Show simple item record

dc.contributor.advisorTarazona Díaz, Martha Patricia
dc.contributor.advisorMurcia Rodríguez, Dora Yarid
dc.coverage.spatialColombiaspa
dc.creatorGranados Romero, Leonor Liliana
dc.date.accessioned2021-05-27T20:15:48Z
dc.date.available2021-05-27T20:15:48Z
dc.date.created2021
dc.identifier.urihttp://hdl.handle.net/20.500.12010/19705
dc.description.abstractLa disposición final de los residuos del cultivo de piña (hojas) generan un impacto negativo a nivel ambiental ya que la mayoría de ellos son incinerados. Este proyecto tuvo por objetivo generar una alternativa que permitiera la valorización de estos residuos, a través del desarrollo de un empaque biodegradable para uso postcosecha usando la fibra de la hoja de piña. La fibra fue extraída de las hojas utilizando cuatro métodos diferentes de extracción: manual, alcalino, por fermentación (enriado) a temperatura ambiente (20°C) y a 30°C; con la fibra obtenida y almidón de yuca se desarrolló un material compuesto al cual se le evaluaron las propiedades mecánicas mediante ensayos de tracción, biodegradabilidad, prueba de uso, absorción de agua y optimización con un modelo de elementos finitos. Los resultados obtenidos confirmaron la viabilidad del uso de las hojas de piña fibra para el desarrollo del empaque.spa
dc.format.extent30 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.sourceinstname:Universidad de Bogotá Jorge Tadeo Lozanospa
dc.sourcereponame:Expeditio Repositorio Institucional UJTLspa
dc.subjectFibra de piñaspa
dc.subjectMaterial compuestospa
dc.subjectEmpaque biodegradablespa
dc.subjectElementos finitosspa
dc.titleDesarrollo de un empaque postcosecha a partir de residuos de piñaspa
dc.type.localTrabajo de grado de maestríaspa
dc.subject.lembPiñas--Cultivospa
dc.subject.lembPiñas--Producciónspa
dc.subject.lembPiñas--Tratamiento postcosechaspa
dc.subject.lembEmpaquesspa
dc.subject.lembManejo de materialesspa
dc.subject.lembEmpaques--Diseñospa
dc.subject.lembAprovechamiento de residuosspa
dc.subject.lembEmpaques biodegradablesspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.localAcceso restringidospa
dc.subject.keywordPineapple fiberspa
dc.subject.keywordComposite materialspa
dc.subject.keywordBiodegradable packagingspa
dc.subject.keywordFEMspa
dc.identifier.repourlhttp://expeditio.utadeo.edu.cospa
dc.creator.degreeMagister(es) en ingeniería de procesos y sistemas industrialesspa
dc.publisher.programMaestría en ingeniería de procesos y sistemas industrialesspa
dc.relation.referencesAbdul Khalil HPS, Siti Alwani M, Mohd Omar AK. (2006) Chemical composition, anatomy, lignin distribution and cell wall structure of Malaysian plant waste fiber. Bioresources; 1(2), 220- 232spa
dc.relation.referencesAdilah, A. N., Jamilah, B., Noranizan, M. A., & Hanani, Z. A. N. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16(November 2017), 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006spa
dc.relation.referencesANAPE. (2020). Propiedades del poliestireno. ASOCIACION NACIONAL DEL POLIESTIRENO EXPANDIDO. Retrieved from http://www.anape.es/index.php?accion=productospa
dc.relation.referencesAndrade, Oliveira, G., & Rodrigues, G. (2015). Evaluation of the Diameter Influence on the Tensile Strength, 18(Suppl 2), 185–192.spa
dc.relation.referencesAOAC International. (2000). AOAC Official Method 973.18 Fiber (Acid Detergent) and Lignin (H2SO4), 4–5.spa
dc.relation.referencesArango, A. (2008). Percepciones Del Color Y De La Forma De Los Empaques: Una Experiencia De Aprendizaje. Estudios Gerenciales, 24 (106), 31–45.spa
dc.relation.referencesAshby, M. F. (2011). Designing Hybrid Materials. In Materials Selection in Mechanical Design (pp. 299–340). Elsevier. https://doi.org/10.1016/b978-1-85617-663-7.00011-4spa
dc.relation.referencesAsim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., … Deng, Y. (2015). A review on pineapple leaves fiber and its composites. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/950567spa
dc.relation.referencesASTM. (2017). D3039 / D3039M-17, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA. Retrieved from www.astm.orgspa
dc.relation.referencesASTM. (2020). C1557-20 Standard Test Method for Tensile Strength and Young’ s Modulus for High-Modulus. ASTM International, West Conshohocken, PA, 1–5. https://doi.org/10.1520/C1557-20.2spa
dc.relation.referencesASTM D570. (2014). Standard Test Method for Water Absorption of Plastics. ASTM Standards, 98(Reapproved 2010), 25–28. https://doi.org/10.1520/D0570-98R18.2spa
dc.relation.referencesBhaduri, S. et. (1983). Structural studies of an acidic polysaccharide isolated from the leaf fiber. of pineapple (Ananás comosus MERR.). Carbohydrate Research, 121, 211–220.spa
dc.relation.referencesDawit, J. B., Regassa, Y., & Lemu, H. G. (2020). Property characterization of acacia tortilis for natural fiber reinforced polymer composite. Results in Materials, 5(December 2019), 100054. https://doi.org/10.1016/j.rinma.2019.100054spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística. (2017). Cuenta Ambiental y Económica de Flujos de Materiales - Residuos Sólidos 2012-2015p. Cuenta Ambiental y Económica de Flujo de Materiales – Residuos Sólidos(2012-2015p), 17. Retrieved from http://www.dane.gov.co/files/investigaciones/pib/ambientales/cuentas_ambientales/cuentas -residuos/BT-Cuenta-residuosspa
dc.relation.referencesDuque-Acevedo, M., Belmonte-Ureña, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches, and perspectives on alternative uses. Global Ecology and Conservation, 22. https://doi.org/10.1016/j.gecco.2020.e00902spa
dc.relation.referencesEngel, J. B., Ambrosi, A., & Tessaro, I. C. (2019). Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydrate Polymers, 225(August), 115234. https://doi.org/10.1016/j.carbpol.2019.115234spa
dc.relation.referencesFAO. (1987). Manual para el mejoramiento del manejo postcosecha de frutas y hortalizas. Retrieved from www.fao.org/3/x5055s/x5055S02.htmspa
dc.relation.referencesHamidon, M. H., Sultan, M. T. H., Ariffin, A. H., & Shah, A. U. M. (2019). Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: A review. Journal of Materials Research and Technology, 8(3), 3327–3337. https://doi.org/10.1016/j.jmrt.2019.04.012spa
dc.relation.referencesIbrahim, M. I. J., Sapuan, S. M., Zainudin, E. S., & Zuhri, M. Y. M. (2019). Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites. International Journal of Biological Macromolecules, 139, 596–604. https://doi.org/10.1016/j.ijbiomac.2019.08.015spa
dc.relation.referencesICONTEC. (2012). NTC/ISO 2248 Embalajes. Embalajes de expedición completos y llenos. Ensayo de choque vertical por caída libre. ICONTEC.spa
dc.relation.referencesIndra Reddy, M., Prasad Varma, U. R., Ajit Kumar, I., Manikanth, V., & Kumar Raju, P. V. (2018). Comparative Evaluation on Mechanical Properties of Jute, Pineapple leaf fiber and Glass fiber Reinforced Composites with Polyester and Epoxy Resin Matrices. Materials Today: Proceedings, 5(2), 5649–5654. https://doi.org/10.1016/j.matpr.2017.12.158spa
dc.relation.referencesJaramillo Quiceno, N. (2016). Efecto del proceso de mercerización en el comportamiento de la fibra de hoja de piña (FHP) como refuerzo en una matriz de polipropileno. Journal of Cleaner Production, 149, 88. https://doi.org/10.1016/j.jclepro.2017.02.132spa
dc.relation.referencesKengkhetkit, N., & Amornsakchai, T. (2012). Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Industrial Crops and Products, 40(1), 55–61. https://doi.org/10.1016/j.indcrop.2012.02.037spa
dc.relation.referencesKengkhetkit, N., & Amornsakchai, T. (2014). A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials and Design. https://doi.org/10.1016/j.matdes.2013.10.005spa
dc.relation.referencesManalili, N. M., Dorado, M. a., & Otterdijk, R. Van. (2014). Appropriate food packaging solutions for developing countries. Food and Agriculture Organization of the United Nations (FAO). Retrieved from http://www.fao.org/docrep/015/mb061e/mb061e00.pdfspa
dc.relation.referencesMerchan, J; Ballesteros, D. et al. (2009). ESTUDIO DE LA BIODEGRADACIÓN AEROBIA DE ALMIDÓN TERMOPLÁSTICO (TPS), 1(1), 39–44.spa
dc.relation.referencesMertens, D. R., Allen, M., Carmany, J., Clegg, J., Davidowicz, A., Drouches, M., … Wolf, M. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. Journal of AOAC International, 85(6), 1217–1240. https://doi.org/10.1093/jaoac/85.6.1217spa
dc.relation.referencesMorone, P., Koutinas, A., Gathergood, N., Arshadi, M., & Matharu, A. (2019). Food Waste: Challenges and Opportunities for Enhancing the Emerging Bioeconomy. Journal of Cleaner Production, 221, 10–16. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.02.258spa
dc.relation.referencesNakthong, N., Wongsagonsup, R., & Amornsakchai, T. (2017). Characteristics and potential utilizations of starch from pineapple stem waste. Industrial Crops and Products, 105(May), 74–82. https://doi.org/10.1016/j.indcrop.2017.04.048spa
dc.relation.referencesPalacios, M., & Arboleda-muñoz, G. A. (2020). Evaluation of a biodegradable color concentrate in bags for coffee Evaluación de un concentrado de color biodegradable en bolsas para almacigo de café, 87(212), 31–37.spa
dc.relation.referencesParameswaranpillai, J., Jawaid, M., M.R., S., Khan, A., Pruncu, C. I., & Siengchin, S. (2018). A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing, and characterization. Carbohydrate Polymers, 207(October 2018), 108–121. https://doi.org/10.1016/j.carbpol.2018.11.083spa
dc.relation.referencesParra, A; Fisher, G. (2013). Maduración y comportamiento poscosecha de la feijoa (Acca sellowiana (O. Berg) Burret). Una revisión Ripening and postharvest behavior in the pineapple guava (Acca sellowiana (O. Berg) Burret). A review. Revista Colombiana de Ciencias Hortícolas, 7(1), 98–110.spa
dc.relation.referencesRincon, O., Shakoor, A., & Ocampo, M. (2016). Investigating the reliability of H/V spectral ratio and image entropy for quantifying the degree of disintegration of weak rocks. Engineering Geology, 207, 115–128. https://doi.org/https://doi.org/10.1016/j.enggeo.2016.04.020spa
dc.relation.referencesSaravanakumar, M. K., Ramnath, B. V., Naveenkumar, V., Elanchezhian, C., Ramakrishnan, G., & Rajendrakumar, M. (2018). Review on mechanical properties of natural fiber composites. Materials Today:Proceedings,5(1),1785–1790. https://doi.org/10.1016/j.matpr.2017.11.276spa
dc.relation.referencesSena Neto, A. R., Araujo, M. A. M., Souza, F. V.D., Mattoso, L. H. C., & Marconcini, J. M. (2013). Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Industrial Crops and Products, 43(1), 529–537. https://doi.org/10.1016/j.indcrop.2012.08.001spa
dc.relation.referencesSusheel Kalia, B. S. Kaith, I. K. (2011). Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology. (2011 Springer Science & Business Media, Ed.) (Vol. 3). https://doi.org/https://doi-org.ezproxy.utadeo.edu.co/10.1007/978-3-642-17370-7spa
dc.relation.referencesTodkar, S. S., & Patil, S. A. (2019). Review on mechanical properties evaluation of pineapple leaf fiber (PALF) reinforced polymer composites. Composites Part B: Engineering, 174(May), 106927. https://doi.org/10.1016/j.compositesb.2019.106927spa
dc.relation.referencesVerma, D., Gope, P. C., Shandilya, A., Gupta, A., & Maheshwari, M. K. (2013). Coir fiber reinforcement and application in polymer composites: A review. Journal of Materials and Environmental Science, 4(2), 263–276.spa
dc.description.hashtag#DesarrolloEmpaquePostcosechaAPartirDeResiduosDePiñaspa
dc.description.hashtag#DesarrolloEmpaqueAPartirDeResiduosDePiñaspa
dc.description.hashtag#DesarrolloEmpaqueResiduosDePiñaspa
dc.format.rda1 recurso en línea (archivo de texto)spa
dc.description.rdaRequerimientos de sistema: Adobe Acrobat Readerspa
dc.description.abstractenglishPineapple crop leaves waste generate negative environmental impacts due to their disposal generally made through incineration. The objective of this project was to generate an alternative that would allow the valorization of these residues through the development of a biodegradable packaging for post-harvest use using pineapple leaf fiber. The fibers were extracted from the leaves using four different methods: manual extraction, alkaline, ambient retting, and 30°C retting. It could be established that the best extraction method was controlled retting. A composite material was developed with cassava starch and its mechanical properties were evaluated through tensile, biodegradability, use and water absorption tests. Afterward, it was optimized through a finite element model FEM. The reliability of this new fiber composed package was confirmed through the obtained resultsspa
dc.publisher.facultyFacultad de Ciencias Naturales e Ingenieríaspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record