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 13 

Abstract: Energy storage has become a fundamental component in renewable energy systems, 14 
especially those including batteries. However, during the charging and the discharging process, 15 
there are some parameters that are not controlled by the user. That uncontrolled working leads to 16 
aging of the batteries and a reduction of their life cycle. Therefore, it causes an early replacement. 17 
Different control methods have been developed with the goal of protecting the battery and 18 
extending its life expectancy, being the most used the constant current-constant voltage. However, 19 
several studies show that charging time can be reduced by using Fuzzy Logic Control or Model 20 
Predictive Control. Other benefits are; temperature control and an extension of life expectancy. For 21 
all these reasons, FLC and MPC have proven to be more efficient than traditional charge control 22 
methods. 23 

Keywords: Energy storage; battery; control; energy management systems; FLC; MPC. 24 
 25 

1. Introduction 26 

Electrification of remote and rural isolated areas with the national grid is not always possible due to 27 
the prohibitive costs. Therefore, many off-the-grid communities have been using diesel engines as 28 
the main power source. To meet the energy needs, governments have opted for the installation of 29 
independent renewable energy systems with battery energy storage systems (BESS) [1]. However, 30 
energy storage is one of the greatest challenges for renewable energy systems, especially in 31 
stand-alone solar photovoltaic system and wind farms, where the application of electrochemical 32 
energy storage demonstrates high response times and round-trip efficiencies [2]. Moreover, from an 33 
economical point of view, in a solar photovoltaic system, the energy storage system (ESS) represents 34 
40% of the total cost [3 – 4]. 35 

Storage technologies are usually categorized based on time scale of applications such as 36 
instantaneous (less than a few seconds), short term (less than a few minutes), mid-term (less than a 37 
few hours), and long-term (days) [5]. Moreover of the BESS there are different types of energy 38 
storage technologies [5 – 12]: pumped hydro energy storage (PHES), compressed air energy storage 39 
(CAES), flywheel energy storage (FES), hydrogen-based Energy Storage System (HES), flow battery 40 
energy storage (FBES), superconducting magnetic energy storage (SME), and supercapacitor energy 41 
storage (SES). However, because of their localization flexibility, efficiency, scalability, and other 42 
appealing features [13], the BESS is the preferred technology [14], (see Fig. 1). 43 
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 44 

                 Fig. 1. Energy storage systems (ESS). 45 

At present, there are numerous commercial batteries used in renewable energy systems, such as: 46 

lead acid, lithium ion (Li-ion), nickel cadmium (Ni-Cd), sodium sulfur (Na-S), among other. Table 1 47 

shows the main characteristics of this type of batteries [6, 8 – 12, 15-20]. 48 

 49 

Table 1. Battery technologies in RES. 50 

 51 

Regarding BESS used in photovoltaic systems, lead-acid is the most used technology [10, 16], due to 52 

its low cost, maturity, high reliability, fast response and low self-discharge rate [10, 21]. However, 53 

charging process is non-linear [22].  54 

Due to the high economic cost generated by the replacement of a BESS, a charge control method and 55 

control strategy is required to protect the battery from overcharging and over-discharging [23]. The 56 

efficiency of charge control methods will depend on the amount of current used for the charging 57 

process, the level of the oscillations in the charging current, the charging voltage levels, the charging 58 

time, and the fluctuations in the temperature during the charging process [24]. Moreover, there are 59 

battery parameters such as charging rate, the permitted maximum charging current, the internal 60 

Characteristics Pb-Acid Li-Ion Ni-Cd Na-S PSB VRB

Capital cost ($/kWh)
400 [6, 12], 200-400 [8, 9, 

20], 50-150 [17]

2500 [6,12], 600-2500 [8, 9, 

20], 900-1300 [17]

800-1500 [6, 9, 10, 20], 

1500 [11], 400-2400 [17]

300-500 [6, 9, 10, 20], 500 

[11], 200-600 [17]

300-1000 [17], 150-1000 

[20]

150-1000 [9, 20], 600 

[17]

Efficiency (%)
70-90 [6,12], 75-80 [8], 70-

92 [8], 70-80 [17], 80-90 [18]

85-90 [6,12], 85-90 [9], 75-

95 [17], 85-95 [18]

60-65 [6,12], 60-70 [9], 70 

[17]

80-90 [6,12], 75-85 [8], 75-

90 [9], 75-89 [17], 71-90 

[18]

60-65 [11], 60-75 [17] 65-85 [9,17]

Operating temperature (0C) -5 to 40 [17] -30 to 60 [17] -40 to 50 [14] 325 [17] 0 to 40 [17] 0 to 40 [17]

Depth of discharge (%-DOD) 60-70 [8], 70 [17] 80 [17] 100 [17] 60-80 [7], 100 [17] 75 [17] 75 [17]

Energy density (Wh/kg)

30-50 [6, 9, 10, 12], 35-50 

[17]

75-200 [6, 10, 12], 75-250 

[9], 100-200 [17]

50-75 [6, 9, 10, 12], 30-80 

[17]

150-240 [6, 9, 10, 12], 100-

175 [17]

>400 [17] 10-75 [9], 10-30 [10], 30-

50 [17]

Life cycles (cycles)

500-1200 [9], 500-1000 

[10,20], 2000 [12], 500-2000 

[17,18]

1000-10000 [9, 11, 20], 

4500 [13], 1500-3500 [17], 

1000-30000 [18]

1000-2500 [9], 2000-2500 

[10, 20], 3000 [12], 3500 

[17]

2000-5000 [9], 2500 [10, 

17, 20], 4500 [12], 2500-

5000 [18]

100-13000 [17]
13000+ [9], 12000+ [10, 

20], 100-13000 [17]

Lifetime (years)

5-15 [6, 9, 10, 12, 17, 18, 

20], 5-8 [8], 3-12 [19]

5-15 [6, 10, 12, 18, 20], 5-

20 [9], 14-16 [17]

10-20 [6, 10, 12, 17, 20], 5-

20 [9], 15-20 [19]

10-15 [6, 8, 10, 12, 20], 15 

[9], 10-20 [17], 5-15 [18]

10-15 [10, 20], 15 [17] 10-20 [9, 17], 5-10 [10, 

20]

Availability (%) 99,99 [9] 97+ [9] 99+ [9] Up to 99,98 [9] ***** 96-99 [9]

Technological maturity level (1-

lower to 5-higher)

5 [9] 4 [9] 4 [9] 4 [9] ***** 3 [9]

Response time (ms)
Fast [6, 12] Fast [6, 12] Fast [6, 12] Fast [6, 12] ***** *****

Capacity (MW)
0-40 [6, 12]; 0,001-50 [9]; 

0,001-40 [17]

0,1 [6, 12]; 0,1-50 [9]; 0,001-

50 [17]

0-40 [6, 12]; 0-46 [9]; 6,75 

[17]

0,05-8 [6, 12]; 0,05-34 [9]; 

0,4-244,8 [17]

0,005-120 [17] 0,005-1,5 [9]; 2-120 [17]
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resistor, the port voltage, the temperature and humidity that changing during the charging and 61 

discharging process and cannot be directly obtained, so it is difficult to achieve the optimal 62 

operation performance by using traditional control methods. 63 

This paper compiles the traditional control methods used to control the charging and discharging of 64 

lead-acid batteries commonly used in renewable energy systems such as solar photovoltaic and 65 

wind power. Although lithium iron phosphate (LiFePO4) batteries are being used in renewable 66 

energy systems, they will not be included in this paper.  67 

Regarding battery management systems, our research focused on Fuzzy Logic Control (FLC) and 68 

Model Predictive Control (MPC) due to the leading role in the battery control (Fig. 2). Where the 69 

power input can be supplied by the grid, a photovoltaic system or wind power system. 70 

Fuzzy Logic Control (FLC) and Model Predictive Control (MPC) have proven to have higher 71 

performance than traditional charging control methods in terms of energy management, thus 72 

improving charging time, charging efficiency, states of charge (SOC) and life battery expectancy. The 73 

strategies used, goals, and the results reached with these controls are detailed. 74 

 75 

 76 

Fig. 2. Battery control scheme. 77 

 78 

The paper is structured as follows: Section 2 describes the traditional methods used to control the 79 

charge and discharge of batteries, the time and the state of charge reached. Section 3 the strategies, 80 

and the fields where the FLC and MPC controls have been applied. The obtained results are 81 

presented and discussion in Section 4. Section 5 concludes by stating possible avenues for future 82 

research while summarizing the papers principle contributions.  83 

 84 

2. Traditional charging control methods 85 

The main goal of a charge control method is to increase the SOC. Moreover, additional specifications 86 

such as battery performance, charging time, protecting the battery from overcharging and 87 

over-discharging, and increasing its useful life are needed too. 88 

As battery charging process is non-linear [22], different methods have been developed to effectively 89 

battery charging control. Control methods commonly used in battery charging are: constant current 90 

(CC), constant voltage (CV), two-step charging (CC-CV), pulse charging (PC), reflex charging or 91 

negative pulse charging (NPC), trickle charge or taper-current (TC) and float charge (FC) [25-27].  92 

2.1. Constant current (CC): this method consists of charging the battery with a constant current. 93 

This method limits the current to prevent the over current of the initial charge [28]. The 94 
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voltage value will depend on the charging current whereas the charging time and the SOC 95 

can be easily calculated [29]. As voltage is not usually controlled, this can cause battery 96 

overcharging and temperature rising, resulting in the degradation of battery life [25, 27]. 97 

2.2. Constant voltage (CV): it is used to charge the battery by applying a constant voltage on its 98 

terminals. During the initial stage of charging the charge current is high. As the battery 99 

voltage reaches the charger voltage setting, the charging current decreases [27]. This type of 100 

control is used in applications that require extended charging periods to reach full charge. 101 

As it requires a long charging time, this will cause temperature rises and degradation of the 102 

battery life. 103 

 104 

2.3. Constant current – Constant voltage (CC-CV): this charging method is also known as the 105 

two-step method, because it combines both CC and CV. CC is applied at the initial charging 106 

stage until the battery voltage reaches an over-charged stage or a pre-defined voltage. In the 107 

second stage, the charging method switches to CV to maintain the battery voltage, so it 108 

avoids overvoltage [25, 29]. 109 

Research shows that, the CC-CV charging method is the most efficient for battery charging 110 

regardless of the battery type [30]. Also, it is the most used control method [31-33]. However, 111 

charging speed and efficiency of the CC-CV charging strategy are very low [34]. Moreover, the 112 

CC-CV is not suitable for rapid charging, because the CV charging stage extends the charging time, 113 

it rises the battery temperature, and it reduces battery lifecycle [35-36].   114 

 115 

2.4. Pulse charging (PC):  this charging method consists of periodically applying a pulse current 116 

to the battery. Batteries are completely discharged and recharged periodically in what is 117 

called an equalizing charge [37]. This will allow the battery voltage to become more stable. 118 

In this charging method, it is important to take into account the charging frequency, pulse 119 

peak and pulse width, because they are related to the capacity and the charging time. This 120 

method it can reduce the polarization to prevent the battery temperature rise [28], is the 121 

weak point of this charging method is its complexity. 122 

 123 

2.5. Reflex charging or negative pulse charging (NPC): this is an improvement on the PC. The 124 

concept of applying a reflex charging started with the patents by W. Burkett & J. Bigbee and 125 

W. Burkett & R. Jackson [29, 38] in 1971. NPC consist of performing the following charging 126 

sequence: a positive charging pulse, a rest period (no charging), and a discharge pulse 127 

(burp) [38]. This method can reduce the polarization to prevent the battery temperature 128 

from rising. However, it also may reduce the charge efficiency [39-40]. 129 

2.6. Trickle charge or taper-current (TC): A trickle charge is a continuous CC charge at a low 130 

(about C/100) rate, which is used to maintain the battery in a fully charged condition. IT is 131 

designed to compensate the self-discharge of the battery [37]. This method can charge the 132 

battery up to 100% by using a very small charge current. This method is typically used for 133 
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SLI (Starting Lighting, Ignition SLI) battery applications but it is not suitable for batteries 134 

that are susceptible to be damaged from over-charging. 135 

 136 

2.7. Float charge (FC): this method involves a CV charge after the charge process has been 137 

completed in which the capacity of the battery is maintained at its maximum value against 138 

self-discharge [41]. This method is used for stationary batteries mainly lead acid batteries 139 

[37]. 140 

These traditional charging control methods have been incorporated in commercial inverters such as 141 

Victron Energy, sunny island of SMA solar technology among others. The latter controls the charge 142 

of the battery in three phases: CC (I phase/bulk phase), CV phase (absorption phase/Vo phase), and 143 

float charge/V phase (Fig. 3). 144 

 145 

Fig. 3.  Sunny Island charging phases with sample values for an AGM battery [42].  146 

 147 

3. Battery management systems 148 

As the process of battery charging and discharging is complex, it required the design of a robust 149 

supervisory control over the classic controller presented in section 2. 150 

FLC and MPC are especially suitable to battery charging management because they do not requiring 151 

precise knowledge of mathematical system models and they have high flexibility. 152 

 153 

3.1. Fuzzy logic control (FLC) 154 

In 1965, Lotfi Zadeh first proposed fuzzy theory [43]. Between the applications of fuzzy logic, fuzzy 155 

control (FC) has been one of the fields where fuzzy techniques have obtained greater amount of 156 

successful results when they work with complex nonlinear systems or even nonanalytic ones [44-45]. 157 

FLC is composed by a knowledge base, which incorporates the information given by the operator of 158 

the controlled process following some linguistic control rules pattern [46]. 159 

In general terms, the input variables used in a FLC are battery voltage and temperature, and the 160 

output membership function generates current. 161 
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3.1.1. Fuzzy Logic Control of Energy Storage Systems in stand-alone applications 162 

 163 

A FLC was developed by Bandara et al. [24] to charge a lead acid battery. The FLC charges the 164 

battery at two stages. At the first stage, it uses a high current that charges the battery until 70% of its 165 

full capacity. At the second stage, the battery voltage is maintained at a set value and the current is 166 

left to decrease exponentially. Rahim et al. [47] showed a battery charger with a digital signal 167 

processor which included FLC as a control algorithm. This approach produced a higher charging 168 

current and it supported a higher input supplies. Thus, the charging time could be reduced.  169 

Huang et al. [48] used a single crystal processor as the basic controller and a digital signal processor 170 

to get the feedback of the voltages, temperature, and current of the batteries. This approach allowed 171 

them to lower the battery temperature about four degrees. Kim et al [49] proposed a fuzzy PID 172 

controller to improve the frequency control performance of microgrid islanded. The control strategy 173 

was based on primary control action of the BESS and a secondary control action of the energy 174 

management system. The control is composed of FLC and a conventional PI controller, connected in 175 

series. The gains of conventional PI controller and fuzzy PID controller were determined by the PSO 176 

algorithm. The showed simulation that with the proposed control, the performance is improved 177 

compared to a conventional PI. 178 

Welch et al. [50] showed that using particle swarm optimization (PSO) the optimized FLC achieves 179 

performed better by 26.13% in energy usage than un-optimized FLC. The charge strategy was 180 

improved about 5.22% respect to [51]. Fu-shun et al. [52] observed that using a PIC6014 181 

microcontroller as control core in the design of the FLC, the battery charge time is reduced two hours 182 

compared to the three stage control method. Swathika et al. [53] show that using a FLC the voltage of 183 

the battery can be controlled effectively than with a conventional controller. Also, the ISE (Integral of 184 

Square Error), IAE (Integral of the Absolute value of the Error) and settling time can be reduced 185 

considerably in comparison to a PI control. Safari et al. [54] developed an optimized FLC based on 186 

the particle swarm optimization (PSO) algorithm. In the control design took into account the weekly 187 

operation and maintenance (O&M) costs and the loss of power supply probability (LPSP).  The 188 

results of the simulation showed that optimized FLC reduces fluctuations in batteries SOC 189 

extending life battery expectancy. Moreover, can be lowered O&M costs and LPSP by 57% and 33%, 190 

respectively and average SOC can be increased by 6.18%. Reducing the investment cost by up to 18% 191 

in the capacity of autonomous hybrid green power system (HGPS) equipment. Improving what was 192 

presented in [50]. Berrazouane et al. [55] adopts the idea of an optimized FLC but, contrary to [50] 193 

and [54] use cuckoo search (CS). The CS was used to adjust the shape of the system membership 194 

functions of FLC to achieve a better performance instead of using a conventional FLC or optimized 195 

FLC based on PSO algorithm. The results of the simulation showed that with the proposed control 196 

loss of power supply probability, excess energy, and levelized energy cost the results were improved 197 

compared to optimized FLC based on PSO or a non-optimized FLC. 198 

 199 

3.1.2. Fuzzy Logic Control of energy storage systems in grid connected applications 200 

Yin et al. [22] divided the charging process into two stages. At the first stage, they implemented a 201 

fuzzy control to determine the proper start charging time and to prevent overcharging or 202 
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insufficiently battery charging. At the second stage, they used the normal charging method. 203 

However, during the simulation, the temperature was not taken into account in the inner loop of the 204 

control unit. 205 

Contrary to [49], Haoran et al. [56] take into account the SOC of the BESS in the control of the 206 

microgrid where the FLC was used to maintain the SOC of the BESS above a certain level and to 207 

mitigate the fluctuation. Thus, the FLC adjusts the active power output reference of the BESS based 208 

on the SOC and the target active power for the grid-connected operation. In island mode, the FLC 209 

adjusts the active power output reference of the BESS based on the SOC and the active power 210 

command for frequency control. Arcos-Aviles et al. [57] divided its strategy into two stages: At the 211 

first stages, it minimizes the power peaks and fluctuations in the grid power profile and it maintains 212 

the lead-acid battery SOC above 70%. At the second stages, it performs an off-line optimization 213 

process based on a set of evaluation quality criteria. With to simple moving average strategy the 214 

proposed control reduced maxima and minimum grid power in 61% and 15% %, respectively, and 215 

53% and 4%, respectively, with respect to the fuzzy based on microgrid net power trend. The 216 

strategy proposed by Derrouazin et al. [58] consisted in leading to optimal use of available energy 217 

resources beyond a threshold to withstand the load demand, giving priority to the highest source of 218 

power, while enough available energy is routed directly to the battery through a 219 

charging/discharging regulator system. This allowed them to have improved energy efficiency 220 

about 7% compared with the classical FLC. Paliwal et al. [59] reveal that incorporating battery 221 

charging efficiency as a battery SOC function offers a more practical approach to system planning. 222 

Also, conclude that assuming a constant value of efficiency can hamper the efforts to come up 223 

optimum system, because the charging efficiency obtained can be higher or lower than the constant 224 

assumed value affecting charging power drawn by storage and consequently the energy availability 225 

in the battery. Teo et al. [60] design a control based on Fuzzy Inference System (FIS) to determine the 226 

charging/discharging rate of the ESS depending on the RES and current SOC of the ESS.  Power 227 

variation range (PVR), power quality (PQ) and battery dynamic range (BDR) were the quality 228 

indices they took into account to evaluate the effectiveness of the proposed fuzzy controller. The 229 

maximum and minimum power of the grid was reduced. Hussain et al. [61] proposed a control 230 

strategy were where the controller decides the mode of BESS operation: subservient mode, resilient 231 

mode or in emergency mode. In subservient mode, the BESS is fully controlled by the EMS while in 232 

resilient mode minimize the operation cost of the microgrid. The goal of the emergency mode 233 

operation is minimize the load shedding during the emergency period. Respect to the latter, load 234 

shedding can be reduced by 92%. 235 

3.2. Model predictive control (MPC) 236 

Model Predictive Control (MPC) is an advanced control method which provides the sequence of 237 

optimal control variables over a finite time horizon by solving an optimization problem. Therefore it 238 

is widely used in many fields [62-69].  239 

 240 

 241 

 242 

 243 
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3.2.1. Model Predictive Control of Energy Storage System in stand-alone applications 244 

Perez et al. [70] designed a control that anticipates the future saturations of the ESS. The MPC 245 

allowed the system to reduce its power production during the first hours. To obtain the optimal 246 

performance of the battery Pezeshki et al. [71] focus on two goals: Energy operational cost and 247 

smooth loading.  248 

Based on a nonlinear model predictive control (NMPC), Dizqah et al [72], developed an energy 249 

management strategy that manages the energy flow across a standalone DC microgrid. The NMPC 250 

continuously solves an optimal control problem (OCP) and finds the optimum values of the pitch 251 

angle and three switching duty cycles. The control had three main goals: voltage level regulation, 252 

proportional power sharing, and battery management. While Morstyn [73] used a convex 253 

formulation of the DC microgrid dynamic optimal power flow problem. It is, based on a static 254 

voltage-current model and linear power flow approximations. Simulations were made on a real-time 255 

digital simulator (RTDS) which used non-linear battery models and switching converter models. In 256 

[74] this method does not assume that real and reactive power flows are decoupled; allowing line 257 

losses, voltage constraints, and converter current constraints have been addressed. The simulation 258 

was carried out in real time for an islanded microgrid based on the IEEE 13 bus prototypical feeder, 259 

with distributed li-ion BESS and intermittent PV generation. The computational time was reduced 260 

by a factor of 1000.  261 

Kujundžić et al. [75] used a full-state observer to solve that problem some states of the model cannot 262 

be directly measured. Also, resort to converting the model to a non-minimal state space form which 263 

uses the plant input and outputs as state variables. Added additional constraints to the MPC 264 

problem to keep the voltage of every battery below the upper threshold voltage level provided by 265 

the manufacturer. This caused the MPC algorithm to decrease the charging current. Causing a 266 

slower charging compared to a standard MPC method. The algorithm was validated on a valve 267 

regulated lead acid (VRLA) battery through simulation tests and experimentally. An advantage of 268 

using MPC algorithm with respect to CC-CV method was its ability to take into account the 269 

constraints on the maximum temperature and the maximum voltage of individual batteries. While 270 

Zeng et al [76] proposed combine an MPC and hierarchical optimization to maximize the RES 271 

generation and to minimize the variations between the intraday schedule and day-ahead schedule. 272 

This combination facilitated the integration between BESS and RES. The goal was to maximize 273 

output using appropriate charging and discharging control strategy for ESS based on the prediction 274 

of renewable power output, demand and network capability in future time horizon. The method 275 

was applied as a case study to the modified IEEE-30 bus test system and northwest power grid of 276 

China. Li et al. [77] presented a BESS control algorithms based on MPC to mitigate wind power 277 

intermittency. The MPC algorithm considers two practical aspects: the efficiency loss of BESS and 278 

the smoothness in wind power scheduling. They compare performance between the horizon-based 279 

revised MPC and the instantaneous heuristic algorithm, and came to the conclusion that MPC shows 280 

the best performance. 281 

 282 

 283 

 284 
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3.2.2. Model Predictive Control of energy storage system in grid connected applications 285 

A control system based on MPC was proposed by Khalid et al. [78] for the reliable operation of the BESS for 286 

primary frequency regulation. A frequency predictor was used to optimize the performance of the controller 287 

using multi-step ahead predictions. Two scenarios were presented. A first scenario where the BESS operation 288 

was adjusted between 40% to 80% and a second one where the BESS was adjusted between 10% to 50%. In the 289 

first case, the maximum battery SOC was reached at ~17 min, while the minimum battery SOC was reached at 290 

~70 min. In the second case, the maximum battery SOC was reached at ~80 min, while the minimum battery 291 

SOC was reached at ~12 min.  292 

Ferrarini et al. [79] developed a MPC to store energy that was not used by a building and to deliver it when the 293 

building load requires it, instead of buying it from the grid. Two MPC controls were designed: the building 294 

MPC and the battery MPC. The goal of the building MPC was to optimize the temperature control. 295 

Additionally, the battery MPC had as main goal to minimize the power flow at point of common coupling 296 

(PCC). The PCC power flow was successfully maintained around 50% value until the battery reaches a SOC of 297 

90%. Wang et al. [80] used a MPC to optimize and distribute the PNM prosperity energy storage project in New 298 

Mexico. The storage system was divided into two BESS units, a large slower moving unit for energy shifting 299 

and arbitrage and a small rapid charging unit for smoothing. The first goal was to provide energy arbitrage and 300 

to smooth the intermittent output from the PV array. Additionally, the second goal was to minimize the 301 

excessive charge-discharge cycles of the BESS units. Petrollese et al. [81] proposed EMS based on Optimal 302 

Generation Scheduling (OGS) combined with Model Predictive Control (MPC), which optimizes the short-term 303 

microgrid operation. The OGS was used to compare the expected power produced by the renewable generators 304 

with the expected load demand for the following days and determines the scheduling and evolution of the state 305 

of charge of the different energy storage systems for the next few hours to minimize the operating cost of the 306 

overall microgrid. The MPC has goal of the real-time control in order to guarantee the stability of the microgrid. 307 

A stochastic approach was implemented to weather and load forecasting uncertainties. By working 308 

simultaneously the OGS and MPC, the computational load is reduced as achieved in [74]. 309 

Matthiss et al. [82] used an MPC to maintain high levels of self-consumption, reduce the peak feed-in power for 310 

improved grid compatibility and to minimize energy costs. Four battery charge algorithms were implemented: 311 

charge at the earliest opportunity, linear delayed charging, peak shaving, and a model predictive control (MPC). 312 

Additionally, energy prizing was used as an additional parameter to the optimization process. The results show 313 

that using a MPC the use of wind energy is improved by 35% and the energy costs could be reduced about 25%. 314 

 315 

4. Results and discussion 316 

This research shows that in renewable energy systems with battery energy storage the most used control method 317 

for controlling the charging and discharging of lead acid batteries is CC-CV. However, this control requires a 318 

long time to charge the battery. This prolongation in the charging time generates battery temperature rises, so it 319 

produces battery irreversible damages. Moreover, during the process of battery charging and discharging, 320 

traditional controls leave some aspects uncontrolled.   321 

In order to solve these events, simulations and, in some cases, experimental tests with FLC and MPC are being 322 

carried out.  Generally, these controls are being used in the energy management of stand-alone microgrids and 323 

grid connected microgrids. These controls have been proven to be more efficient than a traditional control. Fig. 324 
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4 shows some results achieved using FLC or MPC in renewable energy systems with batteries energy storage. 325 

When comparing these results with a traditional control, we have found some advantages. The load shedding 326 

can be reduced up to 92%; the implementation of these controls, allows maintaining the SOC above 50%, thus 327 

avoiding deep discharges that lead to the deterioration of the battery. Through energy optimum use, the 328 

maximum and minimum power of the grid can be reduced by 61% and 15% respectively. This rational and 329 

efficient use of energy allows reducing microgrid energy costs by 25%. Also, the operation and maintenance 330 

and loss of power supply probability can be lowered around 57% and 33% respectively. Regarding to energy 331 

storage system in batteries, the charging time is reduced about 40%, which leads to a decrease in temperature 332 

about 26% and a reduction of the investment cost in energy storage capacity about 18%. So, it allowed some 333 

approaches to extend the life expectancy around 5%. 334 

 335 

Fig. 4. Main advantages of FLC or MPC with respect to traditional controls methods. 336 

 337 

Despite the advantages of FLC and MPC controllers compared to traditional controls, it is required an 338 

implementation of these types of controls in real environments with large-scale energy storage systems, because 339 

many of the results have been achieved through simulation. Moreover, parameters such as dynamic selection of 340 

battery SOC limits and the influence of ambient variables such as relative humidity or SOH prediction were not 341 

studied. Finally, these controls are also being implemented to control the charging of lithium iron phosphate 342 

(LiFePO4) batteries as shown in [83-85].  343 

5. Conclusions and future work 344 

Renewable energy systems have been a short-term solution in the mitigation of energy needs in isolated areas 345 

where there is no energy service grid connected. Many of these systems have battery energy storage to giving 346 

energy in those hours where natural resources such as sun or wind are not present. In in a connected microgrid, 347 

the BESS is used to minimize active power exchange at the point of common coupling of the microgrid.  348 

A control and control strategy is required to optimize the energy management and to avoid overcharging and 349 

overdischarging in the energy storage system. Despite of being the constant-current constant-voltage (CC-CV) 350 
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the most used control method for battery charging and discharging, other method such as FLC or MPC have 351 

shown better performances. The main benefits are: reduced charging time, improved charging efficiency, 352 

mitigation of the temperature rises, and maintenance of the battery SOC within secure limits. Moreover, they 353 

reduce of the investment cost in energy storage capacity and they extend the life expectancy. 354 

Most of the papers consulted based their results on simulations and in some cases on experimental tests with 355 

VRLA batteries. Therefore, much more real experiments are needed to extend the conclusion to real systems. 356 

The extension to other types of batteries such as OPzS lead-acid batteries and lithium iron phosphate (LiFePO4) 357 

batteries is also a hot research topic. However, the high cost of LiFePO4 batteries becomes a constraint for 358 

large-scale implementations in RES.  359 

Future work will focus on experimental application of FLC and MPC in the energy management of a 360 

grid-connected system located in Departamento del Chocó – Colombia (in Spanish).  361 
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