Show simple item record

dc.contributor.advisorGil Castañeda, Rodrígo
dc.creatorLópez Diago, Diana
dc.date.accessioned2022-07-07T16:00:40Z
dc.date.available2022-07-07T16:00:40Z
dc.date.created2022
dc.identifier.urihttp://hdl.handle.net/20.500.12010/27429
dc.description.abstractEl uso de vegetales biofortificados con yodo representan una alternativa a la sal yodada para prevenir la deficiencia de este elemento y sus efectos en la salud. En este estudio, tres variedades de hortalizas (lechuga (Lactuca sativa) variedad mizuna verde, kale rizado (Brassica oleracea var. sabellica) y kale liso (Brassica oleracea var. palmifolia) se cultivaron en un sistema hidropónico tipo NFT con 10μmol/L de yoduro de potasio KI para inducir la absorción de yodo por parte de las plantas y de esta manera logar su biofortificación. Se evaluó el crecimiento y desarrollo de las plantas por medio de sus características morfológicas, su peso fresco y seco. Adicionalmente, el contenido de yodo fue determinado por medio del análisis cuantitativo de la materia seca basada en la titulación con tiosulfato de sodio. No se evidenciaron efectos negativos sobre el crecimiento y la morfología de las plantas expuestas al yodo ni una diferencia significativa en el contenido de yodo entre las plantas del tratamiento y el control; sin embargo, ya que el diseño experimental tuvo limitaciones por la falta de réplicas del control, es necesario considerar este parámetro en la lectura de los resultados de absorción de yodo.spa
dc.format.extent25 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.subjectHorticulturaspa
dc.titleEvaluación de la biofortificación con yodo en lechuga (Lactuca sativa) y dos variedades de kale (Brassica oleracea var. sabellica, Brassica oleracea var. palmifolia,) en un sistema hidropónico tipo NFTspa
dc.subject.lembHorticultura -- Tesis y disertaciones académicasspa
dc.subject.lembCobertura vegetal -- Tesis y disertaciones académicasspa
dc.subject.lembLechuga -- Tesis y disertaciones académicasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.localAbierto (Texto Completo)spa
dc.creator.degreeEspecialista Tecnológico en Horticultura Protegida
dc.publisher.programEspecialización Tecnológica en Horticultura Protegida
dc.relation.referencesBlasco, B., Leyva, R., Romero, L. & Ruiz, J. 2013. Iodine effects on phenolic metabolism in lettuce plants under salt stress. Journal of Agriculture and Food Chemistry (61)11: 2591-2596. https://doi.org/10.1021/jf303917nspa
dc.relation.referencesBlasco, B.; Rios, J.J.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.M.; Rosales, M.A.; Ruiz, J.M.& Romero, L. 2010. Photorespiration process and nitrogen metabolism in lettuce plants (Lactuca sativa L.): Induced changes in response to iodine biofortification. Journal of Plant Growth Regulation. 29: 477–486.spa
dc.relation.referencesBlasco, B.; Rios, J.J.; Cervilla, L.M.; Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.M.; Rosales, M.A.; Romero, L. & Ruiz, J.M. 2011. Iodine application affects nitrogen-use efficiency of lettuce plants (Lactuca sativa L.). Acta Agriculturae Scandinavica B Soil Plant Science. 61: 378–383.spa
dc.relation.referencesDávila-Rangel, I., Lejía-Martínez, P., Medrano-Macías, J., Fuentes-Lara, L., González-Morales, S., Juárez-Maldonado, A. & Benavides-Mendoza, A. 2019. Iodine biofortiifcation of crops. Nutritional quality improvements in plants. Concepts and strategies in plant sciences. Springer Nature Switzerland. 79-113pp.spa
dc.relation.referencesDíaz-Gómez, J., Twyman, R., Zhu, C., Farré, G., Serrano, J., Portero-Otin, J., Muñoz, P., Sandmann, G., Capell, T. & Christou, P. 2017. Biofortification of crops with nutrients: factors affecting utilization and storage. Current Opinion in Biotechnology, (44): 115-123spa
dc.relation.referencesDuborská, E., Urik, M., Seda, M. 2020. Iodine biofortification of vegetables could improve iodine supplementation status. Agronomy. 10:1574. doi:10.3390/agronomy10101574spa
dc.relation.referencesGonella, M., Renna, M., D’imperio, M., Santamaría, P. & Serio, F. 2019. Iodine Biofortification of Four Brassica Genotypes is Effective Already at Low Rates of Potassium Iodate. Nutrients. 11: doi:10.3390/nu11020451spa
dc.relation.referencesGonzali, S., Kiferle, C. & Perata, P. 2017. Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Current opinion in biotechnology. 44: 16-26. https://doi.org/10.1016/j.copbio.2016.10.004spa
dc.relation.referencesHerrett, R., Hatfield Jr., H., Crosby, D & Vlitos, A. 1962. Leaf abscission induced by the iodide ion. Plant Physiol 37:358–363 (1962).spa
dc.relation.referencesIncrocci L., Massa D., Pardossi A., Bacci L., Battista P., Rapi B., Romani M., (2012). A decision support system to optimise fertigation management in greenhouse crops. Acta Horticulturae. 927: 115- 122 Johnson, C. 2003. Database of the iodine content of soils populated with data from published literature. British Geological Survey. Nottingham, UK. 40p.spa
dc.relation.referencesKiferle, C., Gonzali, S., Howerlda, H., Real, R. & Perata, P. 2013. Tomato fruits: a good target for iodine biofortification. Frontiers in plant science. https://doi.org/10.3389/fpls.2013.00205spa
dc.relation.referencesLazarus, J. 2015. The importance of iodine in public health. Environmental geochemistry and health. 37: 615-618spa
dc.relation.referencesLi R, Li DW, Yan AL, Hong CL, Liu HP, Pan LH, Song MY, Dai ZX, Ye ML, Weng HX (2018). The bioaccessibility of iodine in the biofortified vegetables throughout cooking and simulated digestion. J Food Sci Technol 55:366–375. https://doi.org/10.1007/s13197-017-2946-4spa
dc.relation.referencesMartínez-Gascón, L., Ros, G., Periago, J. & Martínez, C. 2005. Importancia del yodo en la nutrición humana y en la práctica clínica. Alimentación, nutrición y salud. 13 (2):53-60spa
dc.relation.referencesPlantin-Carrenard E, Beaudeux J, Foglietti M. 2000. Physiopathology of iodine: current interest of its measurement in biological fluids. Ann Biol Clin 58 (4): 395-403.spa
dc.relation.referencesPuccinelli, M., Landi, M., Maggini, R., Pardossi, A. & Incrocci, L. 2021. Iodine biofortification of sweet basil and lettuce grown in two hydroponic systems. Scientia Horticulturae 44. https://doi.org/10.1016/j.scienta.2020.109783spa
dc.relation.referencesSharma, N., Acharya, S., Kumar, K., Singh, N. & Chaurasia, O. 2018. Hydroponics as an advance technique for vegetable production: an overview. Journal of soil and water conservation. 17(4): 364-371. DOI: 10.5958/2455-7145.2018.00056.5spa
dc.relation.referencesSmolen, S., Kowalska, I. & Sady, W. 2014. Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Scientific Horticulture.166: 9–16.spa
dc.relation.referencesSmoleń, S., Kowalska, I., Skoczylas, L., Liszka-Skoczylas, M., Grzanka, M., Halka, M. & Sady, W. 2018. The effect of salicylic acid on biofortification with iodine and selenium and the quality of potato cultivated in the NFT system. Scientia Horticulturae. 240: 530-543spa
dc.relation.referencesSmolen, S., Smolen, Ledwozyw-Smolem, I., Halka, M., Sady, W. & Kovacik, P. 2017. The absorption of iodine from 5-iodosalicylic acid hydroponically grown lettuce. Scientia Horticulturae. 225: 716-725.spa
dc.description.hashtag#Horticulturaspa
dc.description.abstractenglishThe use of iodine-biofortified vegetables may be a health alternative instead of iodine-biofortified salt for preventing iodine (I) deficiency and related human disorders. In this study, three species varieties (Mizuna lettuce (Lactuca sativa), curly kale (Brassica oleracea var. sabellica) and lacinato kale (Brassica oleracea var. palmifolia) were grown in a NFT system with 10μm of potassium iodide KI to produce iodine-biofortified vegetables. Crop performances and quality traits were analyzed; iodine content was measured on dry matter based on a titration methodology with the use of sodium thiosulfate. There were no negative effects on the plant’s growth or morphology on those exposed to I-. Also, there were no significant differences between those plants exposed to iodine and the control group. Due to the limitations on the experimental design related to the lack of repetitions on the control, it is necessary to take into account this when analyzing these results.spa
dc.publisher.facultyCiencias Naturales e Ingeniería
dc.type.coarhttp://purl.org/coar/resource_type/c_46ecspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record