• español
    • English
    • português
  • English 
    • español
    • English
    • português
  • Login
View Item 
  •   Home
  • Productos de Investigación - Creación
  • Libros externos en acceso abierto para el apoyo a la investigación
  • Facultad de Ciencias Naturales e Ingeniería
  • View Item
  •   Home
  • Productos de Investigación - Creación
  • Libros externos en acceso abierto para el apoyo a la investigación
  • Facultad de Ciencias Naturales e Ingeniería
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
JavaScript esta deshabilitado en su navegador. Algunas características de este sitio no podrán funcionar o visualizarse correctamente sin JavaScript.
RecursosRecursos de apoyo¿Cómo publicar?

Browse

All of ExpeditioCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage StatisticsView Google Analytics Statistics
Estadísticas GTMVer Estadísticas GTM

Advances in Plastid Biology and Its Applications

Thumbnail

Citación

       
Export: <XML METS>
View/Open
Ver documento (46.56Mb)
Fin embargo: 
Date
2016
Author
Ahmad, Niaz
Burgess, Steven J.
Nielsen, Brent L.
Metadata
Show full item record
Documentos PDF
Summary in foreign language
One of the distinguishing features of plants is the presence of membrane-bound organelles called plastids. Starting from proplastids (undifferentiated plastids) they readily develop into specialised types, which are involved in a range of cellular functions such as photosynthesis, nitrogen assimilation, biosynthesis of sucrose, starch, chlorophyll, carotenoids, fatty acids, amino acids, and secondary metabolites as well as a number of metabolic reactions. The central role of plastids in many aspects of plant cell biology means an in-depth understanding is key for a holistic view of plant physiology. Despite the vast amount of research, the molecular details of many aspects of plastid biology remains limited. Plastids possess their own high-copy number genome known as the plastome. Manipulation of the plastid genome has been developed as an alternative way to developing transgenic plants for various biotechnological applications. High-copy number of the plastome, site-specific integration of transgenes through homologous recombination, and potential to express proteins at high levels (>70% of total soluble proteins has been reported in some cases) are some of the technologies being developed. Additionally, plastids are inherited maternally, providing a natural gene containment system, and do not follow Mendelian laws of inheritance, allowing each individual member of the progeny of a transplastomic line to uniformly express transgene(s). Both algal and higher plant chloroplast transformation has been demonstrated, and with the ability to be propagated either in bioreactors or in the field, both systems are well suited for scale up of production. The manipulation of chloroplast genes is also essential for many approaches that attempt to increase biomass accumulation or re-routing metabolic pathways for biofortification, food and fuel production. This includes metabolic engineering for lipid production, adapting the light harvesting apparatus to improve solar conversion efficiencies and engineering means of suppressing photorespiration in crop species, which range from the introduction of artificial carbon concentrating mechanisms, or those pre-existing elsewhere in nature, to bypassing ribulose bisphosphate carboxylase/oxygenase entirely. The purpose of this eBook is to provide a compilation of the latest research on various aspects of plastid biology including basic biology, biopharming, metabolic engineering, bio-fortification, stress physiology, and biofuel production.One of the distinguishing features of plants is the presence of membrane-bound organelles called plastids. Starting from proplastids (undifferentiated plastids) they readily develop into specialised types, which are involved in a range of cellular functions such as photosynthesis, nitrogen assimilation, biosynthesis of sucrose, starch, chlorophyll, carotenoids, fatty acids, amino acids, and secondary metabolites as well as a number of metabolic reactions. The central role of plastids in many aspects of plant cell biology means an in-depth understanding is key for a holistic view of plant physiology. Despite the vast amount of research, the molecular details of many aspects of plastid biology remains limited. Plastids possess their own high-copy number genome known as the plastome. Manipulation of the plastid genome has been developed as an alternative way to developing transgenic plants for various biotechnological applications. High-copy number of the plastome, site-specific integration of transgenes through homologous recombination, and potential to express proteins at high levels (>70% of total soluble proteins has been reported in some cases) are some of the technologies being developed. Additionally, plastids are inherited maternally, providing a natural gene containment system, and do not follow Mendelian laws of inheritance, allowing each individual member of the progeny of a transplastomic line to uniformly express transgene(s). Both algal and higher plant chloroplast transformation has been demonstrated, and with the ability to be propagated either in bioreactors or in the field, both systems are well suited for scale up of production. The manipulation of chloroplast genes is also essential for many approaches that attempt to increase biomass accumulation or re-routing metabolic pathways for biofortification, food and fuel production. This includes metabolic engineering for lipid production, adapting the light harvesting apparatus to improve solar conversion efficiencies and engineering means of suppressing photorespiration in crop species, which range from the introduction of artificial carbon concentrating mechanisms, or those pre-existing elsewhere in nature, to bypassing ribulose bisphosphate carboxylase/oxygenase entirely. The purpose of this eBook is to provide a compilation of the latest research on various aspects of plastid biology including basic biology, biopharming, metabolic engineering, bio-fortification, stress physiology, and biofuel production.
URI
http://hdl.handle.net/20.500.12010/14205
Link to resource
https://www.frontiersin.org/research-topics/3433/advances-in plastid-biology-and-its-applications#nogo
Collections
  • Facultad de Ciencias Naturales e Ingeniería [390]
Estadísticas Google Analytics
Comments

Respuesta Comentario Repositorio Expeditio

Gracias por tomarse el tiempo para darnos su opinión.


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas

 

 


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas