• español
    • English
    • português
  • English 
    • español
    • English
    • português
  • Login
View Item 
  •   Home
  • Productos de Investigación - Creación
  • Repositorio Documental COVID-19
  • Documentos científicos relacionados a la COVID-19
  • View Item
  •   Home
  • Productos de Investigación - Creación
  • Repositorio Documental COVID-19
  • Documentos científicos relacionados a la COVID-19
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
RecursosRecursos de apoyo¿Cómo publicar?

Browse

All of ExpeditioCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects
This CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage StatisticsView Google Analytics Statistics

Early network properties of the COVID-19 pandemic – The Chinese scenario

Thumbnail

Citación

       
Export: <XML METS>
View/Open
Ver artículo (1.101Mb)
Date
2020
Author
Rivas, Ariel L.
Febles, José L.
Smith, Stephen D.
Hoogesteijn, Almira L.
Tegos, George P.
Fasina, Folorunso O.
Hittner, James B.
Metadata
Show full item record
Documentos PDF
Abstract
Objectives: To control epidemics, sites more affected by mortality should be identified. Methods: Defining epidemic nodes as areas that included both most fatalities per time unit and connections, such as highways, geo-temporal Chinese data on the COVID-19 epidemic were investigated with linear, logarithmic, power, growth, exponential, and logistic regression models. A z-test compared the slopes observed. Results: Twenty provinces suspected to act as epidemic nodes were empirically investigated. Five provinces displayed synchronicity, long-distance connections, directionality and assortativity – network properties that helped discriminate epidemic nodes. The rank I node included most fatalities and was activated first. Fewer deaths were reported, later, by rank II and III nodes, while the data from rank I–III nodes exhibited slopes, the data from the remaining provinces did not. The power curve was the best fitting model for all slopes. Because all pairs (rank I vs. rank II, rank I vs. rank III, and rank II vs. rank III) of epidemic nodes differed statistically, rank I–III epidemic nodes were geo-temporally and statistically distinguishable. Conclusions: The geo-temporal progression of epidemics seems to be highly structured. Epidemic network properties can distinguish regions that differ in mortality. This real-time geo-referenced analysis can inform both decision-makers and clinicians.
Palabras clave
Network-theory; Smallworld; COVID-19; Interdisciplinary; Geo-referenced
URI
http://hdl.handle.net/20.500.12010/10789
Link to resource
https://doi.org/10.1016/j.ijid.2020.05.049
Collections
  • Documentos científicos relacionados a la COVID-19 [2292]
Comments

Respuesta Comentario Repositorio Expeditio

Gracias por tomarse el tiempo para darnos su opinión.


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas

 

 


Carrera 4 # 22-61 Teléfono: (+57 1) 242 7030 - 018000111022 Fax: (+57 1) 561 2107 Bogotá D.C., Colombia

Fundación Universitaria de Bogotá Jorge Tadeo Lozano | Vigilada Mineducación

Institución de educación superior privada, de utilidad común, sin ánimo de lucro y su carácter académico es el de Universidad.

Reconocimiento personería jurídica: Resolución 2613 del 14 de agosto de 1959 Minjusticia.

Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional.

 

Términos y condiciones | Políticas