• español
    • English
    • português
  • English 
    • español
    • English
    • português
  • Login
View Item 
  •   Home
  • Productos de Investigación - Creación
  • Repositorio Documental COVID-19
  • Documentos científicos relacionados a la COVID-19
  • View Item
  •   Home
  • Productos de Investigación - Creación
  • Repositorio Documental COVID-19
  • Documentos científicos relacionados a la COVID-19
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
RecursosRecursos de apoyo¿Cómo publicar?

Browse

All of ExpeditioCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects
This CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage StatisticsView Google Analytics Statistics

Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique

Thumbnail

Citación

       
Export: <XML METS>
View/Open
Documento Reservado (3.180Mb)
Fin embargo: 
Date
2020-07-03
Author
Altan, Aytaç
Karasu, Seçkin
Metadata
Show full item record
Documentos PDF
Summary in foreign language
The novel coronavirus disease 2019 (COVID-19), detected in Wuhan City, Hubei Province, China in late December 2019, is rapidly spreading and affecting all countries in the world. Real-time reverse transcription-polymerase chain reaction (RT-PCR) test has been described by the World Health Organization (WHO) as the standard test method for the diagnosis of the disease. However, considering that the results of this test are obtained between a few hours and two days, it is very important to apply another diagnostic method as an alternative to this test. The fact that RT-PCR test kits are limited in number, the test results are obtained in a long time, and the high probability of healthcare personnel becoming infected with the disease during the test, necessitates the use of other diagnostic methods as an alternative to these test kits. In this study, a hybrid model consisting of two-dimensional (2D) curvelet transformation, chaotic salp swarm algorithm (CSSA) and deep learning technique is developed in order to determine the patient infected with coronavirus pneumonia from X-ray images. In the proposed model, 2D Curvelet transformation is applied to the images obtained from the patient's chest X-ray radiographs and a feature matrix is formed using the obtained coefficients. The coefficients in the feature matrix are optimized with the help of the CSSA and COVID-19 disease is diagnosed by the EfficientNet-B0 model, which is one of the deep learning methods. Experimental results show that the proposed hybrid model can diagnose COVID-19 disease with high accuracy from chest X-ray images.
Palabras clave
Deep learning; Curvelet transform; Chaotic salp swarm algorithm
URI
http://hdl.handle.net/20.500.12010/11169
Link to resource
https://www.sciencedirect.com/science/article/pii/S0960077920304689?via%3Dihub#keys0001
Collections
  • Documentos científicos relacionados a la COVID-19 [2292]
Estadísticas Google Analytics
Comments

Respuesta Comentario Repositorio Expeditio

Gracias por tomarse el tiempo para darnos su opinión.


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas

 

 


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas