ESTADO ACTUAL DE LOS PASTOS MARINOS EN EL ÁREA DE INFLUENCIA DIRECTA DEL PROYECTO MARINA DE SANTA MARTA, EN EL MARCO DE LA ESTRUCTURACIÓN SU PLAN DE CONSERVACIÓN Y PROTECCIÓN

VALENTINA PIÑEROS PEREZ

Trabajo profesionalizante para optar al título de Biólogo Marino

Supervisor
DEIMER JOSÉ LÓPEZ HERNÁNDEZ
Ingeniero Ambiental y Sanitario
Gestor Ambiental y de Calidad
Proyecto Marina de Santa Marta

Tutor
Guiomar Aminta Jáuregui Romero
Profesora Asociada II
Bióloga Marina Msc. Ciencias Ambientales

UNIVERSIDAD DE BOGOTÁ JORGE TADEO LOZANO
FACULTAD DE CIENCIAS NATURALES E INGENIERÍA
PROGRAMA DE BIOLOGÍA MARINA
SANTA MARTA, DTCH
2020
CONTENIDO

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Título</th>
<th>Pág</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCCIÓN JUSTIFICADA</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>PROBLEMA DE INVESTIGACIÓN Y OBJETIVOS</td>
<td>5</td>
</tr>
<tr>
<td>2.1.</td>
<td>PROBLEMA DE INVESTIGACIÓN</td>
<td>5</td>
</tr>
<tr>
<td>2.2.</td>
<td>OBJETIVOS</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Objetivo General</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2.</td>
<td>Objetivos específicos</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>ACTIVIDADES DESARROLLADAS</td>
<td>6</td>
</tr>
<tr>
<td>3.1.</td>
<td>ÁREA DE ESTUDIO</td>
<td>6</td>
</tr>
<tr>
<td>3.2.</td>
<td>CAPÍTULO 1: ESTADO DE LOS PASTOS MARINOS</td>
<td>8</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>METODOLOGÍA</td>
<td>8</td>
</tr>
<tr>
<td>3.2.1.1.</td>
<td>Fase de campo</td>
<td>8</td>
</tr>
<tr>
<td>3.2.1.1.1.</td>
<td>Localización de las praderas</td>
<td>9</td>
</tr>
<tr>
<td>3.2.1.1.1.</td>
<td>Metodología del monitoreo para caracterización de praderas</td>
<td>10</td>
</tr>
<tr>
<td>3.2.1.1.2.</td>
<td>Cobertura, densidad y patrón de distribución</td>
<td>11</td>
</tr>
<tr>
<td>3.2.1.1.3.</td>
<td>Porcentaje de afectación por epífitos</td>
<td>11</td>
</tr>
<tr>
<td>3.2.1.1.4.</td>
<td>Crecimiento foliar</td>
<td>11</td>
</tr>
<tr>
<td>3.2.1.1.5.</td>
<td>Calidad del agua</td>
<td>12</td>
</tr>
<tr>
<td>3.2.1.2.</td>
<td>Fase de laboratorio</td>
<td>12</td>
</tr>
<tr>
<td>3.2.1.2.1.</td>
<td>Componente biológico</td>
<td>12</td>
</tr>
<tr>
<td>3.2.1.2.2.</td>
<td>Componente edáfico</td>
<td>13</td>
</tr>
<tr>
<td>3.2.1.2.3.</td>
<td>Biomasa de epífitos</td>
<td>13</td>
</tr>
<tr>
<td>3.2.1.2.4.</td>
<td>Biomasa foliar de crecimiento</td>
<td>14</td>
</tr>
<tr>
<td>3.2.1.2.5.</td>
<td>Biomasa total, productividad primaria y contenido de carbono</td>
<td>14</td>
</tr>
<tr>
<td>3.2.1.3.</td>
<td>Fase de gabinete</td>
<td>14</td>
</tr>
<tr>
<td>3.2.1.4.</td>
<td>Indicador condición y tenencia de pastos marinos ICT<sub>pm</sub></td>
<td>17</td>
</tr>
<tr>
<td>3.2.1.5.</td>
<td>Análisis de los datos</td>
<td>18</td>
</tr>
<tr>
<td>3.2.1.6.</td>
<td>Kuskal-Wallis (no paramétrico)</td>
<td>19</td>
</tr>
<tr>
<td>3.2.1.7.</td>
<td>Coeficiente de correlación de Pearson momento-producto</td>
<td>19</td>
</tr>
<tr>
<td>3.2.2.</td>
<td>RESULTADOS Y DISCUSIÓN</td>
<td>19</td>
</tr>
</tbody>
</table>
3.2.2.1. Densidad y Cobertura .. 22
3.2.2.2. Tipo de sedimento .. 25
3.2.2.3. Presencia de epífitos en las praderas .. 26
3.2.2.4. Biomasa de epífitos ... 27
3.2.2.5. Atributos funcionales: Biomasa total y stock de carbono ... 31
3.2.2.6. Análisis estadístico Kruskal-Wallis de las cuatro especies de pastos marinos .. 33
3.2.2.7. Correlaciones momento producto de Pearson de las cuatro especies de pastos marinos .. 33
3.2.2.8. Análisis estadístico Kruskal-Wallis de las praderas de Thalassia testudinum .. 34
3.2.2.9. Correlaciones momento producto de Pearson .. 34
3.2.2.10. Calidad del agua: temperatura e intensidad lumínica .. 35
3.2.2.11. Productividad primaria en praderas de T. testudinum .. 38
3.2.2.12. Indicador de condición y tenencia ICT pm ... 38
3.2.3. BIBLIOGRAFÍA .. 39
3.3. CAPÍTULO 2: ESPECIES AMENAZADAS ASOCIADAS .. 45
3.3.1. Metodología ... 45
3.3.1.1. Fase de campo ... 45
3.3.1.2. Fase de laboratorio .. 45
3.3.1.3. Fase de gabinete ... 45
3.3.2. RESULTADOS Y DISCUSIÓN ... 46
3.3.2.1. Seguimiento y monitoreo de especies amenazadas ... 46
3.3.2.2. Seguimiento y monitoreo de restauración de corales .. 62
3.3.3. BIBLIOGRAFÍA .. 71
4. CONCLUSIONES .. 74
5. RECOMENDACIONES ... 74
6. AGRADECIMIENTOS .. 75
7. RESUMEN .. 75
8. ABSTRACT .. 76
1. INTRODUCCIÓN JUSTIFICADA

La conservación de los ecosistemas marinos y costeros, garantiza el futuro y el bienestar de las comunidades que dependen económicamente de sus recursos (Ardila et al., 2002). Las praderas de pastos marinos, brindan servicios que aportan a la resiliencia en las costas, incluyendo prevención de la erosión en la línea de ribera, mejoramiento de la calidad del agua, reciclaje de nutrientes, captura de sedimento y hábitat de crianza y protección para muchas especies comerciales de peces, moluscos y crustáceos amenazadas (Howard et al., 2012).

Este ecosistema, resulta ser también de gran conectividad con otros ambientes circundantes, predilectos por algunas especies en sus etapas maduras. La producción de biomasa de los pastos marinos, sostiene una red alimentaria compleja, su productividad se debe al metabolismo no solo de sus áreas foliares, sino de sus asociaciones algales, considerándose de las más productivas y de mayor tasa de crecimiento (MADS, 2017).

La estructuración de un Plan de Manejo y Conservación de los pastos marinos en el área de influencia directa del Proyecto Marina de Santa Marta, acoge los lineamientos del “Manejo Integrado de Zonas Costeras”, el cual enuncia que se debe promover la elaboración de estrategias apoyadas en información científica y técnica actualizada, buscando la participación efectiva de las entidades responsables de la administración de los litorales y las comunidades locales; continuándose el trabajo en programas regionales de manejo y recuperación de ecosistemas costeros, con énfasis en su protección, uso sostenible de los recursos y en la prevención y control de fuentes terrestres de contaminación marina (MMA, 2000).

Con base a las disposiciones de la LEY 1450 DE 2011, “Por la cual se expide el Plan Nacional de Desarrollo, 2010-2014”, se expone en el ARTÍCULO 207, la necesidad de dar protección no solo a los ecosistemas de arrecifes de coral, sino también a los manglares y praderas de pastos marinos, de todas las zonas costeras de jurisdicción nacional, definidos
en el “Atlas de Áreas coralinas de Colombia” y el “Atlas Las praderas de Pastos Marinos en Colombia: estructura y distribución de un ecosistema estratégico”, elaborados por el Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andreis”- Invemar y demás áreas identificadas que faltan por espacializar, en áreas de su preservación.

El propósito del desarrollo de esta Práctica Profesionalizante para optar por el título de Biología Marina de la Universidad Jorge Tadeo Lozano, fue de contribuir en la estructuración de un Plan de Manejo y Conservación para los pastos marinos que se encuentran en el área de influencia directa del Proyecto Marina de Santa Marta, mediante la evaluación de su estado actual; estableciéndose adicionalmente, un Programa de Seguimiento y Monitoreo para otras especies amenazadas de los filos Mollusca, Crustácea, Echinodermata, Chordata y Cnidaria, encontrados dentro y fuera del área del proyecto.

2. PROBLEMA DE INVESTIGACIÓN Y OBJETIVOS

2.1. PROBLEMA DE INVESTIGACIÓN

A medida que aumenta el desarrollo portuario en ciudades costeras con proyectos como la Marina Santa Marta, se hace relevante adelantar acciones tendientes a evaluar el estado actual del ecosistema de pastos marinos que propendan en planes de conservación y protección, mediante la caracterización sus aspectos estructurales y funcionales, dada su importancia ecológica, económica y social. De manera complementaria, se busca efectuar el seguimiento y monitoreo a algunas especies circundantes o asociadas al sector de estudio, categorizadas en amenaza.

2.2. OBJETIVOS

2.2.1. Objetivo General

Evaluar el estado actual de los pastos marinos en el área de influencia directa del proyecto Marina de Santa Marta, considerando algunos de los atributos estructurales, funcionales y
condiciones del sustrato en este ecosistema; así mismo, estructurar un seguimiento y monitoreo a especies amenazadas como parte de sus asociaciones.

2.2.2. Objetivos específicos

- Determinar los atributos estructurales de los pastos marinos en el área de estudio: densidad y cobertura, junto con las condiciones del sustrato y características del agua.
- Estimar la biomasa en pie y rizoidal, biomasa total, biomasa de epífitos, stock de carbono y productividad primaria neta de los pastos marinos en el área de influencia directa del Proyecto Marina de Santa Marta.
- Calcular el Indicador Condición-Tenencia ICT\textsubscript{pm} con el cual se va a identificar el estado actual del área de estudio.
- Estructurar un seguimiento y monitoreo a especies amenazadas, circundantes y asociadas a los pastos marinos en el área de estudio.

3. ACTIVIDADES DESARROLLADAS

3.1. ÁREA DE ESTUDIO

La Bahía de Santa Marta está ubicada en el departamento del Magdalena en las latitudes 11° 14’ 5”- 11° 15’ 30” N y longitudes 74° 13’ 12” – 74° 14’ 30” W. Las profundidades encontradas son de entre 20 m y las máximas profundidades de 60 m, siendo su área superficial de 5 km2 aproximadamente (Ramírez, 1983). Es una zona abierta y su línea costera está limitada al norte y al sur por formaciones rocosas y en su parte central predomina una playa arenosa (Figura 1 y 2).
El clima en esta región de acuerdo a Franco (2005) se da a partir del desplazamiento norte-sur de la Zona de Convergencia Intertropical (ZCIT) la cual define la condición climática seca y lluviosa, siendo la primera de diciembre a abril y la segunda de mayo a noviembre. Los períodos de condiciones climáticas presentes en la región del Magdalena de acuerdo a Investigaciones Oceanográficas e Hidrográficas del Caribe (CIOH, 2018) son condición climática seca mayor (diciembre a marzo), la época lluviosa mayor (septiembre a noviembre), temporada lluviosa menor (abril a mayo) y la temporada seca menor (junio a agosto).

Las zonas norte y sur están bien definidas. Al norte esta zona se ve influenciada por los vertimientos permanentes de aguas negras que provienen del alcantarillado urbano, la zona sur está sometida directamente al Río Manzanares y su comportamiento estacional. El Río Manzanares lleva desechos del sector cafetero, las aguas residuales de la ciudad y basuras del sector sur de la ciudad. En la época de lluvias, la alta sedimentación y cantidad de nutrientes que vienen en el río causan turbidez en las aguas de la bahía (Escobar, 1988).

La Marina de Santa Marta es un puerto de embarcaciones de entre 25 y 132 pies de eslora que cuenta con 256 atraques. Localizada en el Distrito Turístico, Cultural e Histórico de Santa Marta, capital del Departamento del Magdalena en el Caribe colombiano,
geográficamente se ubica sobre aguas marítimas de la Bahía de Santa Marta desde noviembre de 2009, entre las calles 22 y 23 en un polígono encerrado entre las coordenadas de la zona 11° 14’ 34.45” N y 74° 13’ 04.91” O (Figura 2) (Mejía y Jáuregui, 2010).

Figura 2. Mapa de aproximación de la bahía de Santa Marta. Tomado de Dirección General Marítima Centro de investigaciones Oceanográficas e Hidrográficas. Escala 1:10.000

3.2. CAPÍTULO 1: ESTADO DE LOS PASTOS MARINOS

3.2.1. METODOLOGÍA

3.2.1.1. Fase de campo

Se realizaron 5 muestreos de inmersión libre a pulmón de junio a noviembre en el año 2019, correspondiente a las épocas seca menor y lluviosa mayor en el área de influencia directa del Proyecto Marina de Santa Marta, Magdalena. Se realizó una caracterización
estructural y funcional de cinco praderas de pastos marinos las cuales se mapearon, se midieron y se analizaron todos sus componentes en la mayoría de casos (ver figura 3).

Figura 3. Área del proyecto Marina de Santa Marta, en verde y en rojo se observan las zonas caracterizadas.

3.2.1.1. Localización de las praderas

Realizando una búsqueda bibliográfica se procedió a localizar las praderas de pastos según las ubicaciones denotadas por Castro (2003) con la ayuda de la aplicación Boating HD mares y lagos por Navionics Srl, la cual tiene la función de GPS, distancia y profundidad de los marcadores que se establecen. A medida que se fueron encontrando las praderas, se caracterizaron de acuerdo a la Red global de pastos marinos SeagrassNet y la recolección de muestras se realizó con base en el manual de prácticas de campo (Jáuregi, 1997) y en el manual Coastal Blue Carbon. Luego de algunos meses de búsqueda se encontraron 5 praderas, siendo dos poliespecíficas, la primera de *Halodule wrightii* y *Halophila decipiens* y la segunda de *Thalassia testudinum* y *Syringodium filiforme*. Las otras tres praderas fueron monoespecíficas; dos de *Thalassia testudinum* y una de *Syringodium filiforme* (figura 4).
Figura 4. Mapa de las 5 praderas en el área de influencia directa del Proyecto Marina de Santa Marta (Flecha roja), aplicación Boating HD mares y lagos por Navionics Srl.

3.2.1.1.1. Metodología del monitoreo para caracterización de praderas

Una vez determinadas las coordenadas de las praderas se midió el ancho y el largo de cada una y posteriormente se ubicaron las estaciones de monitoreo no permanentes (debido a la alta concurrencia de barcos y lanchas). De acuerdo con la forma de las praderas y su lejanía de la playa se dispusieron tres transectos en cada pradera paralelos a la línea de costa (somero, medio y profundo) siguiendo la metodología del Protocolo de Condición y Tenencia para pastos marinos ICTpm (2014) y SeagrassNet (Short et al., 2001; Figura 5).
3.2.1.1.2. Cobertura, densidad y patrón de distribución

Para determinar la cobertura, densidad y el patrón de distribución se colocaron 36 cuadrantes de 50 × 50 cm con subdivisiones de 10 cm × 10 cm en cada pradera (12 en cada transecto) intercalados. De cada transecto se tomaron dos muestras de componente biológico y edáfico con un corazador de 10 cm de diámetro y 34 cm de largo, las cuales se identificaron en el laboratorio (Figura 3). Para categorizar el porcentaje de cobertura de los pastos se emplearon clases de 1 a 5 (Jáuregui, 1997; Wilkinson y Baker, 1994). La densidad se estimó mediante el conteo de vástagos dentro del mismo cuadrante de 50 × 50 cm teniendo en cuenta el patrón de distribución de la pradera se lanzaron 2 cuadrantes por transecto.

3.2.1.1.3. Porcentaje de afectación por epífitos

Se estableció la densidad de epífitos enfocándose principalmente en el hongo Labyrinthula sp. realizando un conteo de hojas afectadas dentro de cada cuadrante de acuerdo al ICT_{pm} (2014).

3.2.1.1.4. Crecimiento foliar
El crecimiento foliar se determinó mediante el marcaje de vástagos con un alfiler y se ubicó un aro de alambre dulce con cinta amarilla (como marcador) en cada transecto de cada una de las cuatro praderas de tal forma que luego de ocho días se registrara el crecimiento de la hoja en el lugar exacto y luego de esto se realizó una “poda” para determinar el crecimiento desde el meristema basal en el laboratorio. La “poda” se realizó con la ayuda de un corazonador para obtener el vástag completo en cada una de las estaciones (Jáuregui, 1997; CARICOMP, 1994; figura 6).

Figura 6. Marcaje y poda de las praderas luego de 8 días transcurridos.

3.2.1.1.5. Calidad del agua

Se midió la temperatura y la intensidad lumínica del agua desde el 2 de octubre de 2019 hasta el 20 de noviembre de 2019 con ayuda del dispositivo registrador de datos HOBO y el software para dispositivos y registradores de datos HOBOware versión 3.7.17. ubicándolo en un lugar despejado cerca de la superficie en la plataforma de restauración coralina ubicada al final del muelle G del Proyecto Marina de Santa Marta.

3.2.1.2. Fase de laboratorio

3.2.1.2.1. Componente biológico

El análisis de las muestras recolectadas en cada una de las praderas se realizó en las instalaciones de la Universidad Jorge Tadeo Lozano sede Santa Marta. Mediante microscopio y estereoscopio se analizaron las principales partes de los vástagos; hoja, lígula, raíz y vaina realizando cortes histológicos transversales y longitudinales. También se observaron los epífitos presentes en los vástagos y se identificaron taxonómicamente los organismos.
3.2.1.2.2. Componente edáfico

Granulometría

Se tomaron 100 g de la muestra y se pesaron a través de la batería de tamices; las fracciones que se retuvieron en cada uno de los tamices fueron pesadas para obtener porcentajes de los diferentes tamaños de partículas que conforman el sustrato (Jáuregui, 1997).

Materia orgánica

Se tomaron 50 g de la muestra de sedimento y se introdujeron en un crisol previamente pesado, se secaron en una estufa a 60° C. Luego del secado, se toman 5 g y se llevaron a la mufla a 550° durante tres o cuatro horas, de allí se pasaron al desecador para el proceso de enfriamiento. La diferencia de peso del crisol indica la cantidad de materia orgánica encontrada (Holme y McIntyre, 1984).

Carbonato de calcio

A 10 g de la muestra se le agregaron 50 ml de ácido clorhídrico 0.5 N, se calentó ligeramente sin que se evaporara, luego de esto se enfrió a temperatura ambiente y se le agregó fenoflateina como indicador. La muestra se tituló con una solución de hidróxido de sodio 0.25 N hasta que la coloración rosa viró y se tomó el registro de NaOH gastado (Jáuregui, 1997).

3.2.1.2.3. Biomasa de epífitos

En este procedimiento se colocaron las hojas sobre papel secante durante 15 minutos para eliminar la humedad, seguido de esto se pesaron sobre la balanza analítica tomando este peso total con epífitos como WO. Posteriormente se limpiaron las hojas con agua destilada y/o agua de mar con ayuda de un cepillo de cerdas suaves. Luego de esto, las hojas nuevamente se dejaron sobre papel secante durante 15 minutos retirando el exceso de
humedad y pasado este tiempo se pesaron nuevamente tomando este peso como libre de epífitos W1 (Jáuregui, 1997; CARICOMP 1994).

3.2.1.2.4. Biomasa foliar de crecimiento

Para el crecimiento foliar luego de tener las muestras biológicas de 4 de las 5 praderas en bolsas con agua de mar, se tomaron los vástagos completos de cada especie y de cada muestra. Se observaron en el estereoscopio y microscopio identificando parte aérea (fotosintética y no fotosintética) y parte subterránea (raíz y vaina). Para observar el crecimiento se cortaron las fracciones que se identificaron de nuevo crecimiento (las resultantes del podado y los recientes brotes que sobrepasaron las marcas de referencia. Se introdujeron en recipientes de aluminio previamente pesados y rotulados. Posteriormente se llevaron a la estufa precalentada a 90 °C en donde permanecieron durante 12 h. Seguidamente se pasaron al desecador hasta que se enfriaron. Luego de esto se pesaron y se obtuvo el peso seco libre de epífitos de la fracción foliar de crecimiento (expresada en mega gramos de carbón por hectárea Mg C/ ha) (Jáuregi, 1997).

3.2.1.2.5. Biomasa total, productividad primaria y contenido de carbono

A la fracción superior e inferior de no crecimiento que incluyó parte necrosada y no necrosada además libre de epífitos, se les realizó el mismo procedimiento. También a las raíces y ligula después de limpiarlas y lavarlas. La sumatoria de los pesos dio el valor de la biomasa total (Jáuregi, 1997). A partir de la biomasa total se determinó la productividad y el contenido de carbono en el área de estudio.

3.2.1.3. Fase de gabinete

Densidad y cobertura

La densidad y la cobertura se calcularon en 12 cuadrantes de 3 transeptos por cada pradera con las siguientes fórmulas:

$$\text{Densidad} = \frac{\text{Número de vástagos por unidad muestreal}}{\text{Área de la unidad muestreal}} \times 1 \text{m}^2$$
\[
\% \text{Cobertura} = \frac{\sum \% \text{Punto medio} \times \text{Frecuencia de la clase}}{\text{Frecuencia}}
\]

Granulometría

El análisis de granulometría se realizó con una serie de tamices estándar que se gradúa de acuerdo con los intervalos de la escala de Attemberg. Para corroborar el tipo de grano con los resultados de granulometría se usó el programa Gradistat.

Tabla 1. Clasificación tamaño de la partícula de sedimento

<table>
<thead>
<tr>
<th>Tamaño de partícula (µm)</th>
<th>Attermbreg (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Arena gruesa</td>
</tr>
<tr>
<td>500</td>
<td>Arena gruesa</td>
</tr>
<tr>
<td>250</td>
<td>Arena fina</td>
</tr>
<tr>
<td>180</td>
<td>Arena fina</td>
</tr>
<tr>
<td>125</td>
<td>Arena fina</td>
</tr>
<tr>
<td>90</td>
<td>Arena muy fina</td>
</tr>
<tr>
<td>63</td>
<td>Arena muy fina</td>
</tr>
<tr>
<td><63</td>
<td>Arena muy Fina</td>
</tr>
</tbody>
</table>

Carbonatos de calcio

Para el cálculo de los carbonatos presentes en el sedimento en términos de Carbonato de Calcio (CaCO3) por gramo de sedimento, se usó la siguiente fórmula:

\[
\text{meqCaCO}_3 = \frac{(\text{volumen de HCl} \times 0,5 - \text{volumen de NaOH} \times 0,24) \times 5}{\text{Peso de la muestra}}
\]

Tabla 2. Clasificación del sedimento

<table>
<thead>
<tr>
<th>meqCaCO3</th>
<th>Naturaleza del sedimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 10 %</td>
<td>Lodosa</td>
</tr>
<tr>
<td>10 a 50 %</td>
<td>Lodoso arenoso</td>
</tr>
<tr>
<td>50 a 90 %</td>
<td>Arenoso lodoso</td>
</tr>
<tr>
<td>90 %</td>
<td>Arenoso</td>
</tr>
</tbody>
</table>

Tabla 3. Clasificación Origen del sedimento

<table>
<thead>
<tr>
<th>meqCaCO3</th>
<th>Naturaleza orgánica</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 15 %</td>
<td>Litoclástica</td>
</tr>
<tr>
<td>15 a 50 %</td>
<td>Litobiolitoclástico</td>
</tr>
<tr>
<td>50 a 85 %</td>
<td>Bioclástico</td>
</tr>
<tr>
<td>90 %</td>
<td>Bioclástico</td>
</tr>
</tbody>
</table>

Materia orgánica

El cálculo de la materia orgánica presente en la muestra de sedimento se realizó con la siguiente fórmula:
Biomasa de epífitos

El valor de la biomasa (peso húmedo) de epífitos en gramos lo da la diferencia (WO-W1).

Biomasa total y contenido de carbono

La biomasa total es la suma de los pesos de las fracciones superiores e inferiores, además libre de epífitos luego de haberlos llevado a la estufa. El contenido de carbón dentro del componente vegetativo vivo kg C/m2 se determina multiplicando la biomasa estimada de la planta con el factor de conversión con respecto al área de la parcela. Los contenidos de carbono se amplían para determinar la reserva de carbono para el tamaño de la parcela dado.

$$\text{Carbón en el componente de biomasa vivo (Kg*C/m}^2) = \frac{\text{biomasa estimada*0.34}}{\text{Área de la parcela (m}^2)}$$

Factor de conversión= 0.34

- Carbono en el componente vegetativo:

$$\text{Componente vegetativo (Mg*C/m}^2) = \frac{\text{Contenido de carbono Kg C/m}^2 * \text{Mg} * 1,000 \text{ kg} * 10,000 \text{ m}^2}{\text{ha}}$$

Total carbono vegetativo en una parcela

$$\left(\frac{\text{Mg C}}{\text{ha}}\right) = \text{componente #1+componente #2+componente #3…n}$$

Carbono vegetativo promedio=

$$\frac{\text{total carbono vegetativo parcela#1+}}{\text{total carbono vegetativo parcela #2+total carbono vegetativo parcela #3…n}}$$

$$\text{desviación estándar (σ)=} \left(\frac{(X1 - X)^2 + (X2 - X)^2 + \ldots + (Xn - X)^2}{N-1}\right)^{1/2}$$
En el área:

Carbono total en un área proyectada=
carbono vegetativo estimado por estrato #1 + carbono vegetativo estimado por estrato #2 +
carbono vegetativo estimado por estrato #3

Error estándar = \(\sqrt{\sigma^T} = (\sigma A)^2 + (\sigma B)^2 + \ldots + (\sigma N)^2 \)

El resultado se reporta como carbono orgánico total en un área proyectada ± desviación estándar.

Determinación de productividad primaria

La productividad primaria \(P_{pm}^2 \) de cada pradera se determinó con la biomasa de crecimiento de vástagos en la siguiente fórmula:

\[
P_{pm}^2 = \frac{\text{Biomasa de crecimiento} \times \text{promedio densidad por estación}}{8 \text{ días} \times 4}
\]

4: factor \((0.25m^2 \times 4 = 1m^2)\)

3.2.1.4. Indicador condición y tenencia de pastos marinos ICT \(\text{pm} \)

Al ser un valor compuesto, el ICT\(_{pm} \) integra la relación entre cada una de sus variables componentes, con su respectivo valor de referencia \((V_{ref})\), por medio de la función de promedio geométrico aritmético. Para cada una de las variables se le es asignado un peso de ponderación dentro de la función, a continuación se presentan las ponderaciones asignadas a cada variable:
Tabla 4. Pesos o Factores de ponderación para las variables que componen el Indicador de Condición Tenencia de Praderas de Pastos Marinos ICT_{pm}.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Peso (w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad de vástagos (D)</td>
<td>0,3</td>
</tr>
<tr>
<td>Densidad de herbívoros (DH)</td>
<td>0,2</td>
</tr>
<tr>
<td>Densidad de detritívoros · omnívoros (DCO)</td>
<td>0,2</td>
</tr>
<tr>
<td>Densidad de carnívoros (DC)</td>
<td>0,2</td>
</tr>
<tr>
<td>Afectación por Labyrinthula spp. (L)</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Fórmula:

\[ICT_{pm} = \left(\prod_{i=1}^{n} \left(\frac{X_i}{V_{ref_i}} \right)^{wi} \right)^{\frac{1}{\Sigma wi}} \]

Este indicador está constituido por la sumatoria de los tres transectos de cada estación y entre estaciones muestreadas. Donde \(V_{ref} \) corresponde al valor de referencia de cada variable \(X \). Este valor de referencia es establecido para cada área protegida, con base en el muestreo de la estación de monitoreo que tenga el menor grado de perturbación antrópica y el mayor desarrollo estructural. Teniendo en cuenta la tabla 2, en donde se muestran los pesos (w) de cada variable, y que la sumatoria de los pesos es igual a 1, se tiene la siguiente fórmula:

\[ICT_{pm} = \left(\frac{D}{V_{refD}} \right)^{0.30} \times \left(\frac{DH}{V_{refDH}} \right) \times \left(\frac{DCO}{V_{refDCO}} \right)^{0.60} \times \left(\frac{DC}{V_{refDC}} \right) \times \left(\frac{L}{V_{refL}} \right)^{0.10} \]

3.2.1.5. Análisis de los datos

Los atributos estructurales y funcionales obtenidos a partir de los procedimientos de laboratorio se dispusieron en una tabla con sus respectivas medidas de tendencia central media, desviación estándar, máximos y mínimos. A partir de estos resultados se les aplicaron las pruebas estadísticas correspondientes.
3.2.1.6. Kuskal-Wallis (no paramétrico)

La prueba de Kruskal-Wallis evalúa la hipótesis nula de que las medianas dentro de cada una de las variables es la misma. Teniendo en cuenta que se tienen pocas muestras se les aplicó la prueba estadística no paramétrica Kruskal-Wallis a las variables encontradas de las cuatro especies de pastos marinos y de las praderas de *Thalassia testudinum* para observar si existen diferencias significativas por especies y por distribución geográfica.

3.2.1.7. Coeficiente de correlación de Pearson momento-producto.

Este coeficiente muestra el rango de correlación él cual va de -1 a +1, y mide la fuerza de la relación lineal entre las variables. Se le aplicó a las variables de las cuatro especies y de las praderas de *T. testudinum* para poder observar cómo interactúan las variables ambientales o atributos funcionales con las variables estructurales o atributos estructurales.

3.2.2. RESULTADOS Y DISCUSIÓN

Se encontraron 5 praderas de pastos marinos de cuatro especies distintas distribuidas en diferentes zonas en el área de influencia directa del Proyecto Marina de Santa Marta. Todas a profundidades entre 3 y 4 m, con la característica de que no se encontraron sectores más profundos a este rango dentro de toda el área muestreada. La quinta pradera fue la de mayor tamaño tanto de ancho como de largo 2.400 m² y al ser la más cercana a la bahía se encontró con mucha basura y escombros. La primer, segunda, tercera y cuarta pradera se encontraron con muy poca basura en todos los muestreos pero con un menor tamaño y alejadas de la playa (Tabla 5).

Tabla 5. Coordenadas de las praderas y características principales de colecta. Hw: *Halodule wrightii*, Hd: *Halophila decipiens*, Tt: *Thalassia testudinum* y Sf: *Syringodium filiforme*.

<table>
<thead>
<tr>
<th>Identificación de muestra</th>
<th>Nombre_reference</th>
<th>Tipo_dato</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Fecha</th>
<th>Colecto_r</th>
<th>Profundidad (m)</th>
<th>Tamaño (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pradera poliespecífica</td>
<td>1</td>
<td>Biológico y</td>
<td>11°14.728'</td>
<td>74°13.023'</td>
<td>3 de Julio de 2019</td>
<td>Valentin</td>
<td>4</td>
<td>510</td>
</tr>
<tr>
<td>Pradera</td>
<td></td>
<td>sedimento</td>
<td>N</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pradera</td>
<td>2</td>
<td>Biológico y</td>
<td>11°14.729'</td>
<td>74°13.026'</td>
<td>18 de Julio de 2019</td>
<td>Valentin</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Pradera</td>
<td></td>
<td>sedimento</td>
<td>N</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pradera</td>
<td>3</td>
<td>Biológico y</td>
<td>11°14.771'</td>
<td>74°13.050'</td>
<td>28 de agosto de 2019</td>
<td>Valentin</td>
<td>3</td>
<td>255</td>
</tr>
<tr>
<td>Pradera</td>
<td></td>
<td>sedimento</td>
<td>N</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Al ser este uno de los únicos estudios de pastos marinos realizados en la bahía de Santa Marta, los resultados obtenidos son en su gran mayoría son poco comparables con otros estudios, ya que se realizaron en otras zonas cercanas o en cruceros que incluyeron zonas del Caribe colombiano pero no esta zona. Sin embargo se logró hacer una comparación temporal con el estudio realizado por Castro (2003) enfocado hacia los pastos marinos como unidades ecológicas y su distribución en la bahía.

De acuerdo a Escobar (1981) frente al Banco de Povea (figura 1) se extendía una pradera de pastos marinos en su mayoría compuesta por *Thalassia testudinum*. Esta pradera crecía paralela a la costa hasta la zona en donde actualmente desemboca el río Manzanares, se desarrollaba sobre un fondo fangoso-arenoso, hasta 1,5 metros de profundidad. A finales de la década de los 90 existía una pequeña pradera frente a la zona urbana que crecía en forma de varios parches. El parche más largo, se situaba en la parte norte de la bahía, con una extensión e aproximadamente 3000 m² y crecía en forma continua entre 1 y 3 m de profundidad. Su cobertura y densidad era bajas con respecto a otras bahías cercanas a la zona (Castro, 2003).

Con respecto a los términos “praderas” o “parches”, de acuerdo a Gómez et al., (2014a) y Díaz et al.,(2003) se consideran a las praderas 1,3,4 y 5 como “praderas de pastos marinos”, ya que superan los 100 m² establecidos como criterio, estos autores también consideran importante el hecho de que sean conformadas por *T. testudinum* y *S. filiforme* pero entran en el término las de *H. wrightii* y *H. decipiens*. La pradera 2 al ser de una menor extensión se consideraría como un “parche” de *T. testudinum*. La pradera 3 se consideraría como una “pradera mixta” ya que tiene dos especies (MADS, 2017).

La primer pradera está compuesta por tres especies de pastos: *Halophila decipens* y *Halodule wrightii*. Sin embargo esta mayormente dominada por algas las cuales cubren total o parcialmente las zonas en donde hay pastos e incluso crecen sobre los vástagos. Se identificó la cobertura y densidad de vástagos por metro cuadrado en tres zonas somera (A), media (B) y profunda (C) paralelo a la costa con respecto a la medida de la pradera de
510 m². En la zona A se tomaron tres cuadrantes y en la zona B y C se tomaron 20 cuadrantes en cada zona (Figura 7).

La segunda pradera que por su extensión se puede denominar como parche se encuentra a 182,5 m del enrocado de la Marina internacional, es decir en el área de influencia directa, sus medidas son aproximadamente de 50 m² y se encuentra con algunos rastros de anclas. Se encontraron especies en amenaza tales como Palinurus argus y una gran cantidad de organismos juveniles como peces, moluscos y crustáceos. Con respecto a las medidas de la pradera se tomaron 3 transeptos; somero A, medio B y profundo C paralelos a la costa y se le midió cobertura y densidad a 10 cuadrantes de cada transepto en total 36 cuadrantes (Figura 7).

La tercer pradera se encontrada en el área de influencia directa de la Marina internacional está a 555,6 m aproximadamente del enrocado. Sus medidas son de 255 m². Se observo una mayor cantidad de Syringodium filiforme frente a Thalassia testudinum. Se encontraron especies como Canthigaster rostrata, Tripneustes sp., entre otros. Se tomaron muestras de la pradera en un lugar al azar y se procesaron en el laboratorio para encontrar su biomasa, características de sedimento y epífitos asociados (Figura 7).

La cuarta pradera se identificó como monoespecífica de Syringodium filiforme está ubicada a 740,8 m aproximadamente del enrocado de la Marina internacional. Sus medidas son de 450 m². Es un área grande con algunos parches y tiene una forma irregular (no es cuadrada). Se encontraron la especie Lobatus gigas la cual está amenazada. Al igual que a las anteriores, se le tomó una muestra al azar de sedimento y vástagos y se procesaron en el laboratorio para hallar la biomasa, características de sedimento y epífitos asociados (Figura 7).

La quinta pradera se encontró muy cercana a la costa con un tamaño de 2400 m². Se identificó como monoespecífica, se encuentra a una distancia de 916,67 m del enrocado. Se encontraron especies como Lytechinus variegatus y Gimnothorax moringa. Al estar tan cerca de la costa posee mucha basura y no es buena la visibilidad, tiene una forma casi rectangular y es la pradera que se puede encontrar más fácilmente. Se tomó registro de sedimento y vástagos al igual que las demás praderas (Figura 7).

Las observaciones muestran que las praderas de pastos marinos han tenido una considerable reducción desde el primer momento en que se describieron, no obstante su
distribución en forma de parches no fue muy clara a lo largo de la bahía. La pradera más larga se encontró con un tamaño de 2400 m2 un tamaño menor a la más larga mencionada por Castro (2003) lo cual se puede considerar teniendo en cuenta las diversas modificaciones que ha sufrido la bahía en casi 40 años.

Figura 7. Fotografías de praderas 1 a 5 de izquierda a derecha (Piñeros, 2019).

3.2.2.1. Densidad y Cobertura

Dos de las cinco praderas encontradas fueron poliespecíficas, la primera de *Halophila decipiens* con *Halodule wrightii* y la tercera de *Thalassia testudinum* con *Syringodium filiforme*. Aunque se logró caracterizar la primer pradera, ésta hacía parte de una pradera más grande que no fue posible caracterizar por completo por el pequeño tamaño de los vástagos. Alrededor de la tercer pradera, hacía el occidente empezaba otra pradera que fue la cuarta, constituida completamente por *S. filiforme* con una extensión considerable. La segunda pradera monoespecífica de *Thalassia testudinum* se encontró sola sin nada alrededor alejada de la playa y con poca presencia de algas, al igual que la quinta pradera encontrada cerca a la playa (figura 7).

Halophila decipiens: la especie se encontró únicamente en la primer pradera y su pequeño tamaño de aproximadamente 1,5 cm hizo complejo poder realizar una “poda”, inclusive el hecho de encontrar epífitos asociados a las hojas fue muy dispensioso debido a que las hojas eran débiles y se rompían. La especie tuvo una cobertura promedio de 4,63% ± 3,74% y se encontró junto a una gran cobertura de macroalgas de aproximadamente 69, 52% ± 17,84%. El sedimento en el que se encontraba fue mayormente arena fina de origen bioclástico y naturaleza arena-lodosa.

Halodule wrightii: la especie se encontró en la primer pradera y en otros lugares aledaños a ella pero estos no fueron caracterizados. Su cobertura promedio fue de 11,16% ± 4,88%
y en la mayoría de cuadrantes fue hallada junto a macroalgas con una cobertura de 69, 52% ± 17,84%. Las mayoría de hojas se observaron a su vez con algas como epífitos a lo largo de ellas, y tuvieron tamaños entre 10 y 12 cm y una superficie delgada. Al igual que *H. decipiens* el sedimento en el que se encontraba fue mayormente arena fina de origen como bioclástico de naturaleza arena-lodosa.

Syringodium filiforme: esta especie se encontró en dos de las cinco praderas caracterizadas en este estudio siendo la tercera y la cuarta. El sedimento en mayor proporción fue arena fina y su origen es litobioclástico de naturaleza arena-lodosa. Se encontró a 3 m de profundidad con una longitud promedio máxima de sus hojas de 20,1 cm. Su cobertura promedio fue de 26,08% ± 8,16%. Se encontró junto a *T. testudinum* lejos de la playa formando un área considerable hasta un punto en que solo está *S. filiforme* rodeándola y extendiéndose en un área mayor.

Thalassia testudinum: el también llamado pasto tortuga fue encontrado en tres de las cinco praderas caracterizadas en el área de estudio. El área de las praderas en las que únicamente estaba *T. testudinum* fue de 2.400 m² y 50 m² encontradas a 2 m y a 3m respectivamente. El sedimento en el que crece *T. testudinum* en la bahía de Santa Marta es de origen litoclástico, litobioclástico y bioclástico de naturaleza arena-lodosa en su mayoría compuesto por arena fina. Su promedio de cobertura fue de 15,38% ± 8,49% en la pradera grande y de 12,61% ± 5,08% en la pradera pequeña. De ambas praderas apenas un 1,16% fue la cobertura de algas. Se observaron ambas praderas afectadas por actividades antropicas, en la pradera grande se encontró mucha basura y en la pradera pequeña se encontraron varios rastros de anclas de embarcaciones.

En general en las cinco especies encontradas con respecto a la profundidad y lejanía de la costa se encontró que *T. testudinum* estuvo presente tanto en la zona somera (2 m) cerca a la costa como en la zona media (3 m), mientras que *S. filiforme* se encontró en la zona media y en la zona profunda (4 m) alejada de la playa. Las especies *H. decipiens* y *H. wrightii* se encontraron solo en la zona profunda (4 m) alejadas de la playa. En la quinta y la tercer pradera la visibilidad fue regular a mala en la mayoría de muestreos.

Debido a que los datos de cobertura y densidad no siguieron una distribución normal, se les aplicó la prueba no paramétrica Kruskal-Wallis (KW= 94,5974) a las 4 especies de pastos *T. testudinum, S. filiforme, H. wrightii* y *H. decipiens* con respecto a la profundidad.
Se encontró que la cobertura varía a diferentes profundidades puesto que el valor-p es menor a 0.05 en la prueba de Kruskal-Wallis con un nivel de significancia del 95% con lo que se corrobora que existen diferencias significativas en las tres profundidades. La mayor cobertura de las cuatro especies se observó en el transecto profundo y la menor para *S. filiforme* y *H. wrightii* fue en el transecto somero (Figura 8).

Figura 8. Porcentajes de cobertura de las cuatro especies de pastos marinos en tres transectos a diferentes profundidades.

En cuanto a la densidad los resultados arrojados por la prueba Kruskal-Wallis en las cuatro especies de pastos con respecto a la profundidad, se evidencia que existen diferencias significativas en la abundancia a diferentes profundidades. La mayor abundancia de *H. wrightii* y *S. filiforme* se observó en el transecto del medio, mientras que *H. decipiens* tuvo una mayor abundancia en el transecto profundo, *T. testudinum* tuvo una abundancia similar en los tres transectos (Figura 9).

Figura 9. Densidad de las cuatro especies de pastos marinos en tres transectos a diferentes profundidades.
La cobertura de *Thalassia testudinum* en este estudio fue de 12,61 ± 5,08 % en la pradera 2 con una densidad de 273,76 ± 88,82 vástagos/m² y de 15,38 ± 8,49 % en la pradera 5 con una densidad de 37,53 ± 40,11 vástagos/m². Estos resultados son bajos comparándolos con el estudio de Castro (2003) en el que caracterizó la pradera 5 y encontró una cobertura de 75 ± 33,50 % en la zona somera con una densidad de 118 ± 28,74 vástagos/m².

Los resultados de los valores de cobertura y densidad de *T. testudinum* no variaron mucho en los tres transectos teniendo en cuenta que la profundidad no tuvo un rango amplio en la zona de muestreo (2-3 m) encontrándose en una zona somera-media, mientras que *S. filiforme* y *H. wrightii* tuvieron mayores coberturas en la zona media y profunda. De acuerdo con Laverde (1992) y Castillo (2002) *T. testudinum* tiene un mayor desarrollo hasta los 10 m de profundidad, a medida que esta variable aumenta va disminuyendo su abundancia. Por otro lado también en concordancia con los dos autores *S. filiforme* y *H. wrightii* se vuelven dominantes a medida que aumenta la profundidad.

Castro (2003) también encontró una pradera de *Halophila decipiens* en la zona somera y hasta los 6 m de profundidad en el sur de la bahía de Santa Marta la cual no se encontró en este estudio. Sin embargo las profundidades en las que fueron encontradas las praderas de las dos especies coinciden un poco en que las especies *Halophila decipiens* y *Halodule wrightii* se distribuyen a mayores profundidades y en este caso lejanas a la costa, mientras que *Thalassia testudinum* se encuentra a menores profundidades y cerca de la costa.

Esguerra *et al.* (2010) y Martínez (2013) infieren que en los primeros estadíos de la sucesión ecológica las especies que colonizan el sustrato son *H. wrightii* y *H. decipiens* luego de una perturbación como mares de leva, huracanes o dragados. Williams (1990) también afirma que estas especies luego de una perturbación preceden a *T. testudinum*, la cual tarda mucho más en recuperarse.

3.2.2.2. Tipo de sedimento

Las praderas de pastos 3, 4 y 5 se caracterizaron por tener un tamaño de grano de 125 µm que corresponde a arena fina de acuerdo a la escala de Attemberg y al programa Gradistat. La primer pradera tuvo un mayor porcentaje de tamaño de grano de 90 µm que
corresponde a arena muy fina. La segunda pradera tuvo un tamaño de grano predominante de 250 µm que corresponde también a arena fina (Figura 10).

Los resultados de carbonato de calcio muestran que las cinco praderas están entre 86% y 14% por lo que la naturaleza del sedimento se clasifica como arena lodosa y la naturaleza orgánica del sedimento se clasifica como litoclástico en la tercer pradera, litobioclástico en la cuarta y quinta pradera, biolitoclástico en la primer pradera y bioclástico en la segunda pradera (figura 11).

Figura 10. Granulometría del sedimento en las 5 praderas de la bahía de Santa Marta.

Figura 11. Porcentaje de carbonato de calcio dentro del sedimento de las 5 praderas de la bahía de Santa Marta.

3.2.2.3. Presencia de epífitos en las praderas

Al realizar un conteo de epífitos en cuanto a la densidad del hongo *Labyrinthula* sp. en las hojas de *Thalassia testudinum* se encontró un promedio de 13,90 ± 5,79 hojas afectadas/cuadrante. Del total de cuadrantes observados por pradera (36) de *T. testudinum* se encontró que el 93,33% de los cuadrantes evaluados tenía presencia del hongo
Labyrinthula sp. Lo cual de acuerdo al indicador de condición y tenencia ICT\textsubscript{pm} está en una condición general no deseable (Figura 12).

![Figura 12](image)

Figura 12. Cuadrante con presencia del hongo *Labyrinthula* sp. y criterio de condición con respecto al porcentaje de *Labyrinthula* sp. presente en las praderas

3.2.2.4. Biomasa de epífitos

Se evaluó el peso de epífitos en las praderas 2,3,4 y 5. Debido al pequeño tamaño de las hojas de *H. decipiens* y *H. wrightii* no fue posible pesarlas y encontrar la biomasa de epífitos, sin embargo se realizó una observación cualitativa de los epífitos (tanto fauna como flora) presentes en las muestras de la pradera 1. Se encontraron algas filamentosas, algas rojas como *Hypnea* sp., algas pardas como *Dyctiota* sp. y algas verdes como *Caulerpa* sp. (Figura 15). En cuanto a fauna se encontraron moluscos gasterópodos; crustáceos anfípodos y leptóstracos, poliquetos y nemátodos (Figura 16).

Las praderas 2, 3 y 5 de *T. testudinum* tuvieron una biomasa de epífitos entre 0,0135 Mg C/ha y 0,0119 Mg C/ha. Mientras que las praderas 3 y 4 de *S. filiforme* tuvieron una biomasa de 0,0012 Mg C/ha y 0,0031 Mg C/ha (Figura 13).
Figura 13. Biomasa de epífitos en las praderas 2, 3, 4, y 5.

Análisis cualitativo de epibiontes encontrados en las praderas de pastos

Epibiontes asociados a los vástagos de *Halodule wrightii* y *Halophila decipiens*

Figura 15. Muestra del transepto C (profundo).

Filum: Arthropoda
Subfilum: Crustacea
Superclase: Multicrustacea
Clase: Malacostraca
Subclase: Phyllocarida
Orden: Leptostraca
Suborden: Nebaliacea
Familia: Nebaliidae
Género: *Nebalia*

Figura 17. A. Crustáceo *Nebalia* observado a 10X en la muestra del transepto A (somero) B. Nemátodo encontrado en la muestra del transepto A (Somero).

Figura 18. Muestra del transepto C (profundo)

Vástago de Halophila decipiens

Hojas redondeadas, usualmente de forma ovalada, nervadura secundaria con un ángulo mayor de 45°, márgenes de las hojas con puntas pequeñas.

Vástago de Halodule wrightii

Plantas con hojas alargadas delgadas en forma de correa o lineales, hoja con menos de 3 mm de ancho, hojas unidas en un nodo distinto en un risoma.

Epifauna asociada

El hecho de que las hojas de *H. wrightii* y *H. decipiens* sean más pequeñas y delgadas no permite que haya presencia de macrofauna por lo que según Laverde (1994) abundan más las algas. El estudio realizado por Martínez *et al.* (2011) mostró en época de lluvias un aumento en la cobertura de algas filamentosas (65%) las cuales son competidoras oportunistas al haber fluctuaciones en la temperatura, aumento de nutrientes, eutrofización y disminución de la intensidad luminica, esta cobertura es muy similar a la encontrada en el presente estudio (69,52 ± 17,84) también en época lluviosa.
De acuerdo a Morgan y Kitting (1989) el peso de los epífitos representa entre el 19 % y 68 % del peso seco de la biomasa foliar total. Por lo cual al igual que en el estudio realizado por Herrera (1995) en Neguanje Parque Nacional Natural Tayrona, en este estudio posiblemente no se le realizó una adecuada limpieza a las hojas y no fue total la eliminación de los epífitos. Castillo (2002) encontró una biomasa de epífitos de $0,134 \pm 0,0795 \text{ Mg C/ha}$ en *T. testudinum*, comparándola con los valores promedio de este estudio $0,0106 \pm 0,0050$ resultan ser bajos. La biomasa del ecosistema y el grado de epifitismo de los pastos marinos se ven influenciados por el alto contenido de materia orgánica, la longitud de las hojas y la densidad de los vástagos, estos factores determinan una mayor o menor disponibilidad de sustrato para los epífitos que incrementan la productividad primaria y secundaria del hábitat, debido a que estos organismos sirven de alimento a peces e invertebrados (Phillips, 1992; Vicente, 1992; Castillo, 2002)

El hongo *Labyrinthula* sp. ha afectado a nivel mundial a muchas especies de pastos, entre estas especies está *Thalassia testudinum*. En florida a finales de 1980 hubo una mortalidad masiva de *T. testudinum* (Gómez et al., 2014), por lo cual se hace muy importante tener registro de este patógeno que en este estudio se encontró en unas densidades considerables en las praderas de *T. testudinum*. Las infecciones por este hongo causan una disminución en la fotosíntesis en el área de la hoja afectada y en áreas adyacentes (Ralph y Short, 2002).

3.2.2.5. Atributos funcionales: Biomasa total y stock de carbono

Se determinó la biomasa total en cada una de las praderas encontradas con un promedio de $0,1387 \pm 0,1193 \text{ Mg C/ha}$ y con este dato se determinó en stock de carbono en las praderas del área de estudio. El stock de carbono determinado para la bahía de Santa Marta es de $3.23 \times 10^{-4} \pm 0.00153 \text{ Mg C/ha}$ (Tabla 6).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Promedio (Mg C/ha)</th>
<th>DE (Mg C/ha)</th>
<th>Mínimo (Mg C/ha)</th>
<th>Máximo (Mg C/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. testudinum</td>
<td>12.61</td>
<td>5.08</td>
<td>1.88</td>
<td>21.75</td>
</tr>
<tr>
<td>S. filiforme</td>
<td>26.08</td>
<td>8.16</td>
<td>17.50</td>
<td>33.75</td>
</tr>
</tbody>
</table>

Tabla 6. Variables estructurales determinantes de las cuatro especies de pastos marinos. *corresponde a que la variable solo es de la especie *T. testudinum*.
Uno de los objetivos del presente trabajo fue comparar el promedio de biomasa viva de los pastos marinos del Atlántico tropical occidental $n=44$, 0.84 ± 0.17 con el promedio de biomasa viva de los pastos marinos de la bahía de Santa Marta 0.1387 ± 0.1193 Mg C/ha. El valor del stock de carbono $3.23 \times 10^{-4} \pm 0.00153$ Mg C/ha se compara con el carbono orgánico promedio para el Atlántico tropical occidental 150.9 ± 26.3 el cual resulta ser mucho más alto que el encontrado en este estudio. De acuerdo al manual costal blue carbon las camas de pastos marinos varían en estructura dependiendo de la profundidad y debido a la energía hidrodinámica, la falta de luz y otros gradientes ambientales así como la salinidad, la cual afecta la composición de las especies y su habilidad para capturar carbono (Serrano et al., 2014).

De esta forma el manual recomienda realizar una estratificación del área de estudio que tenga que ver con la profundidad para ver como varía la biomasa con respecto a esta variable (Fourqurean et al. 2012a). Los suelos que contienen praderas de pastos marinos poseen más carbono orgánico que los bosques forestales de acuerdo a Fourqurean et al. (2012a), por lo que el potencial impacto de la pérdida de este ecosistema es significante para la absorción de dióxido de carbono. La cantidad de carbono orgánico en los pastos marinos es igual a todo el carbono que almacenan los manglares y las marismas, por lo que resultan ser las reservas de carbono más importantes (Howard et al., 2014).
3.2.2.6. **Análisis estadístico Kruskal-Wallis de las cuatro especies de pastos marinos**

Con las variables estructurales porcentaje de cobertura, densidad, materia orgánica y porcentaje de carbonatos la estructura de las cuatro praderas muestra heterogeneidad de acuerdo a la prueba de Kruskal-Wallis (KW= 12,411 ; Valor-p=0.00609) evidenciando que las variables se comportan de manera significativamente diferente entre las especies de pastos.

3.2.2.7. **Correlaciones momento producto de Pearson de las cuatro especies de pastos marinos**

El coeficiente de correlación de Pearson (r) muestra en cuanto a las variables ambientales el porcentaje de carbonatos es fuertemente inverso con las demás variables sin tener diferencias significativas con ninguna (Figura 23), mientras que la materia orgánica se relaciona directamente con la cobertura y la densidad pero es inversa a los carbonatos. En cuanto a la densidad y cobertura son directamente proporcionales (Figura 23).

![Figura 23. Matriz de coeficientes de correlación estimados de Pearson producto-momento de las cuatro especies de pastos marinos, se resalta la magnitud de las correlaciones, cuyo rango va de -1 a +1.](image)

Al tener pocas variables con que comparar entre especies resulta ser muy poco lo que se puede decir de las relaciones, sin embargo la densidad y la cobertura están muy relacionadas entre sí y en este caso con la profundidad la cual no se tuvo en cuenta para
los análisis estadísticos ya que no vario mucho en el área de muestreo, pero se evidenció en los histogramas de frecuencias que las especies que dominan en la zona profunda tienen mayor densidad y cobertura allí, mientras que las que dominan en la zona somera tienen mayor densidad y cobertura en esta zona.

Millán et al. (2016) afirman que existe una denso dependencia en los pastos marinos que consiste en que a medida que la pradera aumenta su extensión y densidad son capaces de estabilizar la hidrodinámica circundante de los vástagos y permitir un equilibrio físico y la estabilidad del sedimento, lo anterior se refleja en la correlación del % de carbonato que da el tipo de sedimento al aumenta el porcentaje de carbonatos disminuye la densidad de la pradera ya que se crea un suelo inestable el cual se debe compensar con un buen anclaje.

3.2.2.8. Análisis estadístico Kruskal-Wallis de las praderas de *Thalassia testudinum*

Con las variables estructurales para *T. testudinum* de la tabla 6. y los análisis no paramétricos se observa que la estructura de las praderas de esta especie varían un poco con respecto a la zona geográfica en la que se encuentran en la bahía de Santa Marta con a una diferencia significativa encontrada entre las variables estructurales de acuerdo a la prueba Kruskal-Wallis (KW=25,291 ; Valor-p=0,001387).

3.2.2.9. Correlaciones momento producto de Pearson

Se encontraron correlaciones positivas fuertes entre la biomasa total y la materia orgánica con la cobertura, la biomasa de epífitos con la densidad, la biomasa foliar con la biomasa en pie, la materia orgánica y la biomasa total con la biomasa subterránea. También se encontraron correlaciones casi totales entre la biomasa subterránea con la cobertura, la densidad y los epífitos con los carbonatos. Por otro lado se encontraron relaciones inversas fuertes entre biomasa en pie y biomasa foliar con el porcentaje de cobertura, biomasa en pie con la biomasa subterránea, la biomasa foliar con la biomasa total, biomasa foliar con la materia orgánica (Figura 24).
La estructura de las praderas de *T. testudinum* tuvo una gran variedad de rangos de correlación (figura 24). Un porcentaje alto de carbonatos y una baja cantidad de materia orgánica favorece la densidad en las praderas debido a que de acuerdo a Erftemeijer y Koch (2001) los gránulos de sedimento grueso se depositan rápidamente en el suelo lo cual causa los llamados suelos inestables a lo que la planta responde desarrollando un mejor sistema de anclaje por medio de la radícula que es la parte del embrión que al desarrollarse genera la raíz.

El aumento de la biomasa en pie de las praderas de *T. testudinum* hace que la densidad disminuya debido a que las praderas tratan de evitar la auto sombra (Short et al., 1995; Collier et al., 2008) y pueden producir hojas alargadas para alcanzar mejor la luz en superficie (Dalla Via et al., 1998), la relación inversa entre el tamaño foliar y la densidad no se evidencia en este estudio ya que están muy poco relacionadas estas dos variables.

La asociación entre el % de carbonatos y la biomasa de epífitos es fuerte y tiene sentido ya que muchos de los epífitos encontrados como moluscos y poliquetos tienen conchas de carbonato de calcio. El aumento la cantidad de epífitos se ve relacionado con el aumento en la materia orgánica aunque débilmente en este caso pero esto concuerda con lo encontrado por Castillo (2002) en muchas de las estaciones a lo largo del caribe.

3.2.2.10. Calidad del agua: temperatura e intensidad lumínica
El monitoreo de temperatura e intensidad lumínica se registró desde el 2 de octubre de 2019 hasta el 20 de noviembre de 2019. El sitio escogido permitió evidenciar la intensidad lumínica ya que estaba a 1 m de la superficie aproximadamente. El promedio de temperatura fue de 29,48 ± 1.04 °C, con una temperatura máxima de 31,57 y una temperatura mínima de 23,39. En cuanto a la intensidad lumínica se tuvo un registro promedio de 1262,43 ± 1547,15 lumen / m², con un máximo de 12400,10 lumen / m² y un mínimo de 10,80 lumen / m² (Figura 25).

En este estudio se observó un rango de temperatura entre 31,57 y 23,39 ºC. Para Collier et al. (2017) es importante resaltar que el aumento de la temperatura hace que las especies de pastos marinos sean más vulnerables a otros factores estresantes como la falta de luz, contaminantes y enfermedades.

La temperatura óptima para el crecimiento de los pastos marinos afecta las dinámicas de crecimiento estacional y los rangos de distribución específicos de las especies. Las especies tropicales y subtropicales registran tasas óptimas de fotosíntesis desde 23 a 32 ºC, sin embargo la temperatura óptima para algunas especies tropicales es aún mayor con respecto a su productividad, en el caso de Halodule wrightii, esta no se ve afectada al estar un tiempo prolongado a una temperatura de 34 a 35 ºC (Collier et al., 2017).

La intensidad luminosa 1262,43 ± 1547,15 lux en este estudio no se logró comparar con otros estudios ya que la mayoría utiliza la incidencia de luz (%) como unidad. Los pastos marinos necesitan el 10% de luz superficial a diferencia de las algas que solo necesitan el 1%, por lo que este factor es limitante para el crecimiento y la distribución de las especies. Por lo anterior las especies buscan zonas de aguas claras, lejos de descargas de ríos e
incluso disminuyen se densidad y aumentan el tamaño de las hojas para lograr captar más luz (Millán et al., 2016).

3.2.2.11. Productividad primaria en praderas de *T. testudinum*

La productividad primaria de *T. testudinum* encontrada por estación fue determinada a partir de la biomasa foliar y la densidad de cada pradera dentro de la bahía de Santa Marta, solo se determinó esta variable en esta especie debido a que el número de hojas utilizadas para el peso podía ser menor con los mismos resultados a diferencia de *S. filiforme*. La pradera 2 tuvo una productividad de 0,1943 Mg C/ha, la pradera 3 tuvo un valor de productividad de 0,1345 Mg C/ha y la pradera 5 tuvo un valor de productividad de 0,0688 Mg C /ha.

Comparando la productividad primaria de este estudio en cada pradera frente a otros estudios en el Parque Nacional Natural Tayrona se encuentra que el valor es alto con respecto a lo reportado por los otros autores Diaz (1997), Kjerfve (1998), Garzón y Ramírez (2003) los cuales reportan productividades primarias de 0,033-0,037 Mg C/ha, 0,0171-0,0536 Mg C/ha y 0,02-0,05 Mg C/ha respectivamente. Los mayores valores corresponden a épocas lluviosas.

La importancia de la productividad primaria en los pastos marinos radica en que según Pulich (1985) y Short et al. (2008) la disminución de la luz reduce la productividad por área de las plantas (producción de plantas por área de unidad de fondo), ya que las diferentes especies de pastos marinos poseen diferentes requerimientos de luz y distribuciones de profundidad; una reducción de luz que alcance el sustrato puede cambiar la composición de las especies de pastos marinos al incrementar el crecimiento de especies con un menor requerimiento de luz o puede reducir la profundidad de la distribución.

3.2.2.12. Indicador de condición y tenencia ICT pm

El protocolo indicador de condicion tenencia planteó tener los valores de referencia para cada área marina protegida de pastos marinos de las especies *Thalassia testudinum* y *Syringodium filiforme* en cuanto a densidad (vastagos/m²), Densidad de herbívoros,
Densidad de carnívoros, Densidad de Detritívoros / Omnívoros y Afectación por *Labyrinthula* spp., pero en vista que estos aún no estan referenciados para ningún área marina protegida de Colombia, no fue posible calcularlo. Lo únicos datos que si aparecen como valores de referencia en El reporte del estado de los arrecifes y pastos marinos de Colombia (2016-2017) son el valor de referencia de densidad (vastagos/m²) y de porcentaje de afectacion por el hongo *Labyrinthula* sp. reportado anteriormente en este estudio (Tabla 7 y Figura 12).

Tabla 7. Densidad de las praderas de *T. testudinum* de la bahía de Santa Marta resaltadas con el color correspondiente al valor de referencia.

<table>
<thead>
<tr>
<th>PRADERA</th>
<th>DENSIDAD (VÁSTAGOS/M2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. TESTUDINUM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>273.76</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>37.53</td>
</tr>
</tbody>
</table>

Figura 25. Valores de referencia para la densidad de a. praderas de *T. testudinum* y b. praderas mixtas de *T. testudinum* con presencia de *S. filiforme*.

La densidad encontrada en las tres praderas 2,3 y 5 de *T. testudinum* se encuentran en estado regular, alerta y no deseable respectivamente. De igual manera el porcentaje de afectación por el hongo *Labyrinthula* sp. se encuentra en un estado no deseable. Cabe destacar que la densidad encontrada en las praderas 3 y 5 se debe revisar de una forma más al detalle en lo posible mediante buCEO con tanque, ya que por su extensión y por la dificultad que implica ubicarlas se pudo haber subestimado este atributo estructural.

3.2.3. **BIBLIOGRAFÍA**

Díaz Pulido, G. (1997). Informe nacional sobre el estado de la biodiversidad en Colombia: ecosistemas marinos y costeros (No. PDF 952)).

De luque miguel; García, f, Palacio, C. Determinación del t90 en la bahía de Santa Marta (COL.). DYNA, [S.l.], v. 78, n. 167, p. 122-131, mayo 2011. ISSN 2346-2183.

Ministerio de Ambiente y Desarrollo Sostenible: DIRECCIÓN DE ASUNTOS MARINOS, COSTEROS Y RECURSOS ACUÁTICOS. 2017. DOCUMENTO TÉCNICO SOPORTE (ANEXO TÉCNICO) “Por medio de la cual establecen los criterios y procedimientos para la elaboración de los estudios técnicos, económicos, sociales y ambientales, con los cuales se presenta la propuesta de zonificación y el régimen de usos para los pastos marinos por parte de las Corporaciones Autónomas Regionales y se adoptan otras determinaciones”. 38 p.

Ministerio del Medio Ambiente: Dirección general de ecosistemas. 2000. Política nacional ambiental para el desarrollo sostenible de los espacios oceánicos y las zonas costeras e insulares de Colombia.

3.3. CAPÍTULO 2: ESPECIES AMENAZADAS ASOCIADAS

3.3.1. Metodología

3.3.1.1. Fase de campo

Se realizaron 15 muestreos de inmersión libre a pulmón a profundidades entre 2 y 4 metros de junio a noviembre en el año 2019, correspondiente a las épocas seca menor y lluviosa mayor en la región de Magdalena. Los muestreos se realizaron dentro y fuera del enrocado del proyecto Marina de Santa Marta, cubriendo toda el área establecida que concierne los 6 muelles, el astillero, taller, zona de servicio, la zona externa sur, norte y occidente del enrocado. En todos estos sitios se realizaron censos visuales de especies amenazadas de peces, crustáceos, moluscos, cnidarios y equinodermos (ver figura 3). Adicionalmente se realizó un monitoreo de corales en un intento de restauración plataforma ensamblada en el muelle G de las especies Acropora cervicornis, Acropora palmata y Madracis auretenra. Se midió el ancho y largo de cada colonia aproximadamente cada mes durante los seis meses del monitoreo.

3.3.1.2. Fase de laboratorio

Se identificaron las especies de peces y corales con ayuda del libro Corals and fishes, Florida, Bahamas and Caribbean de Idaz Greenberg y las demás especies de los otros filos con el libro rojo de invertebrados marinos de Colombia y la resolución 1912 del 15 de septiembre de 2017, en donde se enuncia el estado de la especie actualmente. Se realizó un documento con la diagnosis, distribución geográfica, características ecológicas, amenazas y medidas de conservación tomadas y propuestas para cada especie.

3.3.1.3. Fase de gabinete

A partir del censo visual que se realizó durante más de seis meses se realizó un histograma de frecuencias para observar que especies se encontraron y cuáles fueron las más concurrentes dentro del Proyecto Marina de Santa Marta.
3.3.2. RESULTADOS Y DISCUSIÓN

3.3.2.1. Seguimiento y monitoreo de especies amenazadas

Cnidaria

1. **Acropora palmata**

 Orden: Scleractinea Bourne, 1900
 Familia: Acroporidae Verrill, 1902
 Género: Acropora Oken, 1815
 Especie: Acropora palmata Lamark, 1816
 Nombre común: coral cuerno de alce
 Categoría de amenaza: EN

![Imagen de Acropora palmata](image)

Figura 1. a. *Acropora palmata* en el área de influencia directa de la marina, b. Fauna asociada (Piñeros, 2019).

Diagnosis

Colonia ramificada, arborescente y ramificada. Posee ramas anchas y planas hacia el extremo apical que se desprenden de un tallo ancho y corto. Coralites tubulares, que se disponen indistintamente sobre las ramas y se proyectan desde la matriz del esqueleto con un diámetro exterior que oscila entre 1 a 1.5 mm. Presentan gemación extratentacular. Color café-amarillo (Reyes et al., 2010).

Se encuentran 3 colonias ubicadas en el final del muelle f en una estructura metálica con las siguientes medidas:

1. La colonia más grande mide 70 cm de largo, 30 cm de ancho y 10 cm de alto se observa en aparente estado de blanqueamiento en el centro.

2. La colonia intermedia mide 15 cm de largo y 7 cm de ancho y se observa en aparente buen estado
3. La colonia más pequeña mide 11 cm de largo y 10.5 cm de ancho y se observa en aparente buen estado.

Ubicación geográfica

Esta especie se distribuye en el Atlántico Tropical Occidental y es común en el Caribe desde Florida hasta la costa norte de Suramerica (Smith, 1948; Almy y Carrion, 1963; Roos, 1971; Cairns, 1982; Zlatarski y Martínez, 1982). En Colombia se encuentra en la mayoría de las formaciones arrecifales tanto continentales como oceánicas, desde el Golfo de Urabá, Islas del Rosario y San Bernardo, Isla Arena, Santa Marta, San Andrés, Providencia y cayos adyacentes (Prah Y Erhardt 1985; Díaz et al. 1995).

Se encontró una colonia en la zona del enrocado del muelle G dentro de la Marina Santa Marta con un aparente ensamblaje de recuperación (Figura 1).

Características ecológicas

Se encuentra en zonas someras de 0 a 6 m en aguas claras de hidrodinámica moderada y son comunes en la cresta arrecifal. Debido a su forma de reproducción, en la que realizan desoves masivos, *A. palmata* presenta hibridación de primera generación junto con la especie *A. cervicornis* (Vollmer y Palumbi, 2002). Presenta altas tasas de crecimiento y regeneración (Reyes et al., 2010; Ardila et al., 2007).

Resultados del censo visual

Se monitorearon 5 colonias durante el segundo semestre del año 2019, todas las colonias tuvieron blanqueamiento parcial o total.

Amenazas

Los factores que han afectado a esta especie en el Caribe colombiano tienen que ver principalmente con eventos de blanqueamiento desde los años 70, posiblemente por actividades antropogénicas tales como turismo e indirectamente la sobrepesca de peces herbívoros y erizos, la enfermedad de la banda blanca, calentamiento global, entre otras (Ardila et al., 2007).

Medidas de conservación tomadas y propuestas
Se han realizado planes de monitoreo como CARIOCOMP en el Parque Nacional Natural Tayrona en 1993. En 1998 el Instituto de Investigaciones Marinas y Costeras “Jose Benito Vives de Andréis”-INVEMAR realizó propuso las medidas de manejo las cuales se efectuaron en las áreas de Santa Marta, Islas del Rosario y San Bernardo (Garzón y Díaz 2000).

2. Acropora cervicornis
Orden: Scleractinea Bourne, 1900
Familia: Acroporidae Verrill, 1902
Género: Acropora Oken, 1815
Especie: Acropora cervicornis Lamark, 1816
Nombre común: coral cuerno de venado
Categoría de amenaza: CR

Figura 2. Acropora cervicornis en el área de influencia directa de la marina (Piñeros, 2019).

Diagnosis

Coral ramificado con colonias cilíndricas. Cálices de aproximadamente 1 mm de diámetro. Coralites tubulares proyectados hacia afuera de la colonia, provistos de 12 septos con una teca porosa. Cada rama posee un coralite axial y numerosos coralites más pequeños con forma radial. Color café amarillo (Prahl y Erhardt 1985).

Se observan 2 colonias pequeñas incorporadas en la estructura metálica junto a las dos colonias de Acropora palmata provista con las siguientes medidas:

1. Las ramas de la colonia que esta expuesta tienen un tamaño de entre 2 cm y 7 cm de largo.

2. Las ramas de la colonia que está detrás del Acropora palmata tienen un tamaño entre 1 y 5 cm de largo.

Ubicación geográfica
Esta especie es común en el Caribe y se encuentra desde Florida hasta la costa norte de Suramérica, incluyendo las Bahamas, México, Antillas mayores, Antillas menores, Antillas Holandesas, Venezuela, Trinidad y Tobago. En Colombia se encuentra en el Golfo de Urabá, islas del Rosario, bajo Tortugas, Salmedina, isla Fuerte, Archipiélago de San Bernardo, isla Arena, área de Santa Marta, bahía Portete, Archipiélago de San Andrés y (Ardila et al., 2002).

Características ecológicas

Se encuentra en áreas de entre 0.2 a 50 m de profundidad, aunque es más común a profundidades menores de 10 m. Se ubica en las vertientes de las terrazas arrecifales o en parches al interior de lagunas de los complejosoceánicos; algunas colonias crecen solitarias sobre fondos arenosos cerca a las costas pero también es común observarlos junto a colonias del complejo *Orbicella*. A pesar de presentar un rápido crecimiento actualmente no son colonias formadoras de arrecife debido a las mortandades masivas que ha sufrido desde 1980, lo cual tiene a la especie en peligro crítico. En cuanto a la reproducción se ha observado que esta especie genera un híbrido junto con la especie *Acropora palmata* mediante desoves masivos (Reyes et al., 2010).

En cuanto a la reproducción asexual de los corales estos pueden crecer a partir de fragmentos o “ramets” los cuales se derivan de la misma colonia (clones). Los beneficios de sembrar un cultivo de corales de forma asexual son: 1) maximizar los beneficios de una cantidad de corales tomada de otra zona para minimizar el daño en las áreas de donde son donados, 2) transformar fragmentos en pequeñas colonias las cuales deben tener una mayor sobrevivencia de las que se hubieran trasplantado directamente de un arrecife a otro y 3) tener bancos de pequeños corales inmediatamente disponibles para trasplantar en el evento de que algo suceda en el lugar de cultivo (Edwards y Gómez, 2007).

Resultados censo visual

Se monitorearon 5 colonias en la plataforma ensamblada dentro de la Marina, todas sufrieron blanqueamiento parcial o total.

Amenazas

A.cervicornis ha sido fuertemente afectada por eventos de blanqueamiento que han deteriorado su cobertura en el Caribe. Se han registrado mortalidades masivas en islas del
Rosario, Tayrona y San Andrés. Lo anterior se debe a diversos factores tales como huracanes, calentamiento global y la enfermedad de la banda blanca, y también a la sobrepesca de peces herbívoros que causa un aumento en las poblaciones de algas que compiten con los corales. Afirma Ardila et al. (2002) que existe una incidencia importante por parte del gasterópodo coralívoro Coralliophylla sp. en el Parque Nacional Natural Tayrona. La presión antrópica también es un factor incidente en la disminución de A. cervicornis con el aumento en la sedimentación, la deforestación y la erosión por escorrentía, la transformación del cauce de los ríos entre otros. Adicionalmente la venta de souvenirs, el buceo, la pesca con dinamita y la descarga de aguas negras son actividades que afectan drásticamente la sobrevivencia de estos corales (Garzón, 1997; Díaz et al. 2000).

Medidas de conservación tomadas y propuestas

Desde el año 1993 en Colombia se han venido realizando programas de monitoreo como lo es el programa nacional CARIOCOMP en la bahía Chengue PNN Tayrona. En 1998 INVEMAR puso en marcha el sistema nacional de monitoreo de arrecifes coralinos en Colombia (SIMAC) el cual busca aportar medidas de manejo en áreas como Santa Marta, Gorgona, Utría e islas del Rosario y San Bernardo (Ardila et al., 2002).

Se propone en el área de influencia directa de la Marina realizar monitoreos frecuentes de las colonias inplantadas y determinar su tamaño, color, signos de enfermedad y estado general. Adicional a esto establecer la zona de protección para evitar posibles daños al pasar lanchas, yates o veleros. La estructura metálica se puede mejorar implementando rejillas pequeñas para que las pequeñas colonias de A. cervicornis no caigan en el enrocado al haber oleaje.

Echinodermata

4. Diadema antillarum Philippi, 1845
Orden: Diadematoidea Duncan, 1889
Familia: Diadematidae Gray, 1855
Género: Diadema, Gray 1825
Especie: Diadema antillarum Philippi, 1845
Nombre común: erizo negro
Categoría de amenaza: DD
Figura 3. Erizo negro en el enrocado (Piñeros, 2019).

Diagnosis

Erizo que alcanza gran tamaño con caparazón circular, aplanado en la parte oral. Espinas largas, huecas, puntiagudas y ásperas al tacto, cubiertas con espinas microscópicas, orientadas hacia la punta. Su color puede ser desde púrpura oscuro a negro e incluso pueden haber individuos con espinas rojas. El caparazón es generalmente de color negro y rojo brillante especialmente en el lado oral (Caycedo, 1979; Álvarez, 1981).

Ubicación geográfica

Se encuentra en el Atlántico Occidental y Oriental. En Colombia se ha recolectado en Islas del Rosario y San Bernardo, Parque Nacional Natural Tayrona e Isla Providencia (Ardila et al., 2007).

Características ecológicas

Se establecen de forma agregada, en densidades de hasta 20 individuos por metro cuadrado, lo cual hace que tengan la capacidad de reducir su tamaño cuando la población aumenta. Son principalmente ramoneadores de algas controlando efectivamente su población. Se encuentra en litorales rocosos, arrecifes de coral, praderas de Thalassia testudinum y manglar, y llega a máximo 50 m de profundidad (Álvarez 1981; Caycedo 1979; Hendler et al. 1995).

Resultados del censo visual

Se encontraron 63 individuos distribuidos en la mayoría de zonas del enrocado.
Amenazas

En el año 1983 se registró una mortalidad masiva del erizo negro en todo el Caribe, provocada por un patógeno que no se ha logrado identificar exactamente. Esto provocó un aumento en las poblaciones de macroalgas y por consiguiente una dramática reducción en las poblaciones de corales. En Colombia no hay mucho registro del aumento o descenso de las poblaciones esta especie y debido a esto no se tiene información suficiente para establecer su estado actual, por lo tanto se propone en categoría de amenaza DD (Ardila et al., 2007).

Medidas de conservación tomadas y propuestas

La red de monitoreo de arrecifes de coral ha sido una de las pocas que ha incluido a esta especie en sus monitoreos aunque no específicamente con un registro desde 1992. Otra red de monitoreo es Reef Check la cual monitorea arrecifes de coral, su fauna y flora en sectores como Parque Nacional Natural Tayrona, Corales del Rosario y San Bernardo, San Andrés, Providencia y Santa Catalina, entre otros (Ardila et al., 2007).

Se propone tener especial cuidado al realizar actividades como scuba y se sugiere un constante monitoreo de la especie debido a su importancia como controlador de macroalgas.

Chordata

4. Mycteroperca bonaci

Orden: Perciformes
Familia: Serranidae Swaison, 1839
Género: Mycteroperca Gill, 1962
Especie: Mycteroperca bonaci Poey, 1860
Nombre común: Cherna, mero.
Categoría de amenaza: VU

Diagnóstico

Posee 11 espinas dorsales, de 15 a 17 rayas dorsales suaves, 3 espinas anales, de 11 a 13 rayas anales suaves. Se distingue por el costado del cuerpo, que tiene manchas rectangulares grises oscuras. La parte exterior de las aletas dorsal, anal y caudal es negra. El borde del preopérculo es suave, sin lóbulos pronunciados, 17 a 24 branquiespinas, ancho del cuerpo 3.3 - 3.5 veces el largo estándar, longitud de la cabeza 2.5 - 2.8 veces el largo estándar, igualmente rodeado por el preopérculo, sin muescas o lóbulos, tamaños similares del nostril anterior y posterior (Heemstra, 1993).

Ubicación geográfica

Atlántico occidental: Bermuda y Massachusetts, desde Estados Unidos al sur de Brasil, incluyendo el sur del Golfo de México y el Caribe (Heemstra, 1993).

Características ecológicas

Especie solitaria que habita en piedras y arrecifes de coral. Los adultos se alimentan principalmente de peces y los juveniles principalmente de crustáceos. Son ovíparos, hermafroditas protógino. Forman agrupaciones para el desove, son comunes pero difíciles de abordar. Las hembras cambian de sexo entre 85.5 y 125.0 cm de longitud de la horquilla, con una longitud media de 103.3 cm de longitud de la horquilla, a lo 114.5 cm de longitud de la horquilla el 50% de las hembras se han convertido en machos, aproximadamente a la edad de 15.5 años (Heemstra, 1993).

Resultados censo visual

Se observaron 4 individuos dentro del enrocado

Amenazas

Altamente sobreexplotados para pesca, pesca deportiva y uso en acuarios públicos (Heemstra, 1993).

Medidas de conservación tomadas y propuestas

En el sur y sureste de Brasil hay una talla mínima de captura de 45 cm. Está protegido dentro del área de investigación exclusiva Conch Marine Reserve (reserva marina de
extracción) en el Santuario Nacional Marino de los cayos de Florida. En Campeche Bank Mexico, disminuyó la población de mero y debido a esto se comenzó a proteger el recurso sin contemplar sus aspectos biológicos. La cuota comercial en el Golfo de México consiste en 4445 t para aguas poco profundas, con un límite de tamaño comercial de 61 cm de longitud total, con una época de veda del 15 de febrero al 15 de marzo. En cuanto a la pesca deportiva, se permite una talla mínima de 55.9 cm y máximo 5 meros por persona (Ferreira et al., 2008).

Se propone realizar una regulación teniendo en cuenta las características ecológicas y biológicas de la especie, en donde la talla mínima sea de 61 cm así como se propone en el Golfo de México, con una época de veda teniendo en cuenta las épocas climáticas del Caribe colombiano.

5. *Mugil liza*

Orden: Perciformes
Familia: Mugilidae Jaroki, 1822
Género: Mugil Linnaeus 1758
Especie: *Mugil liza* Valenciennes, 1836
Nombre común: lebranche, liza.
Categoría de amenaza: VU

![Figura 5. Cardumen de *Mugil liza* observado en la salida del muelle F (Piñeros, 2019).](image)

Diagnosis

En cuanto a sus características corporales poseen 5 espinas dorsales, 8 radios blandos dorsales, 3 espinas anales y 8 radios blandos anales (Robins, 1986).

Ubicación geográfica

Atlántico occidental: Bermuda, Florida, Bahamas y por todo el mar Caribe hasta argentina.
Características ecológicas

Habitan en aguas marinas costeras y estuarios, también encontradas en lagunas hipersalinas y lagos que están cerca del mar. Permanecen en cardúmenes grandes. Realizan largas migraciones por el trópico por todas las costas y se alimentan de detritos orgánicos y algas filamentosas. Son ovíparos, sus huevos son pelágicos y no adhesivos, desovan millones de huevos (Robins, 1986).

Resultados censo visual

Se observaron 45 individuos dentro del enrocado.

Amenazas

Sobrepesca para consumo local y captura de recursos naturales, aguas contaminadas y cambio climático (Castro et al., 2015).

Medidas de conservación tomadas y propuestas

Se estableció en Brasil una talla media de captura de 40 cm y una época para la pesca que va desde el 1 de enero hasta el 14 de mayo, se requieren mayores esfuerzos de conservación para la especie (Castro et al., 2015).

Tener especial manejo de aguas contaminadas que son vertidas desde los barcos, desechos de hidrocarburos, basura y microplásticos que puedan encontrarse en el lugar.

6. Lutjanus analis

Orden: Perciformes
Familia: Lutjanidae Gill, 1861
Género: Lutjanus Blotch, 1790
Especie: Lutjanus analis Cuvier, 1828
Nombre común: Pargo de cordero.
Categoría de amenaza: VU
Diagnosis

Poseen de 10 a 11 espinas dorsales, 13 a 14 radios dorsales blandos, 3 espinas anales, 7 a 8 radios anales blandos. Muesca preopercular y pomo débil. Aletas pectorales largas, superando el nivel del ano. Rayas en la parte dorsal perpendiculares a la línea lateral. Zonas superior y dorsal de color verde oliva, puntas de las aletas y panza rojizas. Una característica mancha negra en la parte posterior sobre la línea lateral y bajo la aleta dorsal. Un par de rayas azules bajo la mandíbula que continúan hasta el ojo y el opérculo (Allen, 1985).

Ubicación geográfica

Atlántico occidental: desde Massachusetts USA y Bermudas hasta el surorienté de Brasil, incluyendo el mar Caribe y el Golfo de México. Son especialmente abundantes en las Antillas, Las Bahamas y sobre el sur de la Florida (Allen, 1985).

Características ecológicas

Los adultos permanecen en aguas claras continentales costeras o alrededor de islas. Los grandes adultos usualmente habitan entre rocas y corales, mientras los juveniles son más frecuentes de encontrar en sobre sustratos arenosos, o fondos con vegetación. Forman pequeñas agregaciones las cuales se separan en la noche. Se alimentan durante el día y la noche de peces, camarones, cangrejos, cefalópodos y gasterópodos. La carne de los pargos es de buena calidad (Allen, 1985).

Resultados censo visual

Se observaron 37 individuos durante los 5 últimos meses del 2019 dentro del enrocado.
Amenazas

Esta especie es pescada con anzuelos y redes de línea, redes de arrastre, palangres, redes enmalladas y lanzas. Los grupos que están en desove son marcados por las pesquerías a lo largo del rango. Estas especies son muy requeridas por pescadores recreativos a lo largo de las costas del este de Florida. Estas especies también son muy populares para los pescadores submarinos en muchas áreas. Son especies sujetas a la sobreexplotación. Los juveniles de esta especie son capturados incidentalmente con la pesca del camarón y la vegetación poco profunda utilizada para el asentamiento y el crecimiento de los juveniles puede verse afectada por las actividades de construcción costeras (Lindeman et al., 2016).

Medidas de conservación tomadas y propuestas

En las pesquerías del Atlántico Sur las autoridades establecieron que ambas pesquerías comercial y recreativa para el pargo de cordero requieren un límite de acceso permitido, 16 cm de longitud total como tamaño mínimo de captura y una restricción de 10 peces por persona por día por embarcación durante los meses de mayo y junio (Lindeman et al., 2016).

Se propone tomar medidas y controlar la pesca de esta especie. Identificar su talla mínima de captura y tener un mínimo de individuos por día.

Crustáceas

7. *Palinurus argus*

Orden: Decapoda
Familia: Palinuridae Latreille, 1802
Género: Palinurus Weber, 1795
Especie: *Palinurus argus* Latreille, 1804
Nombre común: langosta
Categoría de amenaza: VU
Figura 7. a. Grupo de aproximadamente 20 langostas observadas en la pradera monoespecífica de *Thalassia testudinum* a 185 m del enrocado (Piñeros, 2019). b. Grupo (2) de aproximadamente 15 langostas observadas en el enrocado del astillero dentro de la marina (Piñeros, 2019).

Diagnosis

Su caparazón está cubierto con líneas longitudinales de espinas muy grandes comprimidas y curvadas hacia adelante y hacia arriba. Tienen ojos grandes y prominentes. Anténulas casi 2/3 la longitud del cuerpo; el flagelo externo más corto y delgado que el interno. Los apéndices caminadores delgados, con los extremos velludos, las hembras poseen una subquela en el último par de apéndices caminadores. Los adultos tienen un color rojizo en todo el cuerpo con el abdomen rojo, pardo o a veces verde, con un par de círculos blancos o amarillos rodeados por un color oscuro en el segundo segmento del abdomen y otro par similar en el sexto segmento. El abanico caudal tiene una banda roja transversal ancha (Williams, 1984).

Ubicación geográfica

Se encuentran a lo largo del Atlántico occidental desde Bermudas hasta Brasil e incluso en África. En el caribe colombiano se distribuye en el Archipiélago de San Andrés, Providencia y Santa Catalina, la Guajira e Islas de San Bernardo (Ardila et al., 2002).

Características ecológicas

Habitan en fondos rocosos para protegerse, en aguas con poca sedimentación someras, pero pueden ser encontrados hasta a 90 m de profundidad. Las hembras desovan en aguas profundas y de acuerdo a la región geográfica lo harán en diferentes épocas del año (Ardila et al., 2002).

Resultados censo visual
Se encontró una población de casi 40 individuos que se dispersaba de las praderas al enrocado.

Amenazas

Sobreexplotación, es una de las especies más comercializadas en el Atlántico y de mayor demanda, la presión que ha ejercido este problema se evidencia en la disminución de las poblaciones (Ardila et al., 2002).

Medidas de conservación tomadas y propuestas

En los Parques Nacionales Naturales Tayrona, Corales del Rosario y San Bernardo y Reserva de Biósfera Seaflower, se han tomado medidas de restricción para la pesca de estos individuos, como lo es limitar a 200 toneladas anuales para el Archipiélago de San Andrés, Providencia y Santa Catalina con una talla mínima de captura de 92 mm de cefalotórax o 257 mm de longitud total. Para la Guajira se sugiere la restricción de 300 toneladas anuales con tallas mínimas de captura de 76 a mm del cefalotórax o de 220 mm de longitud total (Ardila et al., 2002).

Se sugiere tener un manejo adecuado y controlado del recurso por parte de los pescadores que usan nasas o jaulas y revisar que se capturen sólo individuos con las tallas descritas anteriormente y en proporciones adecuadas, también sería adecuado realizar vedas para que se recuperen las poblaciones.

Mollusca

8. *Lobatus gigas*

Orden: Litorrinimorfa Golikov & Starobogatov, 1975
Familia: Strombidae Rafinesque, 1815
Género: Lobatus Swainson, 1837
Especie: *Lobatus gigas* (Linnaeus, 1758)
Nombre común: caracol pala
Categoría de amenaza: VU
Figura 8. Caracol pala observado en la pradera de *Syringodium filiforme* (Baracaldo, 2019).

Diagnosis

Gasterópodo de concha grande y pesada que presenta tallas de hasta 352 mm; labio externo grande y ovalado extendido en forma de ala con una muesca arriba del corto canal sifonal, color blanco o marrón, abertura o labio externo color salmón. Espiras con numerosas espinas, la última espira con dos a tres espinas largas, algunas veces con espinas triangulares. Periostraco (capa más externa de la concha) delgado, suave y de color amarillento. Opérculo en forma de cuerno. Los individuos más longevos tiene el labio externo muy grueso y de color gris plateado (Márquez 1993; Díaz y Puyana 1994; Malacolog 2001).

Ubicación geográfica

Tiene una amplia distribución a lo largo del Atlántico occidental tropical, Carolina del Sur, Honduras, Florida, Belice, México, Panamá, Colombia, Costa Rica, Venezuela, Cuba, Bahamas, Jamaica, Granadinas y Barbados. En Colombia ha sido registrada en todas las ecorregiones del Caribe a excepción del Caribe continental (Ardila et al., 2002).

Características ecológicas

Se encuentran de 2 hasta 30 m de profundidad en sustratos arenosos coralinos, algas calcáreas y praderas de pastos marinos. En sus etapas juveniles habitan en praderas de pastos marinos y en su etapa adulta se encuentran en zonas profundas. Alcanzan la madurez sexual a los 3 o 4 años y migran a zonas más someras para reproducirse. Se alimentan de macroalgas, microalgas epífitas de *Thalassia testudinum*, algas calcáreas y corales muertos. Esta especie tiene un importante rol ecológico consumiendo las algas que son potenciales competidores de los corales regulando y evitando su proliferación (Lagos
et al. 1996; Ardila et al., 2002). Al no haber corales no hay alimento para los peces ni tampoco un hábitat de protección para muchos otros organismos.

Resultados censo visual

Se encontraron tres individuos en todos los monitoreos

Amenazas

De acuerdo a Ardila et al. (2002) El caracol pala es muy apetecido en el Caribe debido a lo ornamental de su concha, se capturan en mayor cantidad los juveniles y pre-adultos ya que son los que están en aguas someras por lo cual estos no tienen la posibilidad de aportar nuevos individuos a la población. En Colombia es el caracol más importante comercialmente, tanto así que en los años 70 se realizaban pescas comerciales en San Bernardo por lo cual fue establecida una veda indefinida. Fue tan crítica su sobreexplotación que en islas del Rosario y San Bernardo solo se encontraban individuos aislados y en Sata Marta y el Parque Nacional Natural Tayrona dejaron de encontrarse en la década de los 80. Algunas áreas que son hábitats del caracol pala están en riesgo debido al turismo y al desarrollo urbano.

Medidas de conservación tomadas y propuestas

Inderena en la resolución 52 del 5 de Abril 1989 estableció una vedas en las zonas, vedas estacionales, límites de talla y prohibiciones al uso de equipos de buceo autónomo y barcos factoría. La veda consiste en vedas poner límites de talla y prohibiciones al uso de equipos de buceo autónomo y barcos factoría (Márquez 1993, Mora 1994). Su veda se estableció desde el 1 de junio hasta el 31 de octubre en San Andrés, Providencia y Santa Catalina, el Parque Nacional Natural Tayrona y Corales del Rosario y San Bernardo protegen las zonas en las que habita *L. gigas* (Ardila et al., 2002).

Se propone tener especial control en el área de influencia directa frente a la captura del caracol pala evitando al máximo comercializar la especie pero en dado caso como mínimo de extracción tallas y/o pesos mínimos, estableciendo en 130 g el peso limpio mínimo, la longitud total de la concha en 24 cm y en 0.7 cm el ancho del labio de la concha.

Resultados censo visual
Se realizó un censo visual de especies amenazadas de junio a noviembre del año 2019 con un total de 15 muestreos. Se encontró un total de ocho especies amenazadas de los filos Chordata, Crustacea, Mollusca, Equinodermata y Cnidaria (Figura 9).

![Censo visual de especies amenazadas](image)

Figura 9. Gráfico de frecuencia de especies amenazadas en el Área de la Marina

3.3.2.2. Seguimiento y monitoreo de restauración de corales

Primer monitoreo

Fecha: 31 de mayo de 2019.

Se registran tres colonias de *Acropora palmata* al final del muelle G. La colonia más grande se observa con dos manchas blancas en la superficie (Figura 10).

![Acropora palmata en el área de influencia directa de la marina](image)

Figura 10. a. *Acropora palmata* en el área de influencia directa de la marina, b. Colonia grande con manchas blancas de 6 y 8 cm aproximadamente (Piñeros, 2019).
Tabla 1. Medidas de las colonias de *A. palmata* en el primer monitoreo.

<table>
<thead>
<tr>
<th>Colonia</th>
<th>Ancho (cm)</th>
<th>Largo (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequeña</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>Mediana</td>
<td>20</td>
<td>19,3</td>
</tr>
<tr>
<td>Grande</td>
<td>40</td>
<td>69</td>
</tr>
</tbody>
</table>

Segundo monitoreo

Fecha: 21 de julio de 2019

Se observa un gran crecimiento de las manchas blancas que se registraron en el primer monitoreo (Figura 11), en 21 días desde que se realizó. También se observa un mancha blanca en la colonia pequeña de 8.5 cm.

![Figura 11. Colonia grande de *A. palmata* con mancha blanca central.](image)

![Figura 12. Colonia pequeña de *A. palmata* con mancha blanca a un costado](image)

![Figura 13. Colonia mediana de *A. palmata* con mancha blanca a un costado](image)

Tabla 2. Medidas de las colonias de *A. palmata* en el segundo monitoreo.

<table>
<thead>
<tr>
<th>Colonia</th>
<th>Ancho (cm)</th>
<th>Largo (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequeña</td>
<td>9,6</td>
<td>19</td>
</tr>
<tr>
<td>Mediana</td>
<td>20</td>
<td>19,3</td>
</tr>
<tr>
<td>Grande</td>
<td>40</td>
<td>70</td>
</tr>
</tbody>
</table>

Tercer monitoreo

Fecha: 24 de Julio de 2019
Se registra crecimiento de las tres colonias con respecto a su tamaño inicial. Pero se evidencia que la mancha de la colonia grande ha aumentado de tamaño a 30 cm lo cual es gran parte de la superficie de coral y su estado se considera regular.

Colonia pequeña

![Figura 14. A. palmata colonia pequeña. a. Ubicación, b. Medida de largo y c. Medida de ancho.](image)

Colonia mediana

![Figura 15. Colonia mediana A. palmata. a. Ubicación, b. Medida de largo y c. Medida de ancho.](image)

Colonia grande

![Figura 16. A. palmata colonia grande con mancha en el centro.](image)

| Tabla 3. Medidas de las colonias de *A. palmata* en el tercer monitoreo. |
|-----------------|-----------------|-----------------|-----------------|
| Colonia | Ancho (cm) | Largo (cm) | Mancha |
| Pequeña | 16 | 22 | Casi completa |
Cuarto monitoreo

Fecha: 14 de agosto de 2019

Se observó un aumento considerable en la mancha de la colonia grande y un aparente estado necrótico en el centro de la colonia, características similares a los síntomas que causa la enfermedad Serriatosis de las Acróporas.

Colonia pequeña

![Figura 17](image1)

Figura 17. Colonia pequeña en estado de blanqueamiento

Colonia mediana

![Figura 18](image2)

Figura 18. Colonia mediana con pequeñas manchas internas

Colonia grande

![Figura 19](image3)

Figura 19. Mancha blanca que se expande desde el centro hacia afuera del coral.
Quinto monitoreo

Fecha: 11 de septiembre de 2019

Se observó un leve crecimiento en general, lo cual es apreciable en realidad entre periodos más largos. La colonia pequeña se blanqueó totalmente y se agregaron a la plataforma dos colonias más. Se tomaron sus respectivas medidas. La colonia mediana se observó muy similar al anterior monitoreo y en la colonia grande evidenció un crecimiento de su mancha blanca inicial.

Tabla 4. Medidas de las colonias de A. palmata en el cuarto monitoreo.

<table>
<thead>
<tr>
<th>Colonia</th>
<th>Ancho (cm)</th>
<th>Largo (cm)</th>
<th>Mancha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequeña</td>
<td>17</td>
<td>23</td>
<td>Completa</td>
</tr>
<tr>
<td>Mediana</td>
<td>24</td>
<td>23</td>
<td>No</td>
</tr>
<tr>
<td>Grande</td>
<td>47</td>
<td>70</td>
<td>45 cm L y 26 cm A</td>
</tr>
</tbody>
</table>

Figura 20. Medición del crecimiento de la mancha de A. palmata de la colonia grande

Figura 21. Medidas de crecimiento de la colonia pequeña de A. palmata

Figura 22. Medidas de crecimiento de la colonia mediana de A. palmata

Figura 23. Medidas de crecimiento de la colonia grande de A. palmata. Mancha de blanqueamiento de la colonia.
Figura 24. Colonia instalada reciente en la plataforma

| Tabla 5. Medidas de las colonias de *A. palmata* en el cuarto monitoreo. |
|-----------------------------|-----------------|-----------------|-----------------|
| **Colonia** | **Ancho (cm)** | **Largo (cm)** | **Mancha** |
| Pequeña | 17 | 23 | Completa |
| Mediana | 24 | 23 | No |
| Grande | 47 | 70,1 | 52 cm L x 28 cm A |

Observación 2 de octubre de 2019

La colonia de *A. cervicornis* grande se observó completamente blanca. Las colonias de *A. palmata* pequeña y mediana se observaron con algunas manchas blancas, mientras que la colonia mayor de *A. palmata* se observó con la mancha de los anteriores monitoreos cubierta de algas filamentosas.

Primer monitoreo

Fecha: 24 de Julio de 2019

Las colonias de *Acropora cervicornis* solo han tenido un monitoreo de crecimiento debido a que su acomodación en el ensamblaje ha sido difícil ya que sus ramas son pequeñas para el tamaño de las celdas y se pueden caer, sin embargo, se han atado con alambres de tal forma que el oleaje (que en la zona es bajo) no las haga caer. Se tienen tres colonias; dos detrás del coral *A. palmata* (Figura 26) y una expuesta delante de este (Figura 25).

Figura 25. Colonia pequeña de *A. cervicornis* en la parte trasera del ensamblaje. a. Ubicación. b. Medidas.

| Tabla 6. Medidas de las colonias de *A. cervicornis* en el primer monitoreo. |
|-------------------------------|-----------------|-----------------|
| Colonia | Ancho (cm) | Largo (cm) |
| Pequeña | 10 | 12,3 |
| Mediana | 8 | 13 |
| Grande | 30 | 20 |

Segundo monitoreo

Fecha: 14 de agosto de 2019

Se observó la colonia grande con una coloración café oscura y con varios retoños sobre las ramas.

Figura 28. Colonia grande de *A. cervicornis* con una coloración café oscura.

Figura 29. Colonia pequeña de *A. cervicornis*

| Tabla 7. Medidas de las colonias de *A. cervicornis* en el segundo monitoreo. |
|-------------------------------|-----------------|-----------------|
| Colonia | Ancho (cm) | Largo (cm) |
| Pequeña | 10 | 13 |
| Mediana | -- | -- |
| Grande | 30 | 22,5 |
Tercer monitoreo

Fecha: 11 de septiembre de 2018

Desde el primer momento en el que se dispuso la colonia en la plataforma ha tenido cambios de color cada que se vuelve a monitorear, en el primero tenía una coloración naranja, en el segundo monitoreo estaba de color café oscuro y en este monitoreo está de color café claro, con algunas de sus ramas blancas.

3. *Madracis auretenra*
 Orden: Scleractinea Bourne, 1900
 Familia: Pocilloporidae Gray, 1840
 Género: Madracis Milne Edwards & Haime, 1849
 Nombre común: coral
 Categoría de amenaza: LC

Figura 30. Colonia de *M. auretenra* en la parte trasera del ensamblaje.

Medidas de conservación tomadas y propuestas

De la misma forma que *Acropora cervicornis*, la especie *Madricis auretenra* es una especie de colonias pequeñas ramificadas, pero también pueden ser plocoides ramificadas, arbustivas ramificadas en todos los sentidos, o faceloides, constituidas por ramas delgadas y paralelas, alcanzando hasta 2 m de diámetro (Reyes *et al*., 2010).

Primer monitoreo

Fecha: 24 de Julio de 2019
En el primer monitoreo de *M. auretenra* se registró una sola colonia junto a otra de *A. cervicornis*, se ubica en la parte posterior del ensamblaje y se pretende disminuir el tamaño de la celda para que no se vaya al fondo (Edwards y Gómez, 2007).

Segundo monitoreo

Fecha: 14 de agosto de 2019

En este monitoreo se observó la colonia con muchas algas en su superficie, contrario a lo que se había percibido anteriormente.

Tabla 8. Medidas de las colonias de *M. auretenra* en el primer monitoreo.

<table>
<thead>
<tr>
<th>Colonia</th>
<th>Ancho (cm)</th>
<th>Largo (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>única</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabla 9. Medidas de las colonias de *M. auretenra* en el segundo monitoreo.

<table>
<thead>
<tr>
<th>Colonia</th>
<th>Ancho (cm)</th>
<th>Largo (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>única</td>
<td>9,3</td>
<td>8,2</td>
</tr>
</tbody>
</table>

Finalidad y recomendaciones

Los corales *Acropora palmata* y *Acropora cervicornis* dispuestos a monitoreo en la Marina de Santa Marta tuvieron blanqueamiento posiblemente a razón de condiciones ambientales y posibles enfermedades de las especies mencionadas anteriormente en este informe. Pese a esto se recomienda seguir un monitoreo, ya que al ser especies que se pueden reproducir por fragmentación puede que vuelva a crecer una colonia. En general se observó
una gran cantidad de especies de corales escleractinios por lo que se recomienda realizar una caracterización de la zona para evaluar el estado de las poblaciones.

3.3.3. BIBLIOGRAFÍA

4. CONCLUSIONES

- Dentro de los atributos estructurales y funcionales evaluados, la densidad y la productividad primaria fueron las que alcanzaron mayores valores, mientras que las variables como el stock de carbono y las biomasas tuvieron valores bajos. Esto pudo darse debido a las altas temperaturas encontradas durante la época lluviosa del año 2019 en la región del Magdalena.

- Durante los meses evaluados en las 3 praderas de *T. testudinum* se evidenciaron estados regulares de acuerdo con los valores de referencia del ICT$_{pm}$ de densidad y afectación por *Labyrinthula sp*.

- El seguimiento y monitoreo de especies amenazadas permitió enaltecer la función de las pastos marinos como hábitat de sala-cuna y protección para muchas especies de peces, crustáceos, moluscos y equinodermos en sus etapas juveniles y adultas. Es un buen indicio encontrar 8 especies amenazadas de las cuales algunas no se habían reportado en esta zona. Se puede considerar que el ecosistema ha tenido resiliencia a pesar de las perturbaciones naturales y humanas como lo son los dragados, las descargas del río Manzanares, el anclaje de botes y los cambios que ha tenido la bahía de Santa Marta tras la construcción de diferentes obras desde hace casi 40 años.

5. RECOMENDACIONES

- Es importante realizar más monitoreos en el área de estudio, en otras épocas climáticas ya que se podrían evidenciar cambios en los atributos estructurales y funcionales.

- El monitoreo de especies de animales que se encuentran en amenaza se debe seguir desarrollando en el área de influencia directa del Proyecto Marina de Santa Marta y se debe comparar su relación con las praderas de pastos marinos.
• Se debe adelantar un seguimiento del hongo *Labyrinthula sp.* y compararlo con los resultados de este estudio y con otras áreas del Caribe. Se propone realizar un monitoreo cada tres meses en las praderas de *T. testudinum* del área de influencia directa del Proyecto Marina de Santa Marta para poder tener un registro del estado de afectación que genera el patógeno una vez que estén establecidos todos los valores de referencia del ICT pm.

• La Marina Internacional de Santa Marta puede ser la entidad pionera del cuidado y preservación de las especies en la bahía de Santa Marta.

6. **AGRADECIMIENTOS**

Se brindan agradecimientos a la Universidad Jorge Tadeo Lozano sede Santa Marta y a sus profesores por la buena y enriquecedora enseñanza y la colaboración en este trabajo de prácticas profesionalizantes. También se agradece al Proyecto Marina de Santa Marta por permitir la entrada y el reconocimiento de la importancia del estado del ecosistema y la calidad ambiental en el que circunda. A Dios y a todos los que permitieron que esto fuera posible con su apoyo, gracias.

7. **RESUMEN**

Las construcciones en la bahía de Santa Marta han generado cambios en los ecosistemas marino-costeros de la zona y las especies que los conforman. Luego del hallazgo de cinco praderas de pastos marinos en el área de influencia directa del Proyecto Marina de Santa Marta, se evaluaron los atributos estructurales y funcionales en aras de generar un plan de conservación y protección para pastos marinos y las especies amenazadas que los circundan. Entre junio y noviembre de 2019 se realizaron 15 muestreos dentro y fuera de la
Marina Internacional de Santa Marta en donde se encontraron 8 especies asociadas en estado de amenaza, lo cual muestra que el ecosistema ha tenido resiliencia a pesar de las perturbaciones. Los atributos estructurales y funcionales como el stock de carbono de las praderas reportan valores bajos, a excepción de la densidad y la productividad primaria neta, sumado a esto el indicador condición tenencia para pastos marinos ICTpm evidencia que las praderas se encuentran en un estado regular.

Palabras clave: Pastos Marinos, Marina de Santa Marta, Resiliencia, Indicador condición tenencia, stock de carbono.

8. ABSTRACT

The construction in Santa Marta bay has generated changes in the marine-coastline ecosystems of the zone and the species inhabit there. After locate five seagrass meadows in the direct influence area of the Project Marina de Santa Marta, they were assess according with their functional and structural characteristics in order to generate conservation and protection strategies for seagrasses and related endangered species. Between June and November of 2019 there was made 15 samplings inside and outside of la Marina Internacional de Santa Marta where it was found 8 related endangered species, this is evidence of resilience in the ecosystem in spite of the disturbance. Structural and functional attributes like carbon stock of the seagrass meadows provide low values except density and primary net productivity, in addition the condition tenure for seagrasses ICTpm show that the seagrass meadows are in a regular condition.

Key words: Seagrass, Marina de Santa Marta, Resilience, Tenure condition indicator, Carbon stock.