• español
    • English
    • português
  • English 
    • español
    • English
    • português
  • Login
View Item 
  •   Home
  • Producción Editorial
  • Revistas Institucionales
  • Revista Mutis
  • Revista Mutis volumen 11, número 1, año 2021
  • View Item
  •   Home
  • Producción Editorial
  • Revistas Institucionales
  • Revista Mutis
  • Revista Mutis volumen 11, número 1, año 2021
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
RecursosRecursos de apoyo¿Cómo publicar?

Browse

All of ExpeditioCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects
This CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage StatisticsView Google Analytics Statistics
Estadísticas GTMVer Estadísticas GTM

Detección de contratistas multiobjeto mediante minería de textos para focalizar el ejercicio del control y vigilancia fiscal

Thumbnail

Citación

       
Export: <XML METS>
View/Open
Ver documento (1.452Mb)
Fin embargo: 
Date
2021-04-05
Author
Dulce Vanegas, Manuel Francisco
Beltrán Gómez, Adam
Metadata
Show full item record
Documentos PDF
Abstract
Las entidades fiscalizadoras superiores, y en específico su ente rector, la Organización Internacional de las Entidades Fiscalizadoras Superiores (INTOSAI), han impulsado en los últimos cuatro años iniciativas encaminadas al uso de tecnologías y métodos para sus procesos de vigilancia y fiscalización que sean replicables y que generen resultados tangibles en el contexto fiscal. En este sentido, la Contraloría General de la República de Colombia viene fortaleciendo su infraestructura tecnológica y capacidades técnicas con mirar a mejorar y optimizar sus esfuerzos en cuanto a la vigilancia de los recursos de los colombianos. Aunque dicha tarea no es sencilla, esta entidad ha logrado detectar patrones de aquellos contratistas que acaparan la contratación estatal, logrando estar en diferentes sectores económicos sin tener probablemente la competencia técnica para cumplir el objeto contractual estipulado. A estos se les conoce en el ámbito de la Contraloría General como contratistas “multiobjeto”. En el presente artículo se muestra la construcción de un conjunto de datos de 1.998 registros etiquetado por expertos, que corresponden a contratos del sector educativo en Colombia. Con este instrumento se llevó a cabo el entrenamiento y las pruebas sobre un clasificador automático construido para los objetos contractuales a fin de detectar presuntos contratistas “multiobjeto”. Adicionalmente, se encontró que el mejor algoritmo de clasificación fue “Máquina de Soporte Vectorial Lineal”, con una exactitud de 84 %, el cual permitió finalmente listar por agrupamiento los presuntos contratistas de este tipo.
Summary in foreign language
Supreme audit institutions, and specifically its governing body, the International Organization of Supreme Audit Institutions (intosai), have promoted during the last four years a series of initiatives in the fiscal context aimed at the use of technologies and methods that are replicable and generate tangible results, thus reinforcing the sur-veillance and auditing processes carried out by supreme audit institutions. In this sense, the Comptroller General of the Republic of Colombia has been strengthening its technological infrastructure and technical capacities in order to improve and optimize its efforts in the monitoring of the resources of Colombian citizens. Although this task is not an easy one, this entity has managed to detect patterns of contractors who monopolize state con-tracting and are inserted into different economic sectors, without probably having the technical competence to fulfill stipulated contractual deeds. These subjects are known in the field of the General Comptroller’s office as “multi-object” contractors. This article explains the construction of a data set of 1,998 records labeled by experts that correspond to education sector contracts. Training and tests were carried out with this tool on an automatic classifier built for the contractual objects in order to detect suspected “multi-object” contractors. It was found that the best classification algorithm was the “Linear Vector Support Machine,” with an accuracy of 84%, which will eventually find presumed multi-object contractors by grouping.
URI
http://hdl.handle.net/20.500.12010/21575
Link to resource
https://revistas.utadeo.edu.co/index.php/mutis/issue/view/140
https://doi.org/10.21789/22561498.1732
Collections
  • Revista Mutis volumen 11, número 1, año 2021 [7]
Estadísticas Google Analytics
Comments

Respuesta Comentario Repositorio Expeditio

Gracias por tomarse el tiempo para darnos su opinión.


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas

 

 


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas