Show simple item record

dc.creatorCarpentieri, Bruno
dc.creatorBonfiglioli, Aldo
dc.date.accessioned2021-01-18T21:00:53Z
dc.date.available2021-01-18T21:00:53Z
dc.date.created2018-02-14
dc.identifier.isbn
dc.identifier.urihttp://hdl.handle.net/20.500.12010/16702
dc.format.extent31 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherOpen access peer-reviewed chapterspa
dc.subjectAlgoritmospa
dc.titleMultilevel Variable-Block Schur-Complement-Based Preconditioning for the Implicit Solution of the Reynolds-Averaged Navier-Stokes Equations Using Unstructured Gridsspa
dc.subject.lembDinámica de fluidos computacionalspa
dc.subject.lembEcuaciones de Navier-Stokes promediadas por Reynoldsspa
dc.subject.lembmétodos multinivelspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.localAbierto (Texto Completo)spa
dc.identifier.doi
dc.relation.referencesBruno Carpentieri and Aldo Bonfiglioli (February 14th 2018). Multilevel Variable-Block Schur-Complement-Based Preconditioning for the Implicit Solution of the Reynolds- Averaged Navier-Stokes Equations Using Unstructured Grids, Computational Fluid Dynamics - Basic Instruments and Applications in Science, Adela Ionescu, IntechOpen, DOI: 10.5772/intechopen.72043.spa
dc.description.abstractenglishImplicit methods based on the Newton’s rootfinding algorithm are receiving an increasing attention for the solution of complex Computational Fluid Dynamics (CFD) applications due to their potential to converge in a very small number of iterations. This approach requires fast convergence acceleration techniques in order to compete with other conventional solvers, such as those based on artificial dissipation or upwind schemes, in terms of CPU time. In this chapter, we describe a multilevel variable-block Schur-complement-based preconditioning for the implicit solution of the Reynolds-averaged Navier-Stokes equations using unstructured grids on distributed-memory parallel computers. The proposed solver detects automatically exact or approximate dense structures in the linear system arising from the discretization, and exploits this information to enhance the robustness and improve the scalability of the block factorization. A complete study of the numerical and parallel performance of the solver is presented for the analysis of turbulent Navier-Stokes equations on a suite of three-dimensional test cases.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.rights.creativecommons


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record