Preventing Type 2 Diabetes among South Asian Americans through community-based lifestyle interventions: a systematic review

Shahmir H. Ali, Supriya Misra, Niyati Parekh, Bridget Murphy, Ralph J. DiClemente

PII: S2211-3355(20)30141-8
DOI: https://doi.org/10.1016/j.pmedr.2020.101182
Reference: PMEDR 101182

To appear in: Preventive Medicine Reports

Received Date: 21 January 2020
Revised Date: 31 July 2020
Accepted Date: 14 August 2020

Please cite this article as: S.H. Ali, S. Misra, N. Parekh, B. Murphy, R.J. DiClemente, Preventing Type 2 Diabetes among South Asian Americans through community-based lifestyle interventions: a systematic review, Preventive Medicine Reports (2020), doi: https://doi.org/10.1016/j.pmedr.2020.101182

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 The Author(s). Published by Elsevier Inc.
Preventing Type 2 Diabetes among South Asian Americans through community-based lifestyle interventions: a systematic review

Shahmir H. Ali 1, Supriya Misra 1, Niyati Parekh 2,3, Bridget Murphy 2, Ralph J. DiClemente 1*

1. Department of Social & Behavioral Sciences, School of Global Public Health, New York University, New York, NY, USA
2. Public Health Nutrition Program, School of Global Public Health, New York University, New York, NY, USA

* Corresponding Author: Ralph J. DiClemente, 715 Broadway New York, NY 10003, Phone: +1 (212) 992-3709, Email: rjd438@nyu.edu

Word count (abstract): 232
Word count (main text): 4495
Abstract

Ethnic South Asians Americans (SAAs) have the highest relative risk of type 2 diabetes mellitus (T2DM) in the United States (US). Culturally tailored lifestyle interventions have the potential to promote South Asian diabetes prevention; however, the extent of their use and evaluation in US settings remains limited. This systematic review characterizes and evaluates outcomes of community-based lifestyle interventions targeted towards T2DM indicators among South Asians living in the US. A PRISMA-informed search of Pubmed, Embase, Cochrane, Web of Science, and clinical trial registry databases using key words pertaining to South Asians migrants and diabetes indicators (glucose and insulin outcomes) was conducted of community-based lifestyle interventions published up until October, 31 2019. Of the eight studies included in the final synthesis, four interventions focused on cultural and linguistic adaptations of past chronic disease prevention curricula using group-based modalities to deliver the intervention. Hemoglobin A1c (A1c) was the most common outcome indicator measured across the interventions. Three of the five studies observed improvements in indicators post-intervention. Based on these findings, this review recommends 1) greater exploration of community-based lifestyle interventions with high quality diabetes indicators (such as fasting blood glucose) in ethnic South Asian American communities, 2) expanding beyond traditional modalities of group-based lifestyle interventions and exploring the use of technology and interventions integrated with passive, active, and individualized components, and 3) development of research on diabetes prevention among second generation South Asians Americans.

Key words: diabetes, insulin, glucose, lifestyle, South Asian, migrants, community health
Background

Diabetes among South Asians in the US

In 2017 approximately 30.3 million people in the US were living with diabetes, creating an epidemic cost of 327 billion [1, 2]. Ethnic SAAs have a disproportionately high burden of T2DM; ethnic Asian Indians for instance have a 2.8 times greater relative risk of T2DM as compared to whites and 1.3 greater risk compared to the Asian aggregate [3]. In clinical and research settings, the primary outcome indicators used to measure and screen for T2DM include measures of blood glucose, such as A1c, fasting plasma glucose (FPG), the oral glucose tolerance test (OGTT), and measures of insulin resistance, such as the Homeostasis Model Assessment (HOMA) and the Quantitative Insulin Sensitivity Check Index (QUICKI) [4, 5]. Lifestyle factors (such as poor diet and exercise) have been recognized as key contributors to the sharp rise in T2DM [6]. Among ethnic South Asians, factors such as migration and cultural values pertaining to diet and exercise have been observed to further compound the rising prevalence of T2DM [7].

Much of the existing literature and reviews on interventions targeting T2DM among South Asian migrants have targeted diabetes management and focused on populations living in the United Kingdom and Europe [8-10]. Yet, compared to the United Kingdom and Europe, the United States attracts a significantly greater population of highly educated, first-generation South Asian migrants [11-13]. The significant differences in socio-demographics, relevant to intervention design between South Asian migrants living in the US versus those in the UK and Europe, suggests the need for region-based intervention analysis. Likewise, given the rise of pre-diabetes in the United States, preventing diabetes incidence is also of paramount importance [2].

Diabetes prevention interventions

Although diabetes management remains a concern among many ethnic South Asians in the United States, there has been a growing impetus to focus attention on diabetes prevention among individuals with pre-diabetes and patients who have not yet developed diabetes but may be at-risk [14]. Diabetes prevention programs focus on promoting health-protective lifestyle changes; however, these programs must be tailored in a culturally sensitive way to optimize programmatic effectiveness [14].
In the United States, the large, multi-ethnic, multi-center Diabetes Prevention Program (DPP) has provided robust evidence for diabetes prevention [15]. However, the program lacks a separate analysis of ethnic South Asian community outcomes. Its generalizability for the Asian American migrant community has also been criticized, in part, due to limited cultural relevance in the diet, exercise, and behavior change components of the program [16]. Indeed, with the observed need for cultural precision in diabetes prevention campaigns, there is a gap in understanding the impact that existing diabetes prevention interventions (with varying levels of cultural sensitivity in design) have had on at-risk subpopulations such as ethnic SAAs.

Community-based lifestyle interventions are particularly promising for diabetes prevention among ethnic SAAs. The strength of this approach lies in a number of key aspects [17]. First, targeting an intervention at the population level among individuals with varying levels of risk allows for maximum reach and access to intervention materials, especially relevant for communities such as ethnic SAAs who may not be able to afford or seek clinical services [18]. Second, since diabetes progression involves complex dynamics between behavioral and environmental factors, community-based approaches can be designed to affect social or environmental conditions in ways that clinical services cannot. Finally, community-based prevention can be culturally tailored to populations’ unique barriers to disease prevention, such as ethnic SAAs.

The aims of this systematic review are twofold: 1) describe characteristics of community-based lifestyle interventions which have assessed changes in T2DM glucose and insulin indicators among ethnic South Asians in the US, and 2) evaluate the effectiveness of these interventions in improving T2DM glucose and insulin indicators. In doing so, this review will identify components associated with successful community-based lifestyle interventions among ethnic South Asians Americans as well as opportunities for further research.

Methods

Search Strategy
A systematic search of literature published up through October 31, 2019 was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [19]. Database search included PubMed, Web of Sciences, Embase, Cochrane, and SCOPUS. A manual search was conducted for further peer-reviewed studies, grey literature, and registered clinical trials from WHO International Clinical Trials Registry Platform, Clinicaltrial.gov, and Google Scholar. Authors of protocols, registered trials, and studies with only baseline data were individually contacted to assess if post-intervention data was available for inclusion (three contact attempts were made of each author).

The detailed search strategy employed in the formal database search is displayed in Table 1. Key words used included community-based lifestyle intervention related terms informed from past systematic reviews along with terms focused on South Asian immigrant populations (those ethically identifying as Indian, Pakistani, Bangladeshi, Sri Lankan, Nepalese, Bhutanese, or Maldivian), and terms relating to diabetes, including glucose or insulin indicators (A1C, plasma blood glucose, 2h post load glucose, insulin sensitivity, among others) [20].

Eligibility of studies

A screening reliability test was conducted by two independent reviewers (SA and BM) of 60 abstracts within the full screening sample, followed by complete abstract and title screening. Studies conducted on ethnic SAA populations above the age of 18 were within the scope of the study. A study was included if it satisfied the following criteria. First, the study had to focus, at least partly, on a specific South Asian population (including the seven identified South Asian nationalities) that were residing in the US at the time of study. Second, the study must discuss a community-based intervention defined as an “approach directed to a population rather than individuals, implemented in community settings rather than hospital or health care settings, and approaches coordinated through friends, family, neighbors, community members, worksites, schools or primary health care centers” [20]. Third, the study had to include at least baseline data. Fourth, the study had to include biomarkers commonly used to assess diabetes risk: blood glucose or insulin related indicators. A study was excluded if it was a review, lacked an ethnic SAA sample, focused exclusively on diabetes management among individuals with T2DM, or lacked a community-based component (e.g., exclusively structural or clinic/hospital-based).
Data Extraction

A data extraction form was developed by the study authors and pilot tested before being implemented for the final study sample. Data extracted included study participant characteristics, intervention characteristics, and outcome variable data. Full-text assessment and data extraction were conducted by two independent reviewers (SA and SM), and the senior author (RD) served as a tiebreaker when a consensus could not be reached. If demographic information for control and intervention group was presented separately, a weighted average was calculated for the variables of interest.

Quality Assessment of included studies

The National Heart, Lung, and Blood Institute (NHLBI) study quality assessment tool was applied to all included studies by two independent reviewers (SA and SM). One of two NHLBI checklists were used, depending on study design: controlled intervention studies or before-after (pre-post) studies with no control group [21]. Given the heterogeneity in the study designs, the checklists were supplemented by a brief narrative quality assessment focused on aspects of feasibility, acceptability, retention, and the meaningful role of cultural and community-based design and adaptation measures.

Results

The search strategy retrieved 1,571 individual articles, of which 44 passed through title and abstract screening. Another 36 studies were excluded through the full text assessment process specified in Figure 1. Of the one protocol and two registered trials that passed through screening, study authors of only one registered trial [22] were able to provide an unpublished manuscript with both baseline and post-intervention data [23].

Included Studies

Eight studies were included in the final qualitative synthesis, including two randomized controlled trials [24, 25], two two-group pre-post studies [26, 27], three one-group pre-post studies [23, 28, 29], and one experimental study with only baseline data [30] (Table 2). While the number of participants analyzed in intervention or control groups across most studies was between 20-54,
one single-group pilot study had only 9 participants [23], while another large intervention trial had 2726 participants [30].

The sample characteristics of the studies varied (Table 3). All studies were conducted in large, urban centers across different regions of the US. While many studies targeted ethnic South Asians Americans broadly, others were more specifically focused on categories of ethnicity [25], religion [26], occupation [28], or motherhood status [29]. Most studies were primarily based on populations at risk for a chronic illness. Three studies focused on populations at risk for T2DM through the American Diabetes Association risk assessment tool [26, 27] or the Madras Diabetes Research Foundation’s Indian Diabetes Risk Score [25]. One study focused on overweight (using the ≥22kg/m2 cut-off identified for Asian populations [31]) participants with pre-diabetes (FPG 100-125 mg/dl and/or 2-hour post-load glucose of 140-199 mg/dl) [23]. Other at-risk factors used for participant eligibility included BMI of ≥25kg/m2 [29], family history of diabetes [29], or at least one cardiovascular disease risk factor (BMI≥25kg/m2, total cholesterol ≥200, LDL cholesterol ≥130, prediabetes using FPG>100 or A1c 5.7-6.4, diabetes using FPG>126 or A1c>6.4, systolic blood pressure ≥140, or diastolic blood pressure ≥90) [24].

While two studies exclusively studied men [28] or women [29], four predominantly included men [30] or women [24, 26, 27], and only one study showed a relatively balanced gender profile [25]. Five studies focused only on first-generation South Asian immigrants (born outside of the US), and among the two studies with US-born participants, these individuals represented only 2% and 4% of the total study sample, respectively [25, 30]. The average age of participants ranged from 43 to 53.1 years; however, education status varied markedly. While 87% and 96% of two studies, respectively, had participants with bachelor’s degree or higher [25, 30], other studies had significant (or majority) of participants with high school (or below) levels of educational attainment [28, 29].

The quality of the studies was generally good for their study design, with all but two studies scoring in the (“Good”) category on the three-option (“Good, Fair, Poor”) NHLBI assessment tool. Most studies were pilot studies and did not include a control group. Among controlled studies, a few used randomizations but others, such as Islam et al., did not due to negative community
perceptions toward randomization [26]. Most studies compared the characteristics of those who dropped out of the study with those who stayed in the study (with issues of time-commitment being a salient reason for attrition across the interventions); however, only one study included a full qualitative process evaluation through participant interviews to understand barriers and facilitators of the intervention [29]. Community-based participatory research (CBPR) approaches were also widely employed to enhance study quality; Kandula et al. (2015) credited their 100% participant retention to integrating CBPR tenets throughout the study [24]. Although only baseline data was provided in Sathe et al.’s health coaching intervention, of the 2726 individuals analyzed during baseline, only 50% (1359) completed full participation, with authors citing lack of time and not understanding the program or its benefits among the reasons for attrition [30].

Characteristics of Interventions

The structure of the community-based lifestyle interventions varied considerably (Table 4). Group-class formats of positive lifestyle behavior promotion were most popular [23-27]. Most interventions were between 12-16 weeks in duration, while some lasted 6 months [26, 27] or 1 year [30]. Community settings, such as religious institutions, non-profit organization venues, local fitness facilities, and other convenient community spaces were common for intervention settings. Other studies had non-specific venues; Ganey et al. provided participants with pedometers to use throughout daily activities [28], while Sathe et al.’s health coaching intervention was largely phone or email based [30].

Most (seven) studies incorporated some form of cultural and linguistic tailoring to the intervention design. Formative, qualitative research with South Asian communities was explored by some studies to directly inform curriculum design and adaptation [23, 26]. Others involved community partners [29]; Islam et al. for instance recruited a Sikh nutrition expert to help create healthy recipes [26]. Lim et al. expanded on the successes of Islam et al.’s pilot study and included many of the same cultural adaptions [26, 27]. The adaptation of existing chronic disease prevention curriculum was common, including the materials from the United States DPP [23, 26, 27], the National Diabetes Education Program’s Power to Prevent curriculum (P2P) [25-27], and the NHLBI Healthy Heart, Healthy Family curriculum [26, 27]. Linguistic tailoring was included in four of the five group-class based interventions through some form of oral or written translation.
of study materials [24-27]. Likewise, Gany et al.’s pedometer-based intervention had questionnaires administered in participants’ preferred language [28], and Kandula et al.’s exercise-based intervention had Hindi-speaking study staff participating in fitness classes for translation [29].

While technology was not a significant component included in the interventions, pedometers were used in multiple interventions. Three studies incorporated pedometers as an explicit component of the intervention [24, 28, 29] while one primarily used the technology to track daily step counts [25]. Patel et al. employed a smartphone app messaging software to allow participants to receive weekly reminders about mailing weekly logs and coming to weekly group sessions [25]. Moreover, Sathe et al.’s health coaching intervention was largely phone and email based [30], Islam et al. and Lim et al. incorporated telephone-based follow ups with participants after sessions [26, 27], and Kandula et al. (2015) included a telephone-based motivational interviewing component in their intervention [24].

Physical activity was widely explored across the interventions. General promotion of physical activity strategies through group class formats (ranging from 60 minutes to 120 minutes on a weekly or biweekly basis) [24-27] or targeted health coaching [30] was common. However, more active exercise-based interventions were also explored. For example, Kandula et al. (2016) conducted a biweekly, 45-minute moderate-intensity Zumba and aerobics-based exercise intervention [29]. Others incorporated exercise into aspects of the intervention; Kandula et al. (2015) conducted four group melas (a term used in South Asia for a gathering or festival) over the course of the year-long intervention involving yoga and folk-dance-based aerobic exercises [24], Patel et al. incorporated group physical activities and demonstrations in some group classes [25], and Narayan et al. incorporated traditional Indian dancing, work-out videos, and group walks [23].

Diet and nutrition were similarly explored in different culturally sensitive ways. The promotion of healthy eating practices (mainly focused on reducing unhealthy fats, sugars, and sodium while increasing fruit and vegetable intake) was common across the group-class based interventions [23-27]. Culturally-tailored cooking activities were also explored; Kandula et al. (2015) collaborated with a South Asian chef to teach healthy cooking and have cooking
competitions [24], Islam et al. promoted techniques of incorporating healthfulness in traditional Indian cooking [26], and Patel et al. conducted cooking demonstrations, food sampling, grocery store tours, recipe makeovers, and pot-luck parties in some group sessions [25].

Effectiveness of Interventions

The most common blood glucose outcome indicators assessed was A1C (measured as % and mmol/mol) [23-25, 29]. Two interventions used random plasma glucose (measured as mg/dL and mmol/L) [28, 30], two used 2h fasting blood glucose (mg/dl) [26, 27], while one used a general fasting plasma glucose test of an unspecified time length (mg/dl) [24]. While most studies assessed blood glucose measures on a continuous scale, Gany et al. conducted a categorical analysis based on subjects with a random plasma blood glucose of <200 mg/dL, 200-399 mg/dL, and ≥400 mg/dL [28]. Unlike other studies, Weber et al. also assessed the number of individuals with normoglycemia, isolated impaired fasting glucose (iIFG), and isolated impaired glucose tolerance (iIGT) [23]. Measures specifically targeting insulin sensitivity and resistance, such as QUICKI or HOMA, were not used.

Overall, most interventional studies demonstrated effectiveness in improving glucose and insulin indicators among participants. However, only four studies were conducted with the primary objective of diabetes prevention [23, 25, 26, 29], and only two studies conducting data collection included a follow-up period longer than immediately post-intervention, measuring at 2 months [23] or 6 months [25] after its completion. Four of the six studies statistically assessing post-intervention efficacy showed statistically significant reductions in blood glucose and A1C [24-27]. Kandula et al. (2015) observed a greater sex-adjusted A1c (%) decrease of 0.43 (p<0.01) in the intervention group compared to the control group at the sixth month of the study period, although fasting glucose showed no statistically significant change [24]. Patel et al.’s 12-week study among participants with prediabetes similarly found the intervention participants reduce A1c from baseline (38.96 mmol/mol) to the 12-week postintervention assessment (37.00 mmol/mol) and to 24-week follow-up (or 12-weeks after the conclusion of the intervention, 36.54 mmol/mol), both of which were significant (p<0.0005) compared to control [25]. However, the small-scale, pilot nature of much of these studies limit the clinical meaningfulness of their observed effectiveness. Among the remaining two studies, Gany et al. observed improvement in individuals
with <200 mg/dL glucose readings but it was not statistically significant (p=0.31) [28], while Kandula et al. observed a slight but not clinically meaningful increase in A1c post-intervention [29].

Discussion

Diabetes prevention among ethnic South Asians Americans is a major public health concern. This review sought to systematically assess characteristics and effectiveness of community-based lifestyle interventions involving T2DM blood glucose and insulin indicators. We found that community-based lifestyle interventions targeting diabetes prevention remains relatively unexplored in ethnic SAA populations (reflected by the small sample of eight articles included in the review, all published within the last five years). While cultural and linguistic adaption was widely explored across the interventions, most studies employed traditional group-class intervention delivery formats targeting lifestyle behaviors based on standard curricula of chronic disease prevention. Assessing effectiveness of the interventions was largely confined to A1c, 2h fasting blood glucose, and random plasma blood glucose indicators, and while some observed negative or no impact of the interventions in improving blood glucose indicators, the success observed in most studies suggest that community-based lifestyle interventions, indeed, may be a promising strategy to reduce the rising public health burden of T2DM among ethnic South Asians Americans.

While most studies were derived from evidence-driven approaches and formative research or incorporated standard diabetes prevention curriculums, many tended to focus exclusively on either passive, group-class based formats of lifestyle behavior change promotion or more active, physical-activity based lifestyle behavior change activities. Multiple studies had significant active and passive components to the interventions [23-25], while some intervention components were infrequently implemented and did not occur on a weekly or biweekly basis [24, 25], and some components were simply optional [29]. Different delivery methods of lifestyle interventions play a unique role in tackling the myriad complex barriers to healthy lifestyle behavior change, and the development of past comprehensive lifestyle interventions rely on active, passive, and individualized components to enhance efficacy [32]. Indeed, there are many lessons to be learned...
from multi-level health promotion intervention research in Europe; Andersen et al. conducted a randomized controlled trial among Pakistani immigrant men living in Norway that observed significant reductions in post-intervention insulin levels directly targeting constructs of Social Cognitive Theory [33, 34]. Notably, this single intervention included components observed across separate interventions in this review, including bi-weekly group exercises similar to Kandula et al. 2016 [29], group lectures similar to that employed in multiple studies, individualized counselling similar to Sathe et al. [30], and motivational phone-based contacts similar to Kandula et al. 2015 [24]. This is an opportunity for further research in the US to design similar multi-component interventions that incorporate passive (lecture-based), active (activity-based), and individualized (such as targeted counseling) health promotion and behavior change aspects.

Likewise, past utilization of theoretical lenses to understand the nuances of chronic diseases prevention among ethnic South Asians provides a starting point on behavior change constructs which may be particularly salient for diabetes prevention; Haider et. al for example employed the Social Cognitive Theory to predict exercise behavior among a cohort of largely first-generation South Asian college students in US and observed the construct of self-efficacy to be the only salient predictor of exercise behavior [35]. Such findings suggest that efficacy-building may be particularly suited for this population, although further theory-based analysis on lifestyle behavior change among other SAAs subgroups (e.g. second-generation immigrants, or older adults) is needed to provide more substantial insights to support intervention design.

The observed lack of studies involving second-generation South Asian migrants in the US reflects a broader gap in research on this subpopulation [36] and represents a significant opportunity for future work. Indeed, while first-generation migrants still constitute a significant proportion of ethnic South Asians Americans, there are approximately 800,000 second generation ethnic Indian Americans in the US, a number that is expected to significantly rise in the similar way as second and third generation South Asian communities have grown in the UK after waves of migration [13, 37]. Second-generation South Asian migrants around the world have been observed to have significantly higher levels of educational attainment and linguistic integration, greater socio-economic advantage, more favorable attitudes towards physical activity, exercise more, and have less pressure to conform to traditional norms of diet and exercise [38-40]. Indeed,
the fact that almost all studies in the current sample did not specifically exclude second-generation
or US-born ethnic SAAs suggests a need for greater sampling of second-generation South Asians
(or potentially interventions specifically targeting the community) to provide a better
understanding of the general applicability of community-based lifestyle interventions and provide
implications for future work. Specifically, mixed-methods formative research among second-
generation ethnic SAAs may identify certain foods or exercise behaviors more salient or culturally
acceptable in this sub-population compared to first-generation migrants, which can then directly
be integrated into diabetes prevention interventions targeting the community.

Studies showed mixed but generally positive improvements in blood glucose indicators
post-intervention. The quality assessment conducted found that such findings were limited by
small sample sizes, lack of comparison groups, and limited post-intervention follow up assessment.
Likewise, these mixed results corroborate other community-based diabetes prevention-oriented
lifestyle interventions in ethnic South Asian communities living in New Zealand [41] and Norway
[33] that similarly showed mixed results in improvements of diabetes indicators. The common
utilization of A1c and random plasma glucose measures across the included studies can, at least in
part, be explained by the ease and convenience of both tests for participants and researchers. The
lack of clinical meaningfulness was also identified as an issue of concern with respect to some
results [29], further supporting the need for large-scale, rigorous intervention trials to assess
efficacy. Indeed, as multiple studies in this review have shown, the feasibility constraints that
variables such as fasting blood glucose which require greater effort on the part of the participant
can be successfully overcome to ensure greater quality of the glucose and insulin outcomes. Thus,
these mixed, yet generally positive, findings are compelling to support further high-quality
intervention research in the field of T2DM prevention.

This study identified areas for further exploration of high-quality glucose and insulin
outcome indicators in community-based lifestyle interventions. Most studies only employed a
single blood glucose indicator, and evidence from included studies involving multiple indicators
suggest that significant trends may not be reflected across all diabetes prevention outcomes [24].
Indeed, there is evidence highlighting the extent to which different blood glucose or insulin
resistance outcomes may have uniquely salient roles in explaining diabetes prevalence across
racial groups, including among ethnic South Asians [42, 43]. Kananya et al.’s study on ethnic SAA diabetes prevalence observed that low β-cell function and insulin resistance was particularly high among South Asians and called for further research to identify the biological pathways and mechanisms behind diabetes progression among ethnic South Asians [43]. Similarly, the measurement of A1c in distinguishing between individuals with pre-diabetes and those without diabetes (the main focus of diabetes prevention interventions) has been shown to be lower than its ability for distinguishing individuals with diabetes and individuals with pre-diabetes, compelling scholars to advocate the use of FPG or OGTT verification for individuals diagnosed as without diabetes or with pre-diabetes [44]. Insulin resistance indicators (such as HOMA) were not assessed, and FPG and the Oral Glucose Tolerance Test (OGTT) – the traditional gold standards for diabetes diagnosis – were not employed [42]. Thus, there is a need for the incorporation of multiple, high-quality blood glucose and insulin indicators in further community-based diabetes prevention research in the US. To meet future aims, intervention studies in other settings provide insights on opportunities worthy of exploration in US settings; Rush et al.’s community-based lifestyle intervention among Asian Indians in New Zealand, for instance, assessed glucose (mmol/L), insulin (pmol/L), HOMA-B (%), and HOMA-S (%) [41].

Limitations

This review has some key limitations. First, this study relied on the precedent set by selected past literature to define ‘lifestyle interventions’ and operationalize the community-based lens in the search strategy [20]. Second, this study excluded research focusing on the broader subgroup, ‘Asian Americans,’ a group which may have included significant numbers of South Asians, given the heterogeneity observed in Asian American subgroups and issues in generalizability between culturally targeted interventions among different Asian American communities. Finally, the review’s broad scope on general diabetes prevention meant that some studies did not explicitly exclude individuals with pre-existing diabetes which limits the interpretability of the findings (although among such studies, the percentage of individuals with diabetes was consistently small) – further research may focus more specifically on populations who exclusively do not meet criteria for diabetes or pre-diabetes.

Conclusion
Preventing T2DM among ethnic SAA communities remains a pressing public health concern in the US, and community-based lifestyle interventions present a promising opportunity to address this challenge. This review provides information on the potential efficacy and gaps pertaining to community-based lifestyle intervention design to inform further research and health promotion activities in this field. Based on the findings of this study, we have the following recommendations. First, there is a need for greater exploration of community-based lifestyle interventions with high quality diabetes indicators (such as fasting plasma glucose) in ethnic SAA communities. Second, further interventions should expand beyond traditional formats of group-class based lifestyle interventions and exploring the use of innovative technologies and interventions integrated with passive, active, and individualized components. For example, the examination of telehealth and mhealth components (e.g. phone based or smartphone application based interventions) was limited, and the potential importance of such platforms has been further highlighted after the COVID-19 pandemic; further formative and interventional research using these technologies should be explored, and may provide insights on whether certain subsets of the population (e.g. second generation or young ethnic SAAs) may particularly benefit from interventions with these technologies. Likewise, expanding standard curricula for diabetes prevention by integrating group-based education, interactive activities (e.g. exercise sessions), and individualized one-on-one consultations with other culturally adaptive components (such as group melas or festivals) may enhance the applicability and effectiveness of interventions. Finally, there is a strong need to explore diabetes prevention among second generation SAAs through crucial phases of formative research and greater inclusion in diabetes prevention interventions. Indeed, fundamentally addressing diabetes prevention among ethnic SAAs requires both effective and sustainable interventions; to this extent, community-based lifestyle interventions culturally adapted to the preferences and norms of the ethnic SAA community have the strong potential to meet these needs.

Author Contributions

Shahmir H. Ali: Conceptualization, Methodology, Investigation, Writing - Original Draft.
Supriya Misra: Methodology, Investigation, Writing - Review & Editing. Niyati Parekh:
Writing - Review & Editing. Bridget Murphy: Investigation, Writing - Review & Editing. Ralph J. DiClemente: Conceptualization, Methodology, Investigation, Writing - Review & Editing, Supervision.

Acknowledgements

We acknowledge the support of Ms. Dorice L. Vieira in providing assistance in search strategy design and implementation.

Conflict of Interest

The authors declare there is no conflict of interest.

References

Figure 1: PRISMA flowchart of search strategy and included studies
Table 1: Search Strategy

<table>
<thead>
<tr>
<th>Component</th>
<th>Key Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>(South Asia* OR India* OR Sri Lanka* OR Nepal* OR Bangladesh* OR Bhutan* OR Maldives* OR Pakistan*) AND (Migra* OR Immigra* OR Emigra* OR Minorit*)</td>
</tr>
<tr>
<td>Intervention</td>
<td>(implementation OR intervention OR health promotion OR clinical trial OR lay worker OR lay health advisor)</td>
</tr>
</tbody>
</table>
OR lay health educator OR lay health worker OR peer counseling OR peer support OR peer-based OR peer-support OR peers OR peer education OR group education OR group support OR group-based OR peer counseling OR peer support OR peer led intervention OR peer-led intervention OR peer based intervention OR community-led OR community-based OR school based OR work based OR mosque based OR temple based OR gurdwara based OR family based)

Outcome

(diabetes OR T2DM OR tidm OR iddm OR niddm OR diabetes mellitus OR glucose intolerance OR HbA1C OR A1C OR hemoglobin a1c OR blood glucose OR plasma glucose OR fasting glucose OR fasting blood glucose OR postload glucose OR post load glucose OR postprandial glucose OR post prandial glucose OR oral glucose OR insulin OR insulin resistance OR insulin sensitivity OR homeostasis model assessment OR HOMA OR quantitative insulin sensitivity check index OR QUICKI OR Matsuda index OR normoglycemia OR IGT OR impaired glucose tolerance OR IFT OR impaired fasting glucose)

564
565
566
567
568
569
Table 2: List of included studies

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Location of study</th>
<th>Study Design</th>
<th>Description of study population</th>
<th>Study participants analyzed</th>
<th>Glucose/insulin indicators</th>
<th>Effectiveness of intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kandula 2015</td>
<td>Chicago, IL</td>
<td>RCT</td>
<td>Asian Indians or Pakistanis with at least one atherosclerotic cardiovascular disease risk factor</td>
<td>Intervention: 31 Control: 32</td>
<td>A1C, Fasting blood glucose (mg/DL)</td>
<td>6-month 0.43% decrease in A1C, no significant change in fasting glucose</td>
</tr>
<tr>
<td>Patel 2017</td>
<td>Houston, TX</td>
<td>RCT</td>
<td>Gujarati Asian Indians at-risk for T2DM</td>
<td>Intervention: 26 Control: 20</td>
<td>A1C</td>
<td>6-month 1.96 mmol/mol decrease in A1C</td>
</tr>
<tr>
<td>Islam 2014</td>
<td>New York City, NY</td>
<td>2GPP</td>
<td>Sikh Asian Indians at-risk for T2DM</td>
<td>Intervention: 54 Control: 48</td>
<td>2h fasting blood glucose (mg/DL)</td>
<td>6-month 25 mg/dl decrease in blood glucose</td>
</tr>
<tr>
<td>Lim 2019</td>
<td>New York City, NY</td>
<td>2GPP</td>
<td>Sikh Asian Indians at-risk for T2DM</td>
<td>Intervention: 71 Control: 89</td>
<td>2h fasting blood glucose (mg/DL)</td>
<td>6-month 15 mg/dl decrease in blood glucose</td>
</tr>
<tr>
<td>Gany 2014</td>
<td>New York City, NY</td>
<td>1GPP</td>
<td>Asian Indian, Pakistani, and Bangladeshi taxi drivers</td>
<td>Intervention: 47 Control: N/A</td>
<td>Random glucose test (mg/DL)</td>
<td>No significant change in blood glucose</td>
</tr>
<tr>
<td>Kandula 2016</td>
<td>Chicago, IL</td>
<td>1GPP</td>
<td>South Asian women with children (age 6-12) who were at-risk for T2DM</td>
<td>Intervention: 30 Control: N/A</td>
<td>A1C</td>
<td>4-month 0.1% increase in A1C</td>
</tr>
</tbody>
</table>
Table 3: Characteristics of populations studied (baseline + interventional studies)

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Included sub-groups</th>
<th>Males</th>
<th>Females</th>
<th>Born abroad</th>
<th>Born in US</th>
<th>Average age (range)</th>
<th>Education range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kandula 2015</td>
<td>Indian, Pakistani</td>
<td>37%</td>
<td>63%</td>
<td>100%</td>
<td>0%</td>
<td>50.0 (30-59)</td>
<td>Below high school: 27%</td>
</tr>
<tr>
<td>Patel 2017</td>
<td>Indian</td>
<td>46%</td>
<td>54%</td>
<td>98%</td>
<td>2%</td>
<td>53.1</td>
<td>High school: 13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bachelor's degree: 46%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Graduate degree: 41%</td>
</tr>
<tr>
<td>Islam 2014</td>
<td>Indian</td>
<td>19%</td>
<td>81%</td>
<td>100%</td>
<td>0%</td>
<td>46.3 (18-75)</td>
<td>Below high school: 13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High school/some college: 67% College: 17%</td>
</tr>
<tr>
<td>Lim 2014</td>
<td>Indian, Bangladeshi</td>
<td>31%</td>
<td>69%</td>
<td>100%</td>
<td>0%</td>
<td>46.5 (18-75)</td>
<td>Below high school: 13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High school/some college: 70% College: 14%</td>
</tr>
<tr>
<td>Gany 2014</td>
<td>Indian, Pakistani, Bangladeshi</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>47.9 (30-79)</td>
<td>Post college/graduate school: 28% College/some college: 34%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High school and below: 38%</td>
</tr>
<tr>
<td>Kandula 2016</td>
<td>Indian, Pakistani, Other</td>
<td>0%</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>N/A</td>
<td>High school and below: 57%</td>
</tr>
<tr>
<td>Weber + (Narayan 2010)</td>
<td>Self-identified South Asian</td>
<td>77%</td>
<td>23%</td>
<td>N/A</td>
<td>N/A</td>
<td>46.9</td>
<td>Some college and above: 100%</td>
</tr>
<tr>
<td>Sathe 2013</td>
<td>Indian, Pakistani, Bangladeshi, Sri Lankan, Nepali</td>
<td>69%</td>
<td>31%</td>
<td>92%</td>
<td>4%</td>
<td>43</td>
<td>Bachelor’s degree or higher: 96%</td>
</tr>
</tbody>
</table>

1 GPP: One-group pre-test/post-test study; 2GPP: Two-group pre-test/post-test study; RCT: Randomized controlled trial;

1: NHLBI Controlled Intervention Studies tool
2: NHLBI Before-After (Pre-Post) Studies With No Control Group tool

^ statistical testing not conducted due to small sample size
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Length of lifestyle Intervention</th>
<th>Interventions Setting</th>
<th>Physical Activity component</th>
<th>Diet/nutrition component</th>
<th>Other components</th>
<th>Cultural adaptation</th>
<th>Language adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kandula 2015</td>
<td>16 weeks</td>
<td>Community-based non-profit organization</td>
<td>1-1.5h weekly group classes: exercise promotion. Group 'Melas': Yoga, aerobic exercise built on folk dances</td>
<td>1-1.5h group classes: reducing fat/salt, increasing healthy fruits/vegetables/ grains. Group ‘Melas’: healthy cooking with South Asian chef, cooking competition</td>
<td>1-1.5h weekly group classes: heart disease risk factors, weight control, stress and tension control</td>
<td>Sociocultural context and beliefs integrated into curriculum. Festive activities ('Melas') with culturally salient activities to reinforce healthy behaviors</td>
<td>Participants at group level adapted to group settings. Community partners involved in development of culturally tailored strategies as part of intervention</td>
</tr>
<tr>
<td>Patel 2017</td>
<td>12 weeks</td>
<td>Hindu temple ('mandir')</td>
<td>75-min weekly group session: increasing physical activity Some sessions also included: 20-min group physical activity</td>
<td>75-min group session: increasing fruit/vegetable intake, barriers. Some sessions included: cooking demonstrations, food samples, grocery store tour, recipe makeover, pot-luck party</td>
<td>N/A</td>
<td>Existing curriculum (P2P) adapted and culturally tailored. Inspirational cultural messaging, visuals</td>
<td>Gujarati A facilitator translated materials using colloquialism customs, traditional practices</td>
</tr>
<tr>
<td>Islam 2014</td>
<td>6 months</td>
<td>Community settings convenient to Sikh Asian Indian community</td>
<td>2h weekly group classes: Physical activity promotion, home-based exercises/activities</td>
<td>2h group weekly classes: General diabetes awareness, stress and mental health, access to healthcare</td>
<td>N/A</td>
<td>Existing curriculum (NHLBI, P2P, DPP, RH) culturally adapted through formative research. Sikh nutritionist created healthy recipes</td>
<td>All curriculum materials translated into Punjabi</td>
</tr>
<tr>
<td>Lim 2019</td>
<td>6 months</td>
<td>Community settings (neighborhood gurdwara or education center) convenient to Sikh Asian Indian community</td>
<td>2h weekly group classes: Physical activity promotion</td>
<td>2h weekly group classes: Identifying high salt/sugar foods, incorporating healthfulness in traditional Indian cooking, reading food labels</td>
<td>N/A</td>
<td>Culture adaptions further described in pilot paper (Islam, 2014): Existing curriculum (NHLBI, P2P, DPP, RH, other) culturally adapted.</td>
<td>All survey administration and materials translated into Punjabi by bilingual community workers. Materials and interventions adapted for culturally different communities</td>
</tr>
<tr>
<td>Gany 2014</td>
<td>12 weeks</td>
<td>Remote</td>
<td>Daily pedometer usage</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Multi-lingual research paper</td>
</tr>
<tr>
<td>Kandula 2016</td>
<td>16 weeks</td>
<td>Community-based non-profit organization, local fitness facility</td>
<td>45 minutes (2+wk) of moderate intensity exercise (Zumba, aerobics)</td>
<td>Optional group classes: culturally tailored healthy eating, reducing fat and salt intake</td>
<td>N/A</td>
<td>Community partners involved in development of culturally tailored strategies as part of intervention</td>
<td>Study staff and participants consented at group level. Questionnaire administered in participants' preferred language</td>
</tr>
</tbody>
</table>
| Weber + (Narayan 2010) | 16 weeks | Community locations near city | Group classes: physical activity awareness. | Group classes: diet awareness | N/A | Existing curriculum (DPP) culturally adapted through | }
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Duration</th>
<th>Delivery</th>
<th>Intervention</th>
<th>Stated Outcome</th>
<th>Integrated Culturally Tailored Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sathe 2013</td>
<td>1 year</td>
<td>Remote</td>
<td>Health coach recommendations</td>
<td>Health coach recommendations</td>
<td>Health coaches trained to integrated culturally tailored strategies</td>
</tr>
</tbody>
</table>