• español
    • English
    • português
  • English 
    • español
    • English
    • português
  • Login
View Item 
  •   Home
  • Productos de Investigación - Creación
  • Repositorio Documental COVID-19
  • Documentos científicos relacionados a la COVID-19
  • View Item
  •   Home
  • Productos de Investigación - Creación
  • Repositorio Documental COVID-19
  • Documentos científicos relacionados a la COVID-19
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
RecursosRecursos de apoyo¿Cómo publicar?

Browse

All of ExpeditioCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects
This CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage StatisticsView Google Analytics Statistics

Electrical load prediction of healthcare buildings through single and ensemble learning

Thumbnail

Citación

       
Export: <XML METS>
Date
2020
Author
Cao, Lingyan
Li, Yongkui
Zhang, Jiansong
Jiang, Yi
Han, Yilong
Wei, Jianjun
Metadata
Show full item record
Abstract
Healthcare buildings are characterized by complex energy systems and high energy usage, therefore serving as the key areas for achieving energy conservation goals in the building sector. An accurate load prediction of hospital energy consumption is of paramount importance to a successful healthcare building energy management. In this study, eight machine learning models of single learning and ensemble learning were developed for predicting healthcare facilities’ energy consumption. To validate the performance of the proposed model, an experiment was conducted on a general hospital in Shanghai, China. It was found that the two ensemble models, Extreme Gradient Boosting (XGBoost) model and Random Forest (RF) model, outperformed single models in daily electrical load prediction. A further comparison between models trained with daily and weekly temporal resolution electrical data shows that it is more likely to achieve higher accuracy with finer time granularity. Through feature importance analysis, the most influential features under the daily and weekly electrical load prediction were identified. Based on the prediction results, it is expected that hospital facility managers will be able to conveniently assess the expected energy usage of their hospitals with the machine learning models.
Palabras clave
Healthcare buildings; Load prediction; Ensemble model machine learning; XGBoost; Random forest
URI
http://hdl.handle.net/20.500.12010/14568
Link to resource
https://doi.org/10.1016/j.egyr.2020.10.005
Collections
  • Documentos científicos relacionados a la COVID-19 [2292]
Comments

Respuesta Comentario Repositorio Expeditio

Gracias por tomarse el tiempo para darnos su opinión.


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas

 

 


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas