Show simple item record

dc.contributor.advisorPiñeros Castro, Yineth
dc.contributor.advisorConde Rivera, Laura
dc.coverage.spatialColombiaspa
dc.creatorOrtiz Cabrera Iván Alexander
dc.date.accessioned2021-08-09T19:20:52Z
dc.date.available2021-08-09T19:20:52Z
dc.date.created2021
dc.identifier.urihttp://hdl.handle.net/20.500.12010/20875
dc.description.abstractEl furfural y ácido levulínico (AL) son compuestos derivados de biomasa de alto interés para la industria ya que permite la obtención de múltiples productos. En este trabajo se evaluó su obtención en un proceso de dos etapas empleando un catalizador de estaño soportado en un carbón activado sulfonado (CA-S-Sn) a base de cascarilla de cacao en un sistema bifásico. El catalizador se caracterizó mediante análisis próximo, isoterma de adsorción de N2 a 77K, FTIR y Py-FTIR; presentó una estructura microporosa y una relación de sitios ácidos de Brønsted y Lewis de 0,057. En la primera etapa, se evaluaron las condiciones de temperatura y tiempo obteniendo un rendimiento de furfural de 23,28% a 170 °C por 3 h. En la segunda etapa, se evaluó el efecto de la temperatura y tiempo del proceso sobre el rendimiento y gasto energético de la producción de AL utilizando la metodología de superficie de respuesta; se obtuvo un rendimiento de AL de 28,25 % con un gasto energético de 0,12 kWh/gAL a 180,39 °C por 1,83 h. Estos resultados demuestran la posibilidad de obtener furfural y AL en un proceso de dos etapas a partir del pasto Camerún morado.spa
dc.format.extent24 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.sourceinstname:Universidad de Bogotá Jorge Tadeo Lozanospa
dc.sourcereponame:Expeditio Repositorio Institucional UJTLspa
dc.subjectSistemas indutrialesspa
dc.titleProducción de furfural y ácido levulínico a partir de pasto Camerún morado (Pennisetum purpureum cv. morado) utilizando un catalizador de estaño soportado en un carbón activado sulfonado mediante un proceso de dos pasosspa
dc.type.localTrabajo de grado de maestríaspa
dc.subject.lembProcesos de manufactura -- Tesis y disertaciones académicasspa
dc.subject.lembControl de procesos industriales -- Tesis y disertaciones académicasspa
dc.subject.lembPastos -- Investigaciones -- Tesis y disertaciones académicasspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.localAcceso restringidospa
dc.identifier.repourlhttp://expeditio.utadeo.edu.cospa
dc.creator.degreeMagister(es) en ingeniería de procesos y sistemas industrialesspa
dc.publisher.programMaestría en ingeniería de procesos y sistemas industrialesspa
dc.relation.referencesAishah, N., & Amin, S. (2013). Catalytic Conversion of Lignocellulosic Biomass to Levulinic Acid in Ionic Liquid. Bioresources, 8, 5761–5772.spa
dc.relation.referencesAlonso, D. M., Gallo, M. R., Mellmer, M. A., Wettstein, S. G., & Dumesic, J. A. (2013). Catalysis Science & Technology gamma-valerolactone using solid acid catalysts †. 927–931. https://doi.org/10.1039/c2cy20689gspa
dc.relation.referencesASTM 2867–09. Standard Test Methods for Moisture in Activated Carbon. ASTM Indternational, West Conshohocken, PA, 2014.spa
dc.relation.referencesASTM 5832 –98. Standard Test Methods for Volatile Matter Content of Activated Carbon Samples. ASTM International, West Conshohocken, PA, 2014.spa
dc.relation.referencesASTM 2866– 94 . Standard Test Methods for total Ash Content of Activated Carbon. ASTM International, West Conshohocken, PA, 1999.spa
dc.relation.referencesASTM 3838 – 80. Método de Prueba Estándar para pH del Carbón Activado. ASTM International, West Conshohocken, PA, 1999.spa
dc.relation.referencesASTM D-5029. Standard Test Methods for Determining Water Soluble Compunds. Carbon. ASTM International, 2011.spa
dc.relation.referencesArancon, R. A., Barros, H. R., Balu, A. M., Vargas, C., & Luque, R. (2011). Valorisation of corncob residues to functionalised porous carbonaceous materials for the simultaneous esterification/transesterification of waste oils. Green Chemistry, 13(11), 3162–3167. https://doi.org/10.1039/c1gc15908aspa
dc.relation.referencesBhowmick, G. De, Sarmah, A. K., & Sen, R. (2017). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.09.163spa
dc.relation.referencesBureros, G. M. A., Tanjay, A. A., Cuizon, D. E. S., Go, A. W., Cabatingan, L. K., Agapay, R. C., & Ju, Y. H. (2019). Cacao shell-derived solid acid catalyst for esterification of oleic acid with methanol. Renewable Energy, 138, 489–501. https://doi.org/10.1016/j.renene.2019.01.082spa
dc.relation.referencesCerdas, R., & Vallejos, E. (2010). Productivity of Camerun grass (Pennisetum purpureum) under different nitrogen fertilizer doses and harvest frequencies in the dry tropical forest of Costa Rica. InterSedes, 5, 167–175. http://www.redalyc.org/articulo.oa?id=66630511spa
dc.relation.referencesCerro, G. C., La Cotera, C. C., & Aguirre, D. (2013). Producción y caracterización de carbones activados a partir de residuos agroindustriales. Manglar, 10(2), 17–25.spa
dc.relation.referencesChen, S. S., Maneerung, T., Tsang, D. C. W., Ok, Y. S., & Wang, C. H. (2017). Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chemical Engineering Journal, 328, 246–273. https://doi.org/10.1016/j.cej.2017.07.020spa
dc.relation.referencesChen, W. H., Ko, H. H., Sakthivel, A., Huang, S. J., Liu, S. H., Lo, A. Y., Tsai, T. C., & Liu, S. Bin. (2006). A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment. Catalysis Today, 116(2 SPEC. ISS.), 111–120. https://doi.org/10.1016/j.cattod.2006.01.025spa
dc.relation.referencesChoudhary, V., Sandler, S. I., & Vlachos, D. G. (2012). Conversion of Xylose to Furfural Using Lewis and Brønsted Acid Catalysts in Aqueous Media.spa
dc.relation.referencesDaengprasert, W., Boonnoun, P., Laosiripojana, N., Goto, M., & Shotipruk, A. (2011). Application of Sulfonated Carbon-Based Catalyst for Solvothermal Conversion of Cassava Waste to Hydroxymethylfurfural and Furfural. 7903–7910.spa
dc.relation.referencesDalessandro, E. V., & Pliego, J. R. (2018). Fast screening of solvents for simultaneous extraction of furfural, 5-hydroxymethylfurfural and levulinic acid from aqueous solution using SMD solvation free energies. Journal of the Brazilian Chemical Society, 29(2), 430–434. https://doi.org/10.21577/0103-5053.20170140spa
dc.relation.referencesDeng, A., Lin, Q., Yan, Y., Li, H., Ren, J., Liu, C., & Sun, R. (2016). A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system. Bioresource Technology, 216, 754–760. https://doi.org/10.1016/j.biortech.2016.06.002spa
dc.relation.referencesDucca, E., García, O., & Solano, Ó. (2009). Pasto cv Camerún Pennisetum purpureum. https://doi.org/10.1787/eco_outlook-v2016-2-graph80-frspa
dc.relation.referencesFarabi, M. S. A., Ibrahim, M. L., Rashid, U., & Hin, Y. (2019). Esteri fi cation of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. 181(September 2018), 562–570. https://doi.org/10.1016/j.enconman.2018.12.033spa
dc.description.hashtag#ProcesosIndustrialesspa
dc.format.rda1 recurso en línea (archivo de texto)spa
dc.description.rdaRequerimientos de sistema: Adobe Acrobat Readerspa
dc.description.abstractenglishFurfural and levulinic acid (LA) are biomass-derived compounds of high interest for the industry since they allow obtaining multiple products. In this work, their production was evaluated in a two-step process using a tin catalyst supported on a sulfonated activated carbon (CA-S-Sn) based on cocoa husk in a two-phase system. The catalyst was characterized by proximate analysis, SEM-EDS, N2 adsorption isotherm at 77K, FTIR and Py-FTIR; it presented a microporous structure and a Brønsted and Lewis acid site ratio of 0,057. In the first stage, the temperature and time conditions were evaluated obtaining a furfural yield of 23,28% at 170 °C for 3 h. In the second stage, the effect of process temperature and time on the yield and energy expenditure of AL production was evaluated using the response surface methodology; an AL yield of 28,25 % was obtained with an energy expenditure of 0,12 kWh/gAL at 180,39 °C for 1,83 h. These results demonstrate the possibility of obtaining furfural and AL in a two-step process from purple Cameroon grass.spa
dc.publisher.facultyFacultad de Ciencias Naturales e Ingenieríaspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record