Show simple item record

dc.creatorAbdo, Mohammed S.
dc.creatorShah, Kamal
dc.creatorWahash, Hanan A.
dc.creatorPanchal, Satish K.
dc.date.accessioned2020-07-30T18:18:10Z
dc.date.available2020-07-30T18:18:10Z
dc.date.created2020-05-08
dc.identifier.issn0960-0779spa
dc.identifier.otherhttps://www.sciencedirect.com/science/article/pii/S0960077920302678?via%3Dihub#keys0001spa
dc.identifier.urihttp://hdl.handle.net/20.500.12010/11437
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.publisherChaos, Solitons & Fractalseng
dc.sourcereponame:Expeditio Repositorio Institucional UJTLspa
dc.sourceinstname:Universidad de Bogotá Jorge Tadeo Lozanospa
dc.subjectAttangana-Baleanu derivativespa
dc.subjectExistence and stability theoryspa
dc.subjectAdams Bashforth methodspa
dc.subjectFixed point theoremspa
dc.titleOn a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivativespa
dc.type.localArtículospa
dc.subject.lembSíndrome respiratorio agudo gravespa
dc.subject.lembCOVID-19spa
dc.subject.lembSARS-CoV-2spa
dc.subject.lembCoronavirusspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.identifier.doihttps://doi.org/10.1016/j.chaos.2020.109867spa
dc.description.abstractenglishThe major purpose of the presented study is to analyze and find the solution for the model of nonlinear fractional differential equations (FDEs) describing the deadly and most parlous virus so-called coronavirus (COVID-19). The mathematical model depending of fourteen nonlinear FDEs is presented and the corresponding numerical results are studied by applying the fractional Adams Bashforth (AB) method. Moreover, a recently introduced fractional nonlocal operator known as Atangana-Baleanu (AB) is applied in order to realize more effectively. For the current results, the fixed point theorems of Krasnoselskii and Banach are hired to present the existence, uniqueness as well as stability of the model. For numerical simulations, the behavior of the approximate solution is presented in terms of graphs through various fractional orders. Finally, a brief discussion on conclusion about the simulation is given to describe how the transmission dynamics of infection take place in society.spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record