• español
    • English
    • português
  • English 
    • español
    • English
    • português
  • Login
View Item 
  •   Home
  • Productos de Investigación - Creación
  • Libros externos en acceso abierto para el apoyo a la investigación
  • Facultad de Ciencias Naturales e Ingeniería
  • View Item
  •   Home
  • Productos de Investigación - Creación
  • Libros externos en acceso abierto para el apoyo a la investigación
  • Facultad de Ciencias Naturales e Ingeniería
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
JavaScript esta deshabilitado en su navegador. Algunas características de este sitio no podrán funcionar o visualizarse correctamente sin JavaScript.
RecursosRecursos de apoyo¿Cómo publicar?

Browse

All of ExpeditioCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage StatisticsView Google Analytics Statistics
Estadísticas GTMVer Estadísticas GTM

Quantitative Assessment and Validation of Network Inference Methods in Bioinformatics

Thumbnail

Citación

       
Export: <XML METS>
View/Open
Ver documento (26.90Mb)
Fin embargo: 
Date
2015
Author
Kains, Benjamin Haibe
Streib, Frank Emmert
Metadata
Show full item record
Documentos PDF
Summary in foreign language
Scientists today have access to an unprecedented arsenal of high-tech tools that can be used to thoroughly characterize biological systems of interest. High-throughput “omics” technologies enable to generate enormous quantities of data at the DNA, RNA, epigenetic and proteomic levels. One of the major challenges of the post-genomic era is to extract functional information by integrating such heterogeneous high-throughput genomic data. This is not a trivial task as we are increasingly coming to understand that it is not individual genes, but rather biological pathways and networks that drive an organism’s response to environmental factors and the development of its particular phenotype. In order to fully understand the way in which these networks interact (or fail to do so) in specific states (disease for instance), we must learn both, the structure of the underlying networks and the rules that govern their behavior. In recent years there has been an increasing interest in methods that aim to infer biological networks. These methods enable the opportunity for better understanding the interactions between genomic features and the overall structure and behavior of the underlying networks. So far, such network models have been mainly used to identify and validate new interactions between genes of interest. But ultimately, one could use these networks to predict large-scale effects of perturbations, such as treatment by multiple targeted drugs. However, currently, we are still at an early stage of comprehending methods and approaches providing a robust statistical framework to quantitatively assess the quality of network inference and its predictive potential. The scope of this Research Topic in Bioinformatics and Computational Biology aims at addressing these issues by investigating the various, complementary approaches to quantify the quality of network models. These “validation” techniques could focus on assessing quality of specific interactions, global and local structures, and predictive ability of network models. These methods could rely exclusively on in silico evaluation procedures or they could be coupled with novel experimental designs to generate the biological data necessary to properly validate inferred networks.
URI
http://hdl.handle.net/20.500.12010/15058
Link to resource
https://www.frontiersin.org/research-topics/1216/quantitative-assessment-and-validation-of-network-inference-methods-in-bioinformatics
Collections
  • Facultad de Ciencias Naturales e Ingeniería [741]
Estadísticas Google Analytics
Comments

Respuesta Comentario Repositorio Expeditio

Gracias por tomarse el tiempo para darnos su opinión.


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas

 

 


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas