Show simple item record

dc.coverage.spatialColombiaspa
dc.creatorSabogal, Hermes
dc.creatorGarcía-Bedoya, Olmer
dc.creatorGranados, Oscar M.
dc.date.accessioned2021-11-09T17:30:32Z
dc.date.available2021-11-09T17:30:32Z
dc.date.created2021
dc.identifier.urihttp://hdl.handle.net/20.500.12010/22282
dc.description.abstractEl articulo analiza la pobreza en Colombia utilizando herramientas de aprendizaje automático supervisado a partir de los datos de Hogares, Personas y Vivienda del DANE para el periodo 2016 a 2019. Se examina la percepción de factores que influyen en la pobreza teniendo en cuenta las especificidades estructurales que conforman la medición de la pobreza, como la salud, el trabajo y la educación. El aporte de esta investigación es comparar el Índice de pobreza multidimensional con los factores relevantes de la situación de pobreza mediante el uso de herramientas aprendizaje automático. Los hallazgos revelan que el algoritmo XGBoost identifica los indicadores que causan la pobreza y permite proponer un marco de trabajo para lucha contra la pobreza. Palabras Clave: Aprendizaje automático, Medición y análisis de la pobreza, construcción de modelos y estimación, cambios tecnológicos.spa
dc.format.extent32 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.sourceinstname:Universidad de Bogotá Jorge Tadeo Lozanospa
dc.sourcereponame:Expeditio Repositorio Institucional UJTLspa
dc.subjectBrecha digitalspa
dc.subjectDesigualdad socialspa
dc.titleUn análisis de la pobreza en Colombia basado en aprendizaje automáticospa
dc.type.localTrabajo de grado de maestríaspa
dc.subject.lembPobreza -- Investigaciones -- Tesis y disertaciones académicasspa
dc.subject.lembNecesidades básicas -- Tesis y disertaciones académicasspa
dc.subject.lembDerecho al acceso a Internet -- Tesis y disertaciones académicasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.localAbierto (Texto Completo)spa
dc.identifier.repourlhttp://expeditio.utadeo.edu.cospa
dc.creator.degreeMagíster en Ingeniería y Analítica de Datosspa
dc.publisher.programMaestría en Ingeniería y Analítica de Datosspa
dc.relation.referencesAkiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization Framework. http://arxiv.org/pdf/1907.10902v1:PDFspa
dc.relation.referencesAlkire, S. & Foster, J. (2011). Counting and multidimensional poverty measurement. Journal of Public Economics, 95 (7), 476-487. https://doi.org/https://doi.org/10.1016/j.jpubeco.2010.11.006spa
dc.relation.referencesAlkire, S. & Santos, M. E. (2013). A Multidimensional Approach: Poverty Measurement & Beyond. Social Indicators Research, 112 (2), 239-257. https://doi.org/10.1007/s11205-013-0257-3spa
dc.relation.referencesAnand, S. & Sen, A. (1997). Concepts or human development and poverty! A multidimensional perspective. United Nations Development Programme, Poverty and human development: Human development papers, 1-20.spa
dc.relation.referencesArestis, P. & Caner, A. (2010). Capital account liberalisation and poverty: how close is the link? Cambridge Journal of Economics, 34 (2), 295-323.spa
dc.relation.referencesAtkinson, A. B. & Bourguignon, F. (1982). The Comparison of Multi-Dimensioned Distributions of Economic Status. The Review of Economic Studies, 49 (2), 183-201. https://doi.org/10.2307/2297269spa
dc.relation.referencesBahamón, M., Domínguez, J. & Núñez, J. (2013). La pobreza en Colombia, 2001-2005. Curvas globales, dominancia y aspectos inferenciales. Revista de Economía Institucional, 15 (29).spa
dc.relation.referencesBastiaensen, J., Herdt, T. D. & D’Exelle, B. (2005). Poverty reduction as a local institutional process. World Development, 33 (6), 979-993. https://doi.org/https://doi.org/10.1016/j.worlddev.2004.09.019spa
dc.relation.referencesChapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide.spa
dc.relation.referencesChen, T. & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785spa
dc.relation.referencesChen, T. & He, T. (2020). xgboost: eXtreme Gradient Boosting. https://mran.microsoft.com/snapshot/2020-07- 15/web/packages/xgboost/vignettes/xgboost.pdfspa
dc.relation.referencesCollins, P. D. (2012). Governance and the Eradication of Poverty: an Introduction to the Special Issue. Public Administration and Development, 32 (4-5), 337-344. https://doi.org/https://doi.org/10.1002/pad.1640spa
dc.relation.referencesDutt, P. & Tsetlin, I. (2020). Income distribution and economic development: Insights from machine learning. https://doi.org/doi:10.1111/ecpo.12157spa
dc.relation.referencesEpstein, G. S. & Gang, I. N. (2009). Poverty and Governance: The Contest for Aid. Review of Development Economics, 13 (3), 382-392. https://doi.org/https://doi.org/10.1111/j.1467-9361.2009.00496.xspa
dc.relation.referencesEspinosa-Espinosa, A., Madero-Jirado, M., Rodríguez-Puello, G. & DíazCanedo, L. C. (2020). Etnicidad, espacio y desarrollo humano en comunidades pobres urbanas: la comuna 6 en Cartagena de Indias, Colombia. Cuadernos de Economía, 39 (81), 635-665. https://doi.org/10.15446/cuad.econ.v39n81.77333spa
dc.relation.referencesFushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21 (2), 137-146spa
dc.relation.referencesGates, S., Hegre, H., Nygård, H. M. & Strand, H. (2012). Development Consequences of Armed Conflict. World Development, 40 (9), 1713-1722. https://doi.org/https://doi.org/10.1016/j.worlddev.2012.04.031spa
dc.relation.referencesGrindle, M. S. (2004). Good Enough Governance: Poverty Reduction and Reform in Developing Countries. Governance, 17 (4), 525-548. https://doi.org/https://doi.org/10.1111/j.0952-1895.2004.00256.xspa
dc.relation.referencesHegre, H., Østby, G. & Raleigh, C. (2009). Poverty and Civil War Events: A Disaggregated Study of Liberia. Journal of Conflict Resolution, 53 (4), 598-623. https://doi.org/10.1177/0022002709336459spa
dc.relation.referencesHssina, B., Merbouha, A., Ezzikouri, H. & Erritali, M. (2014). A comparative study of decision tree ID3 and C4.5. International Journal of Advanced Computer Science and Applications, 4 (2).spa
dc.description.hashtag#BrechaDigitalspa
dc.description.abstractenglishThe article analyzes poverty in Colombia using supervised machine learning tools from DANE’s date of Households, People, and Housing for 2016 to 2019. The article examines the perception of factors that influence poverty, considering the structural specificities that make up the poverty measurement, such as health, work, and education. The contribution of this research is to compare the Multidimensional Poverty Index with the factors that are relevant to the poverty situation using machine learning tools. The findings reveal that the XGBoost algorithm identifies indicators that cause poverty and allows proposing a framework to fight poverty. Keywords: Machine Learning, Measurement and Analysis of Poverty, Computational Techniques; Simulation Modeling, Model Construction and Estimation, Technologicalspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record