• español
    • English
    • português
  • English 
    • español
    • English
    • português
  • Login
View Item 
  •   Home
  • Productos de Investigación - Creación
  • Libros externos en acceso abierto para el apoyo a la investigación
  • Facultad de Ciencias Naturales e Ingeniería
  • View Item
  •   Home
  • Productos de Investigación - Creación
  • Libros externos en acceso abierto para el apoyo a la investigación
  • Facultad de Ciencias Naturales e Ingeniería
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
RecursosRecursos de apoyo¿Cómo publicar?

Browse

All of ExpeditioCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects
This CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage StatisticsView Google Analytics Statistics

Dynamic Factor Model and Artificial Neural Network Models: To Combine Forecasts or Combine Models?

Thumbnail

Citación

       
Export: <XML METS>
View/Open
Ver documento (912.8Kb)
Date
2018-02-28
Author
Babikir, Ali
Mohammed, Mustafa
Mwambi, Henry
Metadata
Show full item record
Documentos PDF
Summary in foreign language
In this chapter, we evaluate the forecasting performance of the model combination and forecast combination of the dynamic factor model (DFM) and the artificial neural networks (ANNs). For the model combination, the factors that are extracted from a large dataset are used as additional input to the ANN model that produces the factor-augmented artificial neural network (FAANN). Linear and nonlinear forecasts combining methods are used to combine the DFM and the ANN forecasts. The results of the best combining method are compared to the forecasts result of the FAANN model. The models are applied to forecast three time series variables using large South African monthly data. The out-of-sample root-mean-square error (RMSE) results show that the FAANN model yields substantial improvement over the individual and best combined forecasts from the DFM and ANN forecasting models and the autoregressive AR benchmark model. Further, the Diebold-Mariano test results also confirm the superiority of the FAANN model forecast’s performance over the AR benchmark model and the combined forecasts.
Palabras clave
Ingeniería de software
Creative Commons
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
URI
http://hdl.handle.net/20.500.12010/16834
Link to resource
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/dynamic-factor-model-and-artificial-neural-network-models-to-combine-forecasts-or-combine-models-
Collections
  • Facultad de Ciencias Naturales e Ingeniería [741]
Comments

Respuesta Comentario Repositorio Expeditio

Gracias por tomarse el tiempo para darnos su opinión.


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas

 

 


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas