Remdesivir and its antiviral activity against COVID-19: A systematic review

Andri Frediansyah1,2,*, Firzan Nainu3, Kuldeep Dhama4, Mudatsir Mudatsir5,6,7, Harapan Harapan5,6,7,*

1 Research Division for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), Wonosari 55861, Indonesia
2 Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen 72076, Germany
3 Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
4 Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
5 Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
6 Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
7 Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
*Corresponding authors:

Andri Frediansyah, MS
Research Division for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI)
Address: Jl. Jogja-Wonosari 31.5, Wonosari, D.I. Yogyakarta 55861, Indonesia
Email: andri.frediansyah@lipi.go.id

Harapan Harapan, MD, DTM&H, PhD
Medical Research Unit, School of Medicine, Universitas Syiah Kuala
Address: Jl. T. Tanoeh Abe, Darussalam, Banda Aceh 23111, Indonesia
Email: harapan@unsyiah.ac.id

ORCID
Andri Frediansyah : https://orcid.org/0000-0003-4923-2948
Firzan Nainu : http://orcid.org/0000-0003-0989-4023
Kuldeep Dhama : http://orcid.org/0000-0001-7469-4752
Mudatsir : https://orcid.org/0000-0002-5643-9384
Harapan Harapan : https://orcid.org/0000-0001-7630-8413
Email addresses

Andri Frediansyah : andri.frediansyah@lipi.go.id
Firzan Nainu : firzannainu@unhas.ac.id
Kuldeep Dhama : kdhama@rediffmail.com
Mudatsir Mudatsir : mudatsir@unsyiah.ac.id
Harapan Harapan : harapan@unsyiah.ac.id
Remdesivir and its antiviral activity against COVID-19: A systematic review

Abstract

Background: To summarize the antiviral activities of remdesivir against SARS-CoV-2, the causative agent of COVID-19.

Methods: Available publications were systematically explored on some databases and gray literature was examined. Publications were discussed narratively.

Results: Remdesivir inhibits SARS-CoV-2 replication, reduces viral load, and exerts protective effects in SARS-CoV-2 infected animals. Remdesivir also reduces the pathological process, alleviates mild symptoms, and improves pulmonary lesions in SARS-CoV-2-infected animals. Although remdesivir has been used as a compassionate drug for treating COVID-19 patients, it has only moderate efficacy.

Conclusion: Although remdesivir has shown potent antiviral activities, more efficacy assessments are urgently warranted in clinical trials.

Keywords: COVID-19; SARS-CoV-2; Treatment, Remdesivir; Clinical trial
1. Introduction

The current coronavirus disease 2019 (COVID-19) pandemic, has caused considerable challenges to the national healthcare systems of most affected countries [1, 2]. The most common clinical manifestations of COVID-19 include fever, cough, dyspnea, chest pain, and pneumonia with ground-glass opacities being the most common finding in computed tomography imaging [3, 4]. Aside from respiratory symptoms, COVID-19 could involve cardiac manifestations [5], the digestive system [6], and other organs [7-9]. The progression and severity of COVID-19 may be associated with dysregulation of host immune responses [10].

As on June 8, 2020, over 7 million confirmed COVID-19 cases and 400,000 deaths were reported, according to the COVID-19 Global Cases database [11]. The rapid transmission of the virus is mainly owing to its high reproductive number (R_0), with a mean of 3.28 [12], implying that one infected person could transmit the virus to up to three unvaccinated individuals. The virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the family Coronaviridae and genus Betacoronavirus, together with SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV) [8]. The virus has 79.6% sequence similarity with SARS-CoV [13].

A specific antiviral treatment for COVID-19 is yet to be identified [14]; therefore, several strategies have been proposed to treat patients, including the use of convalescent plasma and interferon (IFN), as well as interleukin 6 receptor inhibitors since they have the potential to inhibit the cytokine storm [10]. Chloroquine and hydroxychloroquine that inhibit endocytosis-mediated viral entry, inhibit endosomal acidification, and disrupt glycosylation of angiotensin converting enzyme 2 (ACE2) [15-18], as well as ivermectin...
that inhibits nuclear transport of viral proteins [19, 20], have been used to treat COVID-19. In addition, antivirals that inhibit protease inhibitors [21-25] and nucleotide or nucleoside analogs that inhibit viral RNA synthesis [17, 26-28] have been repurposed for the treatment of the SARS-CoV-2 infection. Nucleoside analogs represent a group of drugs that inhibit reverse transcription and are among the most potent antiviral agents available to combat the SARS-CoV-2 infection—within this group is remdesivir. The objective of this review was to summarize evidence from \textit{in vitro} studies, \textit{in vivo} studies, use in patients with COVID-19 under emergency protocol, and clinical trials to provide comprehensive information on the potential of remdesivir in the treatment of patients with COVID-19.

2. Materials and methods

Relevant articles were searched on PubMed and Google Scholar using the search terms “remdesivir”, AND “coronavirus”, OR “SARS-CoV”, OR “MERS-CoV”, OR “SARS-CoV-2” in the title and abstract. Recent clinical trials assessing the efficacy of remdesivir against COVID-19 were also searched on the ClinicalTrials.gov database. The screened publications were classified and analyzed based on the study types: \textit{in vitro}, \textit{in vivo}, emergency use in hospitals, and clinical trials. All available articles until May 4, 2020 were considerate eligible.

3. Results

The search combinations yielded 21 main references related to remdesivir. Antiviral activity and mechanism of remdesivir in both non- and coronaviruses have been reported in several \textit{in vitro} studies [17, 29-39]. \textit{In vivo} studies have been conducted to assess
antiviral effect of remdesivir on non-coronaviruses using rhesus monkeys [30] and African green monkeys [40] as well as on coronavirus such as in mice [34, 41] and rhesus macaques [42, 43]. The antiviral effect of remdesivir also have been assessed in humans [44] and it have been used to treat severe COVID-19 patients, as an emergency use [45-47]. Although only one clinical trial has been conducted to assess the effectiveness and safety of remdesivir for COVID-19 [48], several clinical trials are ongoing in some countries.

4. Discussion

4.1 Remdesivir: An introduction

Remdesivir (GS-5734; Gilead Sciences Inc., US) is an investigational nucleoside analog that acts as a competitive inhibitor of viral RNA-dependent RNA polymerase (RdRp) (Fig. 1) [13]. It is a prodrug with a molecular formula of C_{27}H_{35}N_{6}O_{8}P and an exact mass of 602.23 Da. In the body, remdesivir is transformed into an active molecule known as GS-441524 (Fig. 1), with a molecular formula of C_{12}H_{13}N_{5}O_{4} (291.10 Da). Remdesivir was previously proposed for the treatment of Ebola [29, 30, 44] and is yet to be approved or licensed by the US Food and Drug Administration (FDA) or any other drug regulatory authority worldwide. The antiviral activities of remdesivir on RdRp have been reported against Ebola virus [36, 37], MERS-CoV [33], SARS-CoV [33, 34], and other coronaviruses such as CoV-OC43, CoV-229E, and PDCoV [35].

4.2 Evidence from in vitro studies

In 2015, a study showed that remdesivir is an effective inhibitor of the Ebola virus [29]. Its half-maximal effective concentration (EC_{50}), the drug concentration that induces a
response halfway between the baseline and maximum after a specified exposure time, varied between 0.07 and 0.14 µM in Ebola-infected cells such as HeLa, HFF-1, HMVEC-TERT, and Huh-7 [30]. Studies on the inhibitory effects of remdesivir against various viruses have been conducted using seven virus families, namely, filo-, paramyxo-, pneumo-, bunya-, arena-, rhabdo-, and flaviviruses [31]. Another study showed that phosphorylated GS-441524, the active molecule of remdesivir, inhibited feline infectious peritonitis in CRFK cells, with a half maximal inhibitory concentration (IC$_{50}$; the drug concentration at which half of the peak inhibiting effect of the drug against a specific viral function is achieved) of 0.78 µM [32]. The EC$_{50}$ of remdesivir against the murine hepatitis virus is 0.03 µM [33]. Remdesivir also exerts antiviral activities against MERS-CoV, Junin virus, and Lassa fever virus in HeLa cells, with EC$_{50}$ values of 0.34, 0.47, and 1.48 µM, respectively [30]. Another study revealed that remdesivir inhibits SARS-CoV and MERS-CoV in human airway epithelial (HAE) cells, with EC$_{50}$ values of 0.069 and 0.074 µM, respectively [34]. The summary of the EC$_{50}$ and IC$_{50}$ of remdesivir and its active component GS-441524 against highly pathogenic human coronaviruses (MERS-CoV and SARS-CoV) is presented in Table 1.

Table 1

Remdesivir inhibits RdRp; its antiviral activity against RdRp has been reported in Huh7 human cells infected with CoV-OC43, CoV-229E, and PDCoV, with EC$_{50}$ values ranging between 0.02 and 0.17 µM [35]. The same mechanism, i.e., the inhibition of RdRp, has also been reported in Ebola virus [36, 37]. In 2020, a study revealed that the inhibitory mechanism of the active triphosphate molecule of remdesivir against MERS-CoV in insect
cells involved various nonstructural proteins (nsp), such as nsp5, nsp7, nsp8, and nsp12 (RdRp) [38].

The RdRp sequences of SARS-CoV-2 and SARS-CoV display more than 80% similarity [49, 50]. Therefore, it was suggested that remdesivir could potentially exert antiviral activities against SAR-CoV-2. Remdesivir was found to have an EC$_{50}$ of 0.77 against SARS-CoV-2 in Vero E6 cells (Table 1) [17]. This activity of remdesivir was higher than that of the other drugs used in the study, such as ribavirin, penciclovir, favipiravir, nafamostat, nitazoxanide, and chloroquine, which showed EC$_{50}$ values of 109.5, 95.96, 61.88, 22.50, 2.12, and 1.13 µM, respectively [17]. Another study in Vero E6 cells also revealed that remdesivir inhibited the replication of SARS-CoV-2, with an EC$_{50}$ of 23.15 µM, showing the strongest antiviral activity among the tested drugs [39]. In this study, the viral load was fit in a logarithmic scale under increasing remdesivir concentrations, rather than a linear scale reported previously [17]. These initial studies suggest that remdesivir inhibits the replication of SARS-CoV-2 and has the potential to be used in the treatment of COVID-19.

4.3 Evidence from in vivo studies

In 2016, an in vivo study was conducted using Ebola-infected rhesus monkeys (a non-human primate) and various doses of remdesivir intramuscular injections [30]. Post-exposure revealed that remdesivir exerted protective effects by inhibiting viral replication [30]. The concentration of triphosphate GS-441524, the active form of remdesivir, was 10 µM in peripheral blood mononuclear cells after administration of 10 mg/kg remdesivir [30]. A study in Nipah virus-infected African green monkeys showed the protective effects of remdesivir: half of the remdesivir-treated monkeys ($n = 4$) developed mild respiratory
symptoms and the other half recovered; those in the control group developed severe respiratory disease \[40\]. Remdesivir has also been shown to exert antiviral activity against coronaviruses. Remdesivir treatment was found to reduce the viral load in MERS-CoV-infected Ces1c−/−hDPP4 mice and was phenotypically associated with improved pulmonary function and decreased likelihood of acute lung injury development in infected animals \[41\]. In addition, remdesivir inhibited MERS-CoV replication in the pulmonary organs of rhesus macaques and led to a reduction in lung lesions \[42\]. Remdesivir also reduced the viral load in the lung and improved the respiratory function of SARS-CoV MA15-infected mice \[34\]. A recent study showed that remdesivir administration to SARS-CoV-2-infected rhesus macaques improved pulmonary lesions, according to radiographs; reduced viral titers in bronchoalveolar lavage after 12 h of treatment; and reduced the viral load in the lungs after 7 days of treatment. Moreover, the remdesivir-treated animals did not show any signs of pulmonary disease \[43\].

4.4 Results from patients with COVID-19 and clinical trials

Historically, remdesivir was tested to treat patients with Ebola in a randomized clinical trial in the Democratic Republic of the Congo in 2018 \[44\]. In 2020, remdesivir was included in the “Solidarity” international clinical trial conducted by the World Health Organization in an attempt to find an effective treatment for COVID-19 \[51\]. As a timely response to the pandemic, patients with COVID-19 have been treated with remdesivir in emergency protocols. In the first patient with COVID-19 treated with remdesivir, a 35-year-old from Washington, pneumonia improved after 7 days of treatment \[45\]. In Seattle, USA,
remdesivir was used as a compassionate drug to treat seven critically ill patients [46]. A larger study found that, following a 10-day course of remdesivir treatment (intravenous administration at 200 mg on day 1, followed by 100 mg daily), 68% (36 of 53) of patients with COVID-19 showed clinical improvement; however, there was no control group in this study [47]. Therefore, this information is insufficient to confirm the efficacy of remdesivir in treating patients with COVID-19.

To adequately assess the efficacy of remdesivir, clinical trials are ongoing in countries such as USA, Norway, Canada, France, and China. A list of currently ongoing clinical trials has been presented in Table 2. Although the length of treatment differs slightly, the dose of remdesivir is similar: 200 mg on day 1, followed by 100 mg for the rest of the treatment period.

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
</table>

The first randomized, double-blind, placebo-controlled, multicenter clinical trial was reported on April 29, 2020 [48]. The study was conducted in China with 237 patients (158 in the remdesivir group and 79 in the placebo control group), and the primary endpoint was the time taken to achieve clinical improvement. The study revealed that treatment with remdesivir did not lead to a significant reduction in the time taken to achieve clinical improvement. In addition, mortality and viral clearance time in patients with severe COVID-19 were not significantly different from those in the placebo group, suggesting that remdesivir had poor clinical benefits. This further suggests that in COVID-19, viral propagation is not the main factor responsible for disease severity. On this account, the
antiviral properties of remdesivir will not be beneficial. The severity of COVID-19 has been associated with the cytokine release storm [52], suggesting that host immune responses play an important role in this event. Therefore, a combination of remdesivir with immunosuppressants (for example sarilumab, an IL-6 the inhibitor) and/or other antiviral agents might potentiate the antiviral activity of remdesivir and mitigate the immunopathological injury caused by excessive immune effectors [52].

Nonetheless, during the same trial [52], in remdesivir-treated patients with COVID-19, especially those treated within 10 days of symptom onset, faster clinical improvement was observed than that in the placebo group. Unfortunately, the study was terminated prematurely owing to the occurrence of more frequent adverse events in the remdesivir group than in the placebo group [52]. Considering these findings, the small sample size, and because the study was unexpectedly terminated, it may be insufficient to elucidate the efficacy of remdesivir [53]. Furthermore, the pharmacokinetics of remdesivir and its active metabolite in the respiratory tracts and/or other infected organs remain largely unknown in patients with COVID-19 [36]. Therefore, the results of ongoing clinical trials (Table 1) are warranted to provide conclusive evidence regarding the efficacy of remdesivir in patients with COVID-19.

The pharmacokinetic profile of remdesivir, particularly the concentrations of the active metabolite, GS-441524, in the respiratory tract or other infected tissues in patients with severe COVID-19 are unknown [48]. In addition, currently available data on remdesivir are lacking, in particular those in drug–drug, drug–gene, and drug–disease interactions. This
information is important in predicting possible negative outcomes that may arise during treatment.

5. Conclusion

Remdesivir is a nucleotide analog prodrug that inhibits SARS-CoV-2 RdRp. Its viral activities against SARS-CoV-2 have been shown in both in vitro and in vivo studies. Remdesivir has been used in several countries as an emergency drug for patients with COVID-19, and some patients showed improved clinical outcomes. However, large-scale clinical trials should be conducted to confirm the efficacy of remdesivir in treating patients with COVID-19.

Conflict of interest statement

The authors declare that they have no competing interests.

Authors’ contributions

AF and HH conceived and designed the study. AF, FN, and HH were responsible for data collection. AF and HH wrote the initial manuscript. KD, MM, and HH critically revised the manuscript. All authors have read the final manuscript.

References

Figure Legend

Figure 1. Structure and mechanism of action of remdesivir (GS-5734) and its pharmacological active form (GS-441524).
Table 1. *In vitro* studies on efficacy of remdesivir and its active component against highly pathogenic Coronaviruses (MERS-CoV, SARS-CoV, and SARS-CoV-2)

<table>
<thead>
<tr>
<th>Component</th>
<th>Virus</th>
<th>Cell line</th>
<th>IC<sub>50</sub> or EC<sub>50</sub></th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remdesivir</td>
<td>MERS-CoV</td>
<td>Calu-3 2B4</td>
<td>IC<sub>50</sub> = 0.025 μM<sup>a</sup></td>
<td>[34]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HAE</td>
<td>IC<sub>50</sub> = 0.074 μM<sup>a</sup></td>
<td>[34]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calu-3 2B4</td>
<td>EC<sub>50</sub> = 0.09 μM<sup>a</sup></td>
<td>[41]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HAE</td>
<td>EC<sub>50</sub> = 0.07 μM<sup>a</sup></td>
<td>[33]</td>
</tr>
<tr>
<td>SARS-CoV</td>
<td>HAE</td>
<td>IC<sub>50</sub> = 0.069 μM<sup>a</sup></td>
<td>[34]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAE</td>
<td>EC<sub>50</sub> = 0.07 μM<sup>a</sup></td>
<td>[33]</td>
<td></td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>Vero E6</td>
<td>EC<sub>50</sub> = 0.77 μM<sup>a</sup></td>
<td>[17]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vero E6</td>
<td>EC<sub>50</sub> = 23.15 μM<sup>b</sup></td>
<td>[39]</td>
<td></td>
</tr>
<tr>
<td>GS-441524</td>
<td>MERS-CoV</td>
<td>HAE</td>
<td>EC<sub>50</sub> = 0.86 μM<sup>a</sup></td>
<td>[33]</td>
</tr>
<tr>
<td>SARS-CoV</td>
<td>HAE</td>
<td>EC<sub>50</sub> = 0.18 μM<sup>a</sup></td>
<td>[33]</td>
<td></td>
</tr>
</tbody>
</table>

^a The viral load was fit in a linear scale (the percentage of inhibition) under increasing concentrations of remdesivir or GS-441524.

^b The viral load was fit in a logarithmic scale (log₁₀TCID₅₀/mL and log₁₀ viral RNA copies/mL) under increasing concentrations of remdesivir.
Table 2. A list of ongoing clinical trials of remdesivir registered on ClinicalTrial.gov

<table>
<thead>
<tr>
<th>Identifier number</th>
<th>Title</th>
<th>Expected participants</th>
<th>Length of treatment</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT04292899</td>
<td>Study to evaluate the safety and antiviral activity of remdesivir (GS-5734™) in participants with severe coronavirus disease (COVID-19)</td>
<td>6000</td>
<td>5-10 days (and possibly extension)</td>
<td>USA</td>
</tr>
<tr>
<td>NCT04292730</td>
<td>Study to evaluate the safety and antiviral activity of remdesivir (GS-5734™) in participants with moderate coronavirus disease (COVID-19) compared to standard of care treatment</td>
<td>1600</td>
<td>5-10 days (and possibly extension)</td>
<td>USA</td>
</tr>
<tr>
<td>NCT04321616</td>
<td>The efficacy of different antiviral drugs in COVID-19 infected patients</td>
<td>700</td>
<td>10 days</td>
<td>Norway</td>
</tr>
<tr>
<td>NCT04330690</td>
<td>Treatments for COVID-19: Canadian Arm of the Solidarity Trial (CATCO)</td>
<td>440</td>
<td>9 days</td>
<td>Canada</td>
</tr>
<tr>
<td>NCT04280705</td>
<td>Adaptive COVID-19 treatment Trial (ACTT)</td>
<td>800</td>
<td>10 days</td>
<td>USA</td>
</tr>
<tr>
<td>NCT04315948</td>
<td>Trial of treatments for COVID-19 in hospitalized adults (DisCoVeRy)</td>
<td>3100</td>
<td>10 days</td>
<td>France</td>
</tr>
<tr>
<td>NCT04349410</td>
<td>The Fleming [FMTVDM] directed CoVid-19 treatment protocol</td>
<td>500</td>
<td>10 days</td>
<td>USA</td>
</tr>
<tr>
<td>NCT04365725</td>
<td>Multicenter, retrospective study of the effects of remdesivir in the treatment of severe covid-19 infections (REMDECO-19)</td>
<td>200</td>
<td>15 days</td>
<td>France</td>
</tr>
</tbody>
</table>
SARS-CoV-2

ACE2 receptor

Ribosome

Translation of viral polymerase protein (RdRp)

Inhibition of RNA replication

Cytoplasm

Remdesivir or GS-5734 (Prodrug)

GS-441524 (Active molecule)
CONFLICTS OF INTEREST

A conflict of interest occurs when an individual’s objectivity is potentially compromised by a desire for financial gain, prominence, professional advancement or a successful outcome. CEGH Editors strive to ensure that what is published in the Journal is as balanced, objective and evidence-based as possible. Since it can be difficult to distinguish between an actual conflict of interest and a perceived conflict of interest, the Journal requires authors to disclose all and any potential conflicts of interest.

Section I

The authors whose names are listed immediately below certify that they have No affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Author names: Andri Frediansyah, Firzan Nainu, Kuldeep Dhama, Mudatsir Mudatsir, Harapan Harapan

Section II

The authors whose names are listed immediately below report the following details of affiliation or involvement in an organization or entity with a financial or non-financial interest in the subject matter or materials discussed in this manuscript. Please specify the nature of the conflict on a separate sheet of paper if the space below is inadequate.

<table>
<thead>
<tr>
<th>Author names & E-mail address</th>
<th>Details of the conflict(s) of interest:</th>
</tr>
</thead>
<tbody>
<tr>
<td>_____________________________</td>
<td>_________________________________</td>
</tr>
<tr>
<td>_____________________________</td>
<td>_________________________________</td>
</tr>
<tr>
<td>_____________________________</td>
<td>_________________________________</td>
</tr>
</tbody>
</table>

This Authorship & Conflicts of Interest Statement is signed by the corresponding author on behalf of all the listed authors in the manuscript. The corresponding author certifies that all the information contained in this statement is true, correct and agreed on by all the listed authors.

<table>
<thead>
<tr>
<th>Author(s) name (typed)</th>
<th>Author(s) signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harapan, MD, PhD</td>
<td>[Signature]</td>
<td>06 July 2020</td>
</tr>
</tbody>
</table>

On behalf of all authors