correctamente el 84 % de las lecturas, y de la comparación Adul versus Juv, se identificaron 1401 genes expresados diferencialmente (DEG) (p-aj < 0,05), 507 regulados al alza y 894 a la baja (log₂ fold-change). Se logró anotar funcionalmente el 40 % de los DEG, identificando 8252 términos GO y 583 rutas de referencia de la ontología KEGG, en dónde sobresale la respuesta inmunológica, la respuesta al estrés oxidativo, y el metabolismo de carbohidratos. Se proponen posibles mecanismos y rutas metabólicas implicadas con la expresión de estos genes, según su función y el nivel de expresión en cada estadío. Lo planteado en las hipótesis sugeridas debe ser sometido a investigación desde enfoques más específicos que consideren la medición de variables no evaluadas en la presente investigación.spa
dc.format.extent31 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.sourceUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.sourceExpeditio Repositorio Institucional UJTLspa
dc.subjectTortugas marinas -- Sangre -- Análisis -- Santa Marta (Magdalena, Colombia)spa
dc.subjectTortugas marinas -- Especies -- Santa Marta (Magdalena, Colombia)spa
dc.subjectCaretta caretta -- Análisisspa
dc.titleAnálisis e identificación in silico de los genes expresados diferencialmente entre juveniles y adultos de la tortuga Caguama (Caretta caretta) relacionados con hipoxia y sistema inmune: primera aproximaciónspa
dc.title.alternativeIn silico analysis and identification of genes expressed differentially between juveniles and adults of the loggerhead turtle (caretta caretta) related to hypoxia and inmune system: first approach
dc.type.localTrabajo de grado de pregradospa
dc.subject.lembCaretta caretta -- Tesis y disertaciones académicasspa
dc.subject.lembTortugas marinas -- Especies -- Tesis y disertaciones académicasspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.localAcceso restringidospa
dc.subject.keywordMarine turtles -- Reproductive aspectsspa
dc.subject.keywordMarine turtles -- Researchspa
dc.identifier.repourlhttp://expeditio.utadeo.edu.cospa
dc.creator.degreeBiólogo(s) marinospa
dc.publisher.programBiología marinaspa
dc.relation.referencesAfgan, E., D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Čech, J. Chilton, D. Clements, N. Coraor, B. Grüning, A. Guerler, J. Hillman-Jackson, V. Jalili, H. Rasche, N. Soranzo, J. Goecks, J. Taylor, A. Nekrutenko and D. Blankenberg. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses. Nucleic Acids Research. 46(1,2): 537-544 pspa
dc.relation.referencesAgarwal A, D. Koppstein, J. Rozowsky, A. Sboner, L. Habegger, L.W. Hillier, R. Sasidharan, V. Reinke, R.H. Waterston and M. Gerstein. 2010. Comparison and calibration of transcriptome data from RNA-Seq and tiling arrays. BMC genomics. 11(1):1 pspa
dc.relation.referencesAlvarez, M., A.W. Schrey and C.L. Richards. 2015. Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution?. Mol Ecol. 24(4):710–25 p.spa
dc.relation.referencesAndrews, S. 2018. FastQC A Quality control tool for high throughput sequence data. Babraham. Bioinfo. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. 7/04/2022.spa
dc.relation.referencesBanerjee, S.M., J.A. Stoll, C.D. Allen, J.M. Lynch, H.S. Harris, L. Kenyon, R.E. Connon, E.J. Sterling, E. Naro-Maciel, K. McFadden, M.M. Lamont, J. Benge, N.B. Fernandez, J.A. Seminoff, S.R. Benson, R.L. Lewison, T. Eguchi, T.M. Summers, J.R. Hapdei, M.R. Rice, S. Martin, T. Todd, P.H. Dutton, G.H. Balazs and L.M. Komoroske. 2021. Species and population specific gene expression in blood transcriptomes of marine turtles. BMC Genomics. 22: 346 p.spa
dc.relation.referencesBentley, B.P., B.J. Haas, J.N. Tedeschi and O. Berry. 2017. Loggerhead Sea turtle embryos (Caretta caretta) regulate expression of stress response and developmental genes when exposed to a biologically realistic heat stress. Molecular ecology. 26(11): 2978-2992 p.spa
dc.relation.referencesBlock, B.A., I.D. Jonsen, S.J. Jorgensen, A.J. Winship, S.A. Shaffer and S.J. Bograd. 2011. Tracking apex marine predator movements in a dynamic ocean. Nature. 475: 86–90 p.spa
dc.relation.referencesBolger, A.M., M. Lohse and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. PubMed. 30: 2114–2120 p.spa
dc.relation.referencesCásale, P. and A.D. Tucker. 2017. Caretta caretta (amended version of 2015 assessment). The IUCN Red List of Threatened Species 2017: e.T3897A119333622. https://dx.doi.org/10.2305/IUC N.UK.2017-2.RLTS.T3897A119333622.en. 21/12/2021.spa
dc.relation.referencesCanada's Genomic Enterprise. 2022. Loggerhead Sea Turtle (Caretta caretta) genome sequencing and assembly (Canada's Genomic Enterprise), rCarCar2. https://www.ncbi.nlm.ni h.gov/data-hub/genome/GCF_023653815.1/. 25/10/2022.spa
dc.relation.referencesChamorro, C. 2019. Análisis de datos de RNA-Seq empleando diferentes paquetes desarrollados dentro del proyecto Bioconductor para estudios de expresión génica diferencial. Creative Commons. 74 p.spa
dc.relation.referencesCocci, P., M. Capriotti, G. Mosconi and F.A. Palermo. 2017. Effects of endocrine disrupting chemicals on estrogen receptor alpha and heat shock protein 60 gene expression in primary cultures of loggerhead sea turtle (Caretta caretta) erythrocytes. Environmental Research. 158: 616-624 pspa
dc.relation.referencesCocci, P., G. Mosconi, L. Bracchetti, J.M. Nalocca, E. Frapiccini, M. Marini, G. Caprioli, G. Sagratini and F.A. Palermo. 2018. Investigating the potential impact of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on gene biomarker expression and global DNA methylation in loggerhead sea turtles (Caretta caretta) from the Adriatic Sea. Science of The Total Environment. 619–620: 49-57 p.spa
dc.relation.referencesCocci, P., G. Mosconi and F.A. Palermo. 2022. Organic UV Filters Induce Toll-like-Receptors and Related Signaling Pathways in Peripheral Blood Mononuclear Cells of Juvenile Loggerhead Sea Turtles (Caretta caretta). Animals. 12(5): 594 p.spa
dc.relation.referencesChow, J.C., N. Kyritsis, M. Mills, M.H. Godfrey, C.A. Harms, P.E. Anderson and A.M. Shedlock. 2021. Tissue and Temperature-Specific RNA-Seq Analysis Reveals Genomic Versatility and Adaptive Potential in Wild Sea Turtle Hatchlings (Caretta caretta). Animals. 11: 3013 pspa
dc.relation.referencesChegwidden, WR. and N.D. Carter. 2000. Introduction to the carbonic anhydrases. EXS. 90: 13-28 p.spa
dc.relation.referencesConesa, A., S. Götz, J.M. García-Gómez, J. Terol, M. Talón and M. Robles. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 21(18): 3674-3676 p.spa
dc.relation.referencesDenley, A., E.R. Bonython, G.W. Booker, L.J. Cosgrove, B.E. Forbes, C.W. Ward and J.C. Wallace. 2004. Structural determinants for high-affinity binding of insulin-like growth factor II to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. Molecular Endocrinology. 18(10): 2502– 2512 p.spa
dc.relation.referencesDolmán, A.J. 1990. “The Potential Contribution of Marine Resources to Sustainable Development in Small-Island Developing Countries”, in Beller, W., P. D'Ayala and P. Hein, (Eds), Sustainable Development and Environmental Management of Small Islands. Man and the Biosphere Series. Volume 5. UNESCO, Paris, and Parthenon Publishing Carnforth.spa
dc.relation.referencesEckert, K.L., K.A. Bjorndal, F.A. Abreu-Grobois y M. Donnelly. 2000. Técnicas de Investigación y Manejo para la Conservación de las Tortugas Marinas. Grupo especialista en Tortugas Marinas. Unión Internacional para la Conservación de la Naturaleza y Comisión de Supervivencia de Especies. 4: 270 p.spa
dc.relation.referencesFrasca, D., A.M. Landin, R.L. Riley and B.B. Blomberg. 2008. Mechanisms for decreased function of B cells in aged mice and humans. J. Immunol. 180: 2741–2746 p.spa
dc.relation.referencesGardner, S.C., M.D. Pier, R. Wesselman and J.A. Juarez. 2003. Organochlorine contaminants in sea turtles from the eastern Pacific. Marine Pollution Bulletin. 46: 1082-1089 p.spa
dc.relation.referencesGrings, M., M. Wajner and G. Leipnitz. 2020. Mitochondrial dysfunction and redox homeostasis impairment as pathomechanisms of brain damage in ethylmalonic encephalopathy: insights from animal and human studies. Cellular and Molecular Neurobiology. 42: 1-11 p.spa
dc.relation.referencesGuillemot, F., A. Billault, O. Pourquie, G. Behar, A.M. Chaussé, R. Zoorob, G. Kreibich and C. Auffray. 1988. A molecular map of the chicken major histocompatibility complex: the class II beta genes are closely linked to the class I genes and the nucleolar organizer. The EMBO journal. 7(9): 2775- 2785 p.spa
dc.relation.referencesGu, Y.Z., J.B. Hogenesch and C.A. Bradfield. 2000. The PAS Superfamily: Sensors of Environmental and Developmental Signals. Annu Rev Pharmacol. 40: 519–561 p.spa
dc.relation.referencesHarman, D. 1956. Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology 11: 298–300 pspa
dc.relation.referencesHawkes, L.A., A.C. Broderick, M.S. Coyne, M.H. Godfrey and B.J. Godley. 2007. Only some like it hot - quantifying the environmental niche of the loggerhead sea turtle. Divers. Distrib. 13: 447- 457spa
dc.relation.referencesHeikkilä, M., A. Pasanen, K.I. Kivirikko and J. Myllyharju. 2011. Roles of the human hypoxia inducible factor (HIF)-3α variants in the hypoxia response. Life Sciences. 68(23): 3885–3901spa
dc.relation.referencesHernández-Fernández, J., A. Pinzón, L. and Mariño-Ramírez. 2017. De novo transcriptome assembly of loggerhead sea turtle nesting of the Colombian Caribbean. Genomics Data. 13: 18-20 p.spa
dc.relation.referencesHernández-Fernández, J., A.M. Pinzón-Velasco, E.A. López-Barrera, M. Rodríguez-Becerra, J.L. Villanueva-Cañas, M. Alba, L. Mariño-Ramírez. 2021. De novo assembly and functional annotation of blood transcriptome of loggerhead turtle, and in silico characterization of peroxiredoxins and thioredoxins. PeerJ. 9: 32 p.spa
dc.relation.referencesHochscheid, S., F. Bentivegna, M.N. Bradai and G.C. Hays. 2007a. Overwintering behaviour in sea turtles: dormancy is optional. Mar. Ecol. Prog. Ser. 340: 287-298 p.spa
dc.relation.referencesHochscheid, S., C.R. McMahon, C.J.A. Bradshaw, F. Maffucci, F. Bentivegna and G.C. Hays. 2007b. Allometric scaling of lung volume and its consequences for marine turtle diving performance. Comp Biochem Physiol A. 148: 360–367 p.spa
dc.relation.referencesHoekstra, L.A., T.S. Schwartz, A.M. Sparkman, D.A.W. Miller and A.M. Bronikowski. 2020. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct Ecol. 34: 38– 54 p.spa
dc.relation.referencesIverson, A.R., I. Fujisaki, M.M. Lamont and K.M. Hart. 2019. Loggerhead Sea turtle (Caretta caretta) diving changes with productivity, behavioral mode, and sea surface temperature. PloS one. 14(8): 19 p.spa
dc.relation.referencesKamei, H. 2020. Oxygen and embryonic growth: the role of insulin-like growth factor signaling. General and Comparative Endocrinology. 294: 113473 pspa
dc.relation.referencesKeller, J.M., J.R. Kucklick, M.A. Stamper, C.A. Harms and P.D. McClellan-Green. 2004. Associations between organochlorine contaminant concentrations and clinical health parameters in loggerhead sea turtles from North Carolina, USA. Environ. Health Persp. 112: 1074-1079 p.spa
dc.relation.referencesKeller, J.M., P.D. McClellan-Green, A.M. Lee, M.D. Arendt, P.P. Maier, A.L. Segars, J.D. Whitaker, D.E. Keil and M.M. Peden-Adams. 2005. Mitogen-induced lymphocyte proliferation in loggerhead sea turtles: comparison of methods and effects of gender, plasma testosterone concentration, and body condition on immunity. Vet. Immunol. Immunopathol. 103: 269-281 p.spa
dc.relation.referencesKeller, J.M., P.D. McClellan-Green, J.R. Kucklick, D.E. Keil and M.M. Peden-Adams. 2006. Effects of organochlorine contaminants on loggerhead sea turtle immunity: comparison of a correlative field study and in vitro exposure experiments. Environ. Health. Persp. 114: 70-76 p.spa
dc.relation.referencesKim, G. and R. Levine. 2005. Molecular determinants of S-glutathionylation of carbonic anhydrase 3. Antioxidants and Redox Signalling. 7: 849-854 pspa
dc.relation.referencesKim, D., B. Langmead and S.L. Salzberg. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods. 12(4): 357-360 p.spa
dc.relation.referencesKrivoruchko, A. and K.B. Storey. 2015. Turtle anoxia tolerance: biochemistry and gene regulation. Biochimica et Biophysica Acta (BBA)-General Subjects. 1850(6): 1188-1196 p.spa
dc.relation.referencesKovaka, S., A.V. Zimin, G.M. Pertea, R. Razaghi, S.L. Salzberg and M. Pertea. 2019. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biology. 20(1): 1-14 p.spa
dc.relation.referencesKu, H.H., U.T. Brunk and R.S. Sohal. 1993. Relationship between mitochondrial superoxide and hydrogen‐peroxide production and longevity of mammalian‐species. Free Radical Biology and Medicine. 15: 621–627 p.spa
dc.relation.referencesLambert, A.J., H.M. Boysen, J.A. Buckingham, T. Yang, A. Podlutsky, S.N. Austad and M.D. Marca. 2007. Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell. 6: 607–618 p.spa
dc.relation.referencesLapennas, G.N. and P.L. Lutz. 1982. Oxygen affinity of sea turtle blood. Respiration physiology. 48(1): 59-74 p.spa
dc.relation.referencesLee, J.S., W.O. Ward, D.C. Wolf, J.W. Allen, C. Mills, M.J. DeVito and J.C. Corton. 2008. Coordinated Changes in Xenobiotic Metabolizing Enzyme Gene Expression in Aging Male Rats. Toxicological Sciences. 106(1): 263-283 p.spa
dc.relation.referencesLin, K., J.B. Dorman, A. Rodan and C. Kenyon. 1997. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 278(5341): 1319- 1322 p.spa
dc.relation.referencesLi, G.X., Y. Hirabayashi, B.I. Yoon, Y. Kawasaki, I. Tsuboi, Y. Kodama, Y. Kurokawa, J. Yodoi, J. Kanno and T. Inoue. 2006. Thioredoxin overexpression in mice, model of attenuation of oxidative stress, prevents benzene-induced hemato-lymphoid toxicity and thymic lymphoma. Exp Hematol. 34(12): 1687-1697 p.spa
dc.relation.referencesLi, C., L. Song, J. Zhao, L. Zhu, H. Zou, H. Zhang, H. Wang and Z. Cai. 2007. Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri. Fish & Shellfish Immunology. 22(6): 663-672 p.spa
dc.relation.referencesLi, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis and R. Durbin. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25(16): 2078- 2079 p.spa
dc.relation.referencesLiao, Y., G.K. Smyth and W. Shi. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30(7): 923-930 p.spa
dc.relation.referencesLove, M.I., W. Huber and S. Anderson. 2014. Moderated estimation of fold changes and dispersion of RNA-Seq data with DESeq. Genome Biol. 15(12): 550 p.spa
dc.relation.referencesLutz, P.L. and T.B. Bentley. 1985. Respiratory Physiology of Diving in the Sea Turtle. Copeia. 1985(3): 671–679 pspa
dc.relation.referencesLutcavage, M.E., P.G. Bushnell and D.R. Jones. 1990. Oxygen transport in the leatherback sea turtle Dermochelys coriacea. Physiol. Zool. 63: 1012-1024 p.spa
dc.relation.referencesLukacs, M.F., H. Harstad, U. Grimholt, M. Beetz-Sargent, G.A. Cooper, L. Reid, H.G. Bakke, R.B. Phillips, K.M. Miller, W.S. Davidson and B.F. Koop. 2007. Genomic organization of duplicated major histocompatibility complex class I regions in Atlantic salmon (Salmo salar). BMC genomics. 8(1): 1-16 p.spa
dc.relation.referencesMarco, A., C. Carreras y E. Abella. 2008. Tortuga boba – Caretta caretta. En: Enciclopedia Virtual de los Vertebrados Españoles. Carrascal, L. M., Salvador, A. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/.spa
dc.relation.referencesMarzio, R., J. Mauël and S. Betz-Corradin. 1999. CD69 and Regulation of the Immune Function. Immunopharmacology and Immunotoxicology. 21(3): 565-582 p.spa
dc.relation.referencesMayne, B., A.D. Tucker, O. Berry y S. Jarman. 2020. Lifespan estimation in marine turtles using genomic promoter CpG density. Plos one. 15(7): 1-8 p.spa
dc.relation.referencesMcDermaid, A., B. Monier, J. Zhao, B. Liu and Q. Ma. 2019. Interpretation of differential gene expression results of RNA-seq data: review and integration. Briefings in bioinformatics. 20: 2044–2054 p.spa
dc.relation.referencesMetzker, M.L. 2010. Sequencing technologies - the next generation. Nature reviews Genetics. 11(1): 31-46 p.spa
dc.relation.referencesMilton, S.L. 1994. The physiology of hypoxia and anoxia tolerance in three species of turtle: the loggerhead sea turtle (Caretta caretta), green sea turtle (Chelonia mydas), and freshwater Trachemys scripta. University of Miami. 175 p.spa
dc.relation.referencesMu, Y., W. Li, Z. Wei, L. He, W. Zhang and X. Chen. 2020. Transcriptome analysis reveals molecular strategies in gills and heart of large yellow croaker (Larimichthys crocea) under hypoxia stress. Fish & shellfish immunology. 104: 304-313 p.spa
dc.relation.referencesNath, A.K., J. Ma, Z.Z. Chen, Z. Li, M.D.C. Vitery, M.L. Kelley, R.T. Peterson, R.E. Gerszten and J.J. Yeh. 2020. Genetic deletion of gpr27 alters acylcarnitine metabolism, insulin sensitivity, and glucose homeostasis in zebrafish. The FASEB Journal. 34(1): 1546-1557 p.spa
dc.relation.referencesNiu, N., D.J. Schaid, R.P Abo, K. Kalari, B.L. Fridley, Q. Feng, G. Jenkins, A. Batzler, A.G. Brisbin, J.M. Cunningham, L. Li, Z. Sun, P. Yang and L. Wang. 2012. Genetic association with overall survival of taxane-treated lung cancer patients -a genome-wide association study in human lymphoblastoid cell lines followed by a clinical association study. BMC cancer. 12(1): 1-13 p.spa
dc.relation.referencesOgg, S., S. Paradis, S. Gottlieb, G.I. Patterson, L. Lee, H.A. Tissenbaum, and G. Ruvkun. 1997. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 389: 994-999 pspa
dc.relation.referencesOlson, K.R., J.A. Donald, R.A. Dombkowski and S.F. Perry. 2012. Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respiratory physiology & neurobiology. 184(2): 117-129 p.spa
dc.relation.referencesOzsolak, F. and P.M. Milos. 2011. RNA sequencing: advances, challenges, and opportunities. Nature Rev. Genet. 12: 87–98 p.spa
dc.relation.referencesPappworth, I.Y., C. Hayes, J. Dimmick, B.P. Morgan, V.M. Holers and K.J. Marchbank. 2012. Mice expressing human CR1/CD35 have an enhanced humoral immune response to T-dependent antigens but fail to correct the effect of premature human CR2 expression. Immunobiology. 217(2): 147-157 p.spa
dc.relation.referencesPotter, C. and A.L. Harris. 2004. Hypoxia inducible carbonic anhydrase IX, marker of tumor: hypoxia, survival pathway and therapy target. Cell cycle. 3(2): 159-162 p.spa
dc.relation.referencesQuesada, V., S. Freitas-Rodríguez, J. Miller, J.G. Pérez-Silva, Z.F. Jiang, W. Tapia and C. López-Otín. 2019. Giant tortoise genomes provide insights into longevity and age-related disease. Nature ecology & evolution. 3(1): 87-95 p.spa
dc.relation.referencesRaymond, W., N.A. Vo and A. Kiyoshi. 2012. Transformations for the compression of FASTQ quality scores of next-generation sequencing data. Bioinformatics. 28(5): 628–635 p.spa
dc.relation.referencesRitchie, M.E., B. Phipson, D. Wu, Y. Hu, C.W Law y W. Shi. 2015. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research. 43(7): 47 p.spa
dc.relation.referencesRobinson, M.D., D.J. McCarthy and G.K. Smith. 2010. EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26(1): 40-139 p.spa
dc.relation.referencesRousselet, E., M. Levin, E. Gebhard, B.M. Higgins, S. DeGuise and C.A. Godard-Codding. 2013. Evaluation of immune functions in captive immature loggerhead sea turtles (Caretta caretta). Veterinary Immunology and Immunopathology. 156(1-2): 43-53 p.spa
dc.relation.referencesRobin, J.D., A.T. Ludlow, R. LaRanger, W.E. Wright and J.W. Shay. 2016. Comparison of DNA quantification methods for next generation sequencing. Scientific reports. 6(1): 1-10 p.spa
dc.relation.referencesSancho, D., M. Gómez and F. Sánchez-Madrid. 2005. CD69 is an immunoregulatory molecule induced following activation. Trends in immunology. 26(3): 136-140 p.spa
dc.relation.referencesSchmidt, E. and H. Knackmuss. 1980. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochemical Journal. 192(1): 339-347 p.spa
dc.relation.referencesSchwartz, T.S. and A.M. Bronikowski. 2016. Evolution and function of the insulin and insulin like signaling network in ectothermic reptiles: some answers and more questions. Integrative and Comparative Biology. 56(2): 171-184 p.spa
dc.relation.referencesSeim, I., X. Fang, Z. Xiong, A.V. Lobanov, Z. Huang, S. Ma and V.N. Gladyshev. 2013. Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nature communications. 4(1): 1-8 p.spa
dc.relation.referencesShiina, T., H. Inoko and J.K. Kulski. 2004. An update of the HLA genomic region, locus information and disease associations. Tissue Antigens. 64: 631-649 p.spa
dc.relation.referencesSilagi, E.S., P. Batista, I.M. Shapiro and M.V. Risbud. 2018. Expression of carbonic anhydrase III, a nucleus pulposus phenotypic marker, is hypoxia-responsive and confers protection from oxidative stress-induced cell death. Scientific Reports. 8(1): 1-13 p.spa
dc.relation.referencesSparkman, A.M., T.S. Schwartz, J.A. Madden, S.E. Boyken, N.B. Ford, J.M. Serb and A.M. Bronikowski. 2012. Rates of molecular evolution vary in vertebrates for insulin-like growth factor-1 (IGF-1), a pleiotropic locus that regulates life history traits. General and comparative endocrinology. 178(1): 164-173 p.spa
dc.relation.referencesSpeakman, J.R., J.D. Blount, A.M. Bronikowski, R. Buffenstein, C. Isaksson, T.B.L. Kirkwood and C. Selman. 2015. Oxidative stress and life histories: Unresolved issues and current needs. Ecology and Evolution. 5: S745–S757 p.spa
dc.relation.referencesSteinmann, G.G. 1986 Changes in the human thymus during aging. Curr. Top.. Pathol. 75: 43-Storey, K.B. 2007. Anoxia tolerance in turtles: Metabolic regulation and gene expression. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 147(2): 263- 276 p.spa
dc.relation.referencesStutte, S., T. Quast, N. Gerbitzki, T. Savinko, N. Novak, J. Reifenberger, B. Homey, W. Kolanus, H. Alenius and I. Forster. 2010. Requirement of CCL17 for CCR7- and CXCR4-dependent migration of cutaneous dendritic cells. Proceedings of the National Academy of Sciences. 107(19): 8736-8741 p.spa
dc.relation.referencesSupuran, C.T. 2016. Structure and function of carbonic anhydrases. Biochem. J. 473: 2023– 2032 p.spa
dc.relation.referencesSu, S., C.W. Law, C. Ah-Cann, M.L. Asselin-Labat, M.E. Blewitt and M.E. Ritchie. 2017. Glimma: interactive graphics for gene expression analysis. Bioinformatics. 33(13): 2050-2052 p.spa
dc.relation.referencesThankaswamy-Kosalai, S., P. Sen and I. Nookaew. 2017. Evaluation and assessment of read mapping by multiple next-generation sequencing aligners based on genome-wide characteristics. Genomics. 109(3-4): 186-191 p.spa
dc.relation.referencesTenney, S.M., D. Bartlett, J.P Farber and J.E. Remmers. 1974. Mechanics of the respiratory cycle in the green turtle (Chelonia mydas). Respiration physiology. 22(3): 361-368 pspa
dc.relation.referencesTeelucksingh, S., S. Eckert and P. Nunes. 2010. Marine turtles, ecosystem services and human welfare in the marine ecosystems of the Caribbean Sea: a discussion of key methodologies. Études caribéennes. 15: 2–14 p.spa
dc.relation.referencesUjvari, B. and T. Madsen. 2011. Do natural antibodies compensate for humoral immunosenescence in tropical pythons?. Funct. Ecol. 25: 813–817 p.spa
dc.relation.referencesvan Dam R.P. and C.E. Diez. 1997. Diving behavior of immature hawksbills (Eretmochelys imbricata) in a Caribbean reef habitat. Coral Reefs. 16:133–138 p.spa
dc.relation.referencesWang, Z., M. Gerstein and M. Snyder. 2009. RNA-seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10: 57–63 p.spa
dc.relation.referencesWu, D. and S.N. Meydani. 2008. Age‐associated changes in immune and inflammatory responses: impact of vitamin E intervention. Journal of leukocyte biology. 84(4): 900-914 p.spa
dc.relation.referencesWykoff, C.C., N.J. Beasley, P.H. Watson, K.J. Turner, J. Pastorek, A. Sibtain, G.D. Wilson, H. Turley, K.L. Talks, P.H. Maxwell, C.W. Pugh, P.J. Ratcliffe and AL. Harris. 2000. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 60:7075–7083 p.spa
dc.relation.referencesYu, Y., J.C. Fuscoe, C. Zhao, C. Guo, M. Jia, T. Qing, D.I. Bannon, L. Lancashire, W. Bao, T. Du, H. Luo, Z. Su, W.D. Jones, C.L. Moland, W.S. Branham, F. Qian, B. Ning, Y. Li, H. Hong, L. Guo, N. Mei, T. Shi, K.Y. Wang, R.D. Wolfinger and C. Wang. 2014. A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nature communications. 5(1): 1-11 p.spa
dc.relation.referencesZhang, G., J. Zhang, X. Wen, C. Zhao, H. Zhang, X. Li and S. Yin. 2017. Comparative iTRAQ‐ Based Quantitative Proteomic Analysis of Pelteobagrus vachelli Liver under Acute Hypoxia: Implications in Metabolic Responses. Proteomics. 17: 17-18 p.spa
dc.relation.referencesZimmerman, L.M., G.S. Clairardin, R.T. Paitz, J.W. Hicke, K.A. LaMagdeleine, L.A. Vogel and R.M. Bowden. 2013. Humoral immune responses are maintained with age in a long-lived ectotherm, the red-eared slider turtle. Journal of Experimental Biology. 216(4): 633-640 pspa
dc.relation.referencesZmienko, A., P. Jackowiak and M. Figlerowicz. 2011. Transcriptome sequencing: next generation approach to RNA functional analysis. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology. 92(4): 311-319 pspa
dc.description.hashtag#BiologíaMarinaspa
dc.format.rda1 recurso en línea (archivo de texto)spa
dc.description.rdaRequerimientos de sistema: Adobe Acrobat Readerspa
dc.description.abstractenglishThe different conditions experienced by Caretta caretta during their life cycle, due to its longevity and the ability to migrate long distances, are reflected in qualitative and quantitative changes in gene expression at different life stages of the species that can be revealed through transcriptome analysis. In this study, a differential gene expression analysis was performed, comparing transcriptomes of adult turtles (Adul) and juvenile turtles (Juv), and related to hypoxia and immune response. The sequences used correspond to captive nesting turtles from the Colombian Caribbean, available in GenBank, these sequences were filtered (Trimmomatic), aligned, mapped (HISAT2) and assembled (StringTie) against a reference transcriptome. The expression level of reads from each transcriptome were quantified (featureCounts) for differential expression analysis (DESeq2) and genes were functionally annotated (Blast2GO-OmicsBox). 84% of reads were correctly mapped, and from the Adul versus Juv comparison, 1401 differentially expressed genes (DEGs) were identified (p-aj < 0.05), 507 up-regulated and 894 down-regulated (log₂ fold-change). 40 % of the DEGs were functionally annotated, identifying 8252 GO terms and 583 reference pathways of the KEGG ontology, where the immune response, oxidative stress response, and carbohydrate metabolism stand out. Possible mechanisms and metabolic pathways involved with the expression of these genes are proposed, according to their function and level of expression in each stage. The suggested hypotheses should be subjected to research from more specific approaches that consider the measurement of variables not evaluated in the present investigation.spa
dc.publisher.facultyFacultad de Ciencias Naturales e Ingenieríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_46ecspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record