Mostrar el registro sencillo del documento

dc.contributor.advisorM. Westbrook, Aaron
dc.contributor.advisorChavarro, Jorge I.
dc.contributor.advisorLongo, Magnolia
dc.contributor.advisorNannyq, Mark A.
dc.coverage.spatialColombiaspa
dc.creatorMolina Chaux, Amalia
dc.date.accessioned2018-02-02T15:52:53Z
dc.date.available2018-02-02T15:52:53Z
dc.date.created2017
dc.identifier.urihttp://hdl.handle.net/20.500.12010/2865
dc.description.abstractEl uso de agua de producción (PW) para riego en agricultura y bosques es una opción para reforestar áreas áridas y semiáridas. Este tipo de proyectos podrían ser una contribución a la mitigación y adaptación al cambio climático, pero requieren un análisis complejo y detallado más allá de los requisitos de regulación ambiental para el uso o eliminación de PW en la superficie terrestre. La identificación de compuestos orgánicos polares no regulados actualmente (es decir, ácidos nafténicos (NA)) que están asociados con procesos de producción de petróleo es una de las posibles sustancias a considerar. Un estudio de caso donde la iniciativa es reutilización PW cumplió con las variables de calidad del agua establecidas en la regulación local, pero este proyecto se utilizó para aplicar un análisis riguroso de la calidad del agua considerando la evaluación de la presencia de compuestos orgánicos polares. Utilizando métodos de derivatización y cromatografía de gases y espectrometría de masas (GC-MS) para caracterizar muestras de PW, se descubrió que la mayoría de los compuestos orgánicos solubles en agua eran ácidos monocarboxílicos alifáticos cíclicos y cíclicos, es decir, AN tradicionales. La concentración absoluta de compuestos orgánicos en las dos muestras de agua producidas después del tratamiento de filtración primaria no se cuantificó, pero las concentraciones relativas de los compuestos identificados en cada muestra fueron similares. Debido a que las AN representan un riesgo potencial para la calidad ambiental, la salud ecológica y la salud humana, fue necesario realizar este tipo de análisis en muestras de agua y sedimentos captados en filtraciones dentro del arroyo ubicado en el campo petrolífero. No se encontraron NA en las muestras y no hubo correlación entre NA presentes en el PW y no presentes en la disposición natural.spa
dc.format.mimetypeapplication/pdfspa
dc.publisherUniversidad de Bogotá Jorge Tadeo Lozanospa
dc.titleCharacterization of naphthenic acids in industrial produced water and seep-impacted natural water for Huila, Colombia, with and evaluation for irrigation in semiarid regionsspa
dc.type.localTrabajo de grado de maestríaspa
dc.subject.lembCalidad del agua de riegospa
dc.subject.lembAgua en agriculturaspa
dc.subject.lembRiegospa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.localAbierto (Texto Completo)spa
dc.subject.keywordNaphthenic Acidsspa
dc.subject.keywordProduced Waterspa
dc.subject.keywordEnvironmental Qualityspa
dc.subject.keywordGC-MSspa
dc.subject.keywordWater Resources Managementspa
dc.identifier.repourlhttp://expeditio.utadeo.edu.cospa
dc.publisher.programMaestría en ciencias ambientalesspa
dc.relation.referencesAitken, Carolyn M., D. M. Jones, and S. R. Larter. 2004. “Anaerobic Hydrocarbon Biodegradation in Deep Subsurface Oil Reservoirs.” Nature 431 (7006):291–94.spa
dc.relation.referencesBiryukova, Oxana V., Phillip M. Fedorak, and Sylvie A. Quideau. 2007. “Biodegradation of Naphthenic Acids by Rhizosphere Microorganisms.” Chemosphere 67 (10):2058–64.spa
dc.relation.referencesBrient, J.A., P.J. Wessner, and M.N. Doly. 1995. Encyclopedia of Chemical Technology. Vol. 16. Wiley, New York.spa
dc.relation.referencesBrown, Lisa D., and Ania C. Ulrich. 2015. “Oil Sands Naphthenic Acids: A Review of Properties, Measurement, and Treatment.” Chemosphere 127 (0):276–90.spa
dc.relation.referencesClemente, Joyce S., and Phillip M. Fedorak. 2005. “A Review of the Occurrence, Analyses, Toxicity, and Biodegradation of Naphthenic Acids.” Chemosphere 60 (5):585–600.spa
dc.relation.referencesClemente, Joyce S., Michael D. MacKinnon, and Phillip M. Fedorak. 2004. “Aerobic Biodegradation of Two Commercial Naphthenic Acids Preparations.” Environmental Science & Technology 38 (4):1009– 16. https://doi.org/10.1021/es030543j.spa
dc.relation.referencesDel Rio, L.F., A.K.M. Hadwin, L.J. Pinto, M.D. MacKinnon, and M.M. Moore. 2006. “Degradation of Naphthenic Acids by Sediment MicroOrganisms.” Journal of Applied Microbiology 101 (5):1049–1061. https://doi.org/10.1111/j.1365- 2672.2006.03005.xspa
dc.relation.referencesFoote, Lee. 2012. “Threshold Considerations and Wetland Reclamation in Alberta’s Mineable Oil Sands.” Ecology and Society 17 (1). https://doi.org/10.5751/ES-04673-170135.spa
dc.relation.referencesFrank, Richard A, H. Sanderson, R. Kavanagh, B.K. Burnison, J.V. Headley, and K.R. Solomon. 2010. “Use of a (Quantitative) Structure-Activity Relationship [(Q)Sar] Model to Predict the Toxicity of Naphthenic Acids.” Journal of Toxicology and Environmental Health-Part ACurrent Issues 73:319–29.spa
dc.relation.referencesGervais, James, Francoise: Barker. 2005. “Fate and Transport of Napspa
dc.description.abstractenglishThe use of production water (PW) for irrigation in agriculture and forestry purposes is an option for regreening arid and semiarid areas. These kinds of projects could be a contribution to the Climate Change mitigation and adaptation, but require a complex and detailed analysis beyond requirements of environmental regulation for use or disposal PW in the land surface. The identification of polar organic compounds not currently regulated (i.e., Naphthenic Acids (NAs)) that are associated with petroleum production processes are one of the possible substances to be considered. A case study where the initiative is reuse PW had complied with the water quality variables stablished in the local regulation, but this project was used for applying a rigorous water quality analysis considering evaluation of the presence of polar organic compounds. Using derivatization methods and Gas Chromatography – Mass Spectrometry (GC-MS) to characterize PW samples, a majority of the aqueoussoluble organic compounds were found to be acyclic and cyclic aliphatic monocarboxylic acids, i.e. traditional NAs. The absolute concentration of organic compounds in the two produced water samples after primary filtration treatment was not quantified, but the relative concentrations of the identified compounds in each sample were similar. Due to NAs represent a potential risk for the environmental quality, ecological health and human health, was necessary realize this kind of analysis to water and sediments samples taken in seeps inside the creek located in the oil field. NAs was not found in the samples and there was no correlation between NAs present in the PW and not present in the natural disposal. Geologic information and crude oil characterization was used for understanding where come from the NAs.spa
dc.description.degreenameMagister en Ciencias Ambientalesspa
dc.publisher.facultyFacultad de Ciencias Naturales e Ingenieríaspa
dc.identifier.instnameinstname:Universidad de Bogotá Jorge Tadeo Lozanospa
dc.identifier.reponamereponame:Repositorio Institucional de la Universidad de Bogotá Jorge Tadeo Lozanospa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa


Archivos en el documento

Thumbnail
Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento